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Notions

» Process: System of actions, movements (e.g. sign document, customer call,
financial transaction, delivery of goods)

» Different instances/cases should follow a common process description
» Each case contains actions as events (their sequence is called trace)

> An event is represented by at least
> A case identifier
» An activity label
> A timestamp
but may also comprise additional (meta-)information (e.g. involved (work)
resources)
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Petri Nets as Process Model

Transitions
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Tasks

1. Process Discovery:.
Mine multiple sequences of actions to derive a workflow pattern

2. Conformance Checking:
Use previously mined model to judge the validity of a new case

3. Process Enhancement:
Evolve models with new data, find deviations
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Process Discovery

Input
# trace
2048 ace
1234 acdce
404 acdcdce
120 acdcdcdce
42 ab
5 acdb
Quality Measures
Fitness ability to replay the log
Simplicity simplified as much as possible
Generalization  no underfitting of log
Precision no overfitting of log
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Example Discovery Algorithm: a-Miner?

1. Scan the log for all activities
2. For each pair of activities and , we
define the relations
» a> b if for some case a is
immediately followed by b (direct
succession)
> a| bifa> band b > a(parallelism)
> a—bifa>bandnot b>a
(causality)
> a#bif not a> band not b > a

3. All activities, having only # or — in
their row are starting activities. They
are collected in T;,.

4. Analogously, # or < determine T,ut.

2

Example: {abcd, acbd, acd}

_ Jalblc]d]
a = | = | #
b | + || —
e

Tin= {a}: Tout = {d}

22van der Aalst, Weijters, Maruster (2003). " Workflow Mining: Discovering process models from event logs”, IEEE Transactions on Knowledge

and Data Engineering, vol 16
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Example Discovery Algorithm: a-Miner

1. Prepare a Petri net. The set of ®_’|E|

transitions is equal to activities

2. A starting place is created and
connected to each node in T;, 3.
3. Also, a final place is created and each
node in T,y is connected to it @Q
4. Determine all pairs of sets A and B,
such that 4 A={a},B={b,c}
> VYaj,ar € A a1#Ha
> Vbl, b, € B: bl#bg
> .
Vaec AbeB:a—b 5 IEI

5. A place is added in between A and B
and connected accordingly El_’(:i
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Conformance Checking

Use previously mined model to judge the validity of a new case (similar to binary
classification: valid vs. invalid)

» Model
» Trace

» Model reasoning
> auditing
» security (fraud detection)
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Example Conformance Checking Algorithm: Token-Replay

Replay the event in the model. Count:
» the number of produced tokens (p)
» the number of consumed tokens (c)
» the number of missing tokens (m)

» the number of remaining tokens (r)

~10-2)-3(-)

The fitness value ranges between 0 and 1, where 1 is a perfect match.

Output a fitness value
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