
Ludwig-Maximilians-Universität München Institut für Informatik

Dr. Peer Kröger, Dr. Matthias Schubert Markus Bundschus

Knowledge Discovery in Databases WS 2007/08 Übungsblatt 9

Aufgabe 9-1 OPTICS

Gegeben sei der folgende 2-dimensionale Datensatz:

Verwenden Sie als Distanzfunktion zwischen den Punkten wieder die Manhattan-Distanz (L₁-Norm)

Erzeugen Sie mit OPTICS (Pseudocode am Ende des Übungsblattes) jeweils ein Erreichbarkeitsdiagramm für die folgenden Parameter:

- (a) $\epsilon = 5$ und MinPts = 2
- (b) $\epsilon = 5$ und MinPts = 4
- (c) $\epsilon = 2$ und MinPts = 4
- (d) $\epsilon = \infty$ und MinPts = 4
- (e) Diskutieren Sie, welche Auswirkungen die Parameter MintPts und ϵ haben.

Aufgabe 9-2 Outlier Detection

Gegeben der Datensatz und die Distanzfunktion aus Aufgabe 1. Berechnen Sie für die Punkte H und L den LOF-Wert für MinPts=3.

Aufgabe 9-3 Apriori-Algorithmus

Gegeben ist die Menge der Items $I = \{A, B, C, D, E, F, G, H, I, K, L, M\}$.

Weiterhin ist eine Menge von Transaktionen T laut folgender Tabelle gegeben:

Menge der Transaktionen T

Transaktions ID	gekaufte Items
1	BEGH
2	ABCEGH
3	ABCEFH
4	BCDEFGHL
5	ABEKH
6	BEFGHIK
7	ABDGH
8	ABDG
9	BDFG
10	CEF
11	ACEFH
12	ABEG

Bestimmen Sie zum minimalen Support von 30% die häufig auftretenden Itemsets. Verwenden Sie dazu den Apriori-Algorithmus. Geben Sie insbesondere die Kandidatenmengen nach den Join-Schritten und nach den Prune-Schritten an, sowie die häufig auftretenden Itemsets mit ihrem jeweiligen Support.

Pseudocode OPTICS

```
seedlist = \emptyset // implemented as a heap
for i = 0 to n-1 do
      if(seedlist = \emptyset) then seedlist = \{(random\_not\_handled\_point, \infty)\}
      (x, x.reach) = get_and_remove_point_with_min_reach(seedlist)
      x.pos = i
      x.handled = TRUE
      neighbors = rangeQuery(x, \varepsilon)
      x.core = nnDist(x, neighbors, MinPts)
      if(x.core < \infty)
                 for each y \in neighbors with not(y.handled)
                            if(y \notin seedlist) seedlist = seedlist \cup \{(y, reach-dist(y,x))\}
                            else
                                       curr_reach = lookup(seedlist, y)
                                       update(y, min(curr\_reach, reach-dist(y,x)))
                 endfor
endfor
```