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Introduction

What is an outlier?

Hawkins (1980) ”An outlier is an observation which deviates so much from
the other observations as to arouse suspicions that it was generated by a
different mechanism.”

I Statistics-based intuition:
I Normal data objects follow a

“generating mechanism”, e.g. some
given statistical process

I Abnormal objects deviate from this
generating mechanism

Unsupervised Methods Outlier Detection January 25, 2019 309



Introduction

Example: Hadlum vs. Hadlum (1949) [Barnett 1978]

I The birth of a child to Mrs. Hadlum
happened 349 days after Mr. Hadlum
left for military service.

I Average human gestation period is
280 days (40 weeks).

I Statistically, 349 days is an outlier.
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Introduction

Example: Hadlum vs. Hadlum (1949) [Barnett 1978]

I Blue: statistical basis (13634
observations of gestation periods)

I Green: assumed underlying Gaussian
process
I Very low probability for the birth of

Mrs. Hadlums child being
generated by this process

I Red: assumption of Mr. Hadlum
(another Gaussian process responsible
for the observed birth, where the
gestation period starts later)
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Introduction

Applications

I Fraud detection
I Purchasing behavior of a credit card owner usually changes when the card is stolen
I Abnormal buying patterns can characterize credit card abuse

I Medicine
I Whether a particular test result is abnormal may depend on other characteristics of

the patients (e.g. gender, age, . . . )
I Unusual symptoms or test results may indicate potential health problems of a patient

I Public health
I The occurrence of a particular disease, e.g. tetanus, scattered across various

hospitals of a city indicate problems with the corresponding vaccination program in
that city

I Whether an occurrence is abnormal depends on different aspects like frequency,
spatial correlation, etc.
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Introduction

Applications (cont’d)

I Sports statistics
I In many sports, various parameters are recorded for players in order to evaluate the

players’ performances
I Outstanding (in a positive as well as a negative sense) players may be identified as

having abnormal parameter values
I Sometimes, players show abnormal values only on a subset or a special combination

of the recorded parameters

I Detecting measurement errors
I Data derived from sensors (e.g. in a given scientific experiment) may contain

measurement errors
I Abnormal values could provide an indication of a measurement error
I Removing such errors can be important in other data mining and data analysis tasks
I ”One person’s noise could be another person’s signal.”
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Introduction

Important Properties of Outlier Models

I Global vs. local approach
I ”Outlierness” regarding whole dataset (global) or regarding a subset of data (local)?

I Labeling vs. Scoring
I Binary decision or outlier degree score?

I Assumptions about ”Outlierness”
I What are the characteristics of an outlier object?
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Clustering-based Outliers

An object is a cluster-based outlier if it does not strongly belong to any cluster.

Basic Idea

I Cluster the data into groups

I Choose points in small clusters as candidate
outliers.

I Compute the distance between candidate
points and non-candidate clusters.

I If candidate points are far from all other
non-candidate points and clusters, they are
outliers
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Clustering-based Outliers

More Systematic Approaches

I Find clusters and then assess the degree to
which a point belongs to any cluster
I E.g. for k-Means, use distance to the

centroid

I If eliminating a point results in substantial
improvement of the objective function, we
could classify it as an outlier
I Clustering creates a model of the data and

the outliers distort that model.
I Applicable to clustering algorithms optimizing

some objective function (e.g. k-means)
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Statistical Tests

General Idea

I Given a certain kind of statistical
distribution (e.g., Gaussian)

I Compute the parameters assuming all
data points have been generated by
such a statistical distribution (e.g.,
mean and standard deviation)

I Outliers are points that have a low
probability to be generated by the
overall distribution (e.g., deviate
more than 3 times the standard
deviation from the mean)
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Statistical Tests

Basic Assumption

I Normal data objects follow a (known)
distribution and occur in a high
probability region of this model

I Outliers deviate strongly from this
distribution
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Statistical Tests

A huge number of different tests are available differing in

I Type of data distribution (e.g. Gaussian)

I Number of variables, i.e., dimensions of the data objects (univariate/multivariate)

I Number of distributions (mixture models)

I Parametric versus non-parametric (e.g. histogram-based)

Example on the Following Slides

I Gaussian distribution

I Multivariate

I Single model

I Parametric
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Statistical Outliers: Gaussian Distribution

Probability Density Function of a Multivariate
Normal Distribution

N (x | µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x − µ)2

)

I µ is the mean value of all points (usually data
are normalized such that µ = 0)

I Σ is the covariance matrix from the mean
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Statistical Outliers: Mahalanobis Distance

Mahalanobis Distance

Mahalanobis distance of point x to µ :

MDist(x , µ) =
√

(x − µ)T Σ−1(x − µ)

I MDist follows a χ2-distribution with d degrees
of freedom (d = data dimensionality)

I Outliers: All points x , with
MDist(x , µ) > χ2(0.975) (≈ 3σ)
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Statistical Outliers: Problems

Problems

I Curse of dimensionality: The larger
the degree of freedom, the more
similar the MDist values for all points

I x-axis = observed MDist values

I y-axis = frequency of observation
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Statistical Outliers: Problems

Problems (cont’d)

I Robustness
I Mean and standard deviation are

very sensitive to outliers
I These values are computed for the

complete data set (including
potential outliers)

I The MDist is used to determine
outliers although the MDist values
are influenced by these outliers
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Statistical Outliers: Problems

Problems (cont’d)

I Data distribution is fixed

I Low flexibility (if no mixture models)

I Global method
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Distance-Based Approaches

General Idea

Judge a point based on the distance(s) to its neighbors (Several variants proposed)

Basic Assumption

I Normal data objects have a dense neighborhood

I Outliers are far apart from their neighbors, i.e., have a less dense neighborhood

Unsupervised Methods Outlier Detection January 25, 2019 325



Distance-Based Approaches

D(ε, π) Outliers 20

I Given: radius ε, percentage π

I A point p is considered an outlier if at most π percent of all points (including p)
have a distance to p less than ε.

OutlierSet(ε, π) =

{
p ∈ D

∣∣∣ |{q ∈ D | dist(p, q) < ε}|
|D|

≤ π
}

20
E. Knorr, R. Ng. A Unified Notion of Outliers: Properties and Computation. KDD’97
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Distance-Based Approaches: D(ε, π) Example

Score (ε = 0.3)
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Distance-Based Approaches: kNN

Outlier scoring based on kNN distances

General models: Take the kNN distance of a point as its outlier score

Decision

k-distance above some threshold τ ⇐⇒ Outlier.
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Distance-Based Approaches: kNN Example

Score (k = 1)
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Distance-Based Approaches: kNN Example

Score (k = 5)
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kNN: Problems

Problems

I Highly sensitive towards k:
I Too small k : small number of close

neighbors can cause low outlier
scores.

I Too large: all objects in a cluster
with less than k objects might
become outliers.

I cannot handle datasets with regions of
widely different densities due to the
global threshold

Image Source: P. Tan, M. Steinbach, V. Kumar (2006). Classification:

basic concepts, decision trees, and model evaluation. Introduction to data

mining, 1, 145-205.
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Density-Based Approaches

General Idea

I Compare the density around a point with the density around its local neighbors.

I The relative density of a point compared to its neighbors is computed as an
outlier score.

I Approaches also differ in how to estimate density.

Basic Assumption

I The density around a normal data object is similar to the density around its
neighbors.

I The density around an outlier is considerably different to the density around its
neighbors.
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Density-Based Approaches

Problems

I Different definitions of density: e.g.,
#points within a specified distance ε
from the given object

I The choice of ε is critical (too small
=⇒ normal points considered as
outliers; too big =⇒ outliers
considered normal)

I A global notion of density is
problematic (as it is in clustering);
fails when data contain regions of
different densities

D has a higher absolute density than A but
compared to its neighborhood, Ds density is

lower.
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Density-Based Approaches

Failure Case of Distance-Based

I D(ε, π): parameters ε, π cannot be
chosen s.t. o2 is outlier, but none of
the points in C1 (e.g. q)

I kNN-distance: kNN-distance of
objects in C1 (e.g. q) larger than the
kNN-distance of o2.
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Density-Based Approaches

Solution

Consider the relative density w.r.t. to the neighbourhood.

Model

I Local Density (ld) of point p (inverse of avg. distance of kNNs of p)

ldk (p) =

1

k

∑
o∈kNN(p)

dist(p, o)

−1

I Local Outlier Factor (LOF) of p (avg. ratio of lds of kNNs of p and ld of p)

LOFk (p) =
1

k

∑
o∈kNN(p)

ldk (o)

ldk (p)
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Density-Based Approaches

Score (k = 7)
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Density-Based Approaches

Extension (Smoothing factor)

I Reachability ”distance”

rdk (p, o) = max{kdist(o), dist(p, o)}

I Local reachability distance lrdk

lrdk (p) =

 1

k

∑
o∈kNN(p)

rd(p, o)

−1

I Replace ld by lrd

LOFk (p) =
1

k

∑
o∈kNN(p)

lrdk (o)

lrdk (p)
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Density-Based Approaches

Discussion

I LOF ≈ 1 =⇒ point in cluster

I LOF � 1 =⇒ outlier.

I Choice of k defines the reference set
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Angle-Based Approach

General Idea

I Angles are more stable than distances
in high dimensional spaces

I o outlier if most other objects are
located in similar directions

I o no outlier if many other objects are
located in varying directions • inlier

• outlier

Basic Assumption

I Outliers are at the border of the data distribution

I Normal points are in the center of the data distribution
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Angle-Based Approach

Model

I Consider for a given point p the angle between −→px and −→py for any two x , y from
the database

I Measure the variance of the angle spectrum
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Angle-Based Approach

Model (cont’d)

I Weighted by the corresponding distances (for lower dimensional data sets where
angles are less reliable)

ABOD(p) = VARx ,y∈D

(
1

‖−→xp‖2‖−→yp‖2
cos
(−→xp,−→yp

))
= VARx ,y∈D

( 〈−→xp,−→yp
〉

‖−→xp‖2
2‖
−→yp‖2

2

)
I Small ABOD ⇐⇒ outlier
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Angle-Based Approaches

Score (all pairs)
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Summary

I Properties: global vs. local, labeling vs. scoring

I Clustering-Based Outliers: Identification as non-(cluster-members)

I Statistical Outliers: Assume probability distribution; outliers = unlikely to be
generated by distribution

I Distance-Based Outliers: Distance to neighbors as outlier metric

I Density-Based Outliers: Relative density around the point as outlier metric

I Angle-Based Outliers: Angles between outliers and random point pairs vary only
slightly
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