

Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme

Knowledge Discovery in Databases SS 2016

Chapter 8: Privacy Preserving Data Mining

Lecture: Prof. Dr. Thomas Seidl

Tutorials: Julian Busch, Evgeniy Faerman, Florian Richter, Klaus Schmid

Knowledge Discovery in Databases I: Privacy Preserving Data Mining

- Introduction
 - Data Privacy
 - Privacy Preserving Data Mining
- k-Anonymity Privacy Paradigm
 - k-Anonymity
 - I-Diversity
 - t-Closeness
- Differential Privacy
 - Sensitivity, Noise Perturbation, Composition

Data Privacy

Huge volume of data is collected from a variety of devices and platforms

Such as Smart Phones, Wearables, Social Networks, Medical systems

Such data captures human behaviors, routines, activities and affiliations

While this overwhelming data collection provides an opportunity to perform data analytics

Data Abuse is inevitable:

- It compromises individual's privacy
- Or bridges the security of an institution

Data Privacy: Attacks

An attacker queries a database for sensitive records

Targeting of vulnerable or strategic nodes of large networks to

- Bridge an individual's privacy
- Spread virus

Adversary can track

- Sensitive locations and affiliations
- Private customer habits

These attacks pose a threat to privacy

Database Privacy

Data Privacy

These privacy concerns need to be mitigated They have prompted huge research interest to **Protect Data** But,

Objectives of Privacy Preserving Data Mining in Database/Data Mining:

- Provide new plausible approaches to ensure data privacy when executing database and data mining operations
- Maintain a good trade-off between data utility and privacy

Linkage Attack: different public records can be linked to it to breach privacy

- A privacy paradigm for protecting database records before Data Publication
- Three kinds of attributes:
 - i) Key Attribute ii) Quasi-identifier ii) Sensitive Attribute

Key Attribute:

 Uniquely identifiable attributes (E.g., Name, Social Security Number, Telephone Number)

Quasi-identifier:

- Groups of attributes that can be combined with external data to uniquely reidentify an individual
- For Example: Date of Birth, Zip Code, Gender

Sensitive Attribute:

- Disease, Salary, Habit, Location etc.

Example of partitioning a table into *Key*, *Quasi-Identifier* and *Sensitive* Attributes Hiding of **Key Attributes** does not guarantee privacy Quasi-Identifiers have to be altered to enforce privacy

Release	M	Alice ha Breast Can	s cer	Be Plasti	tty had c Surgery				
Key Attribute	Quasi-Identifier		Sensitive Attribute		Public	c Record	v Is from :	Sport Clu	
Name	Gender	Age	Zip Code	Disease		Name	Gender	Age	Zip Code
Alice	F	29	52066	Breast Cancer	←	Alice	F	29	52066
Jane	F	27	52064	Breast Cancer		Theo	М	41	52074
Jones	М	21	52076	Lung Cancer		John	м	24	52062
Frank	М	35	52072	Heart Disease		Patty		27	E2080
Ben	М	33	52078	Fever		Delly	Г	37	52060
Betty	F	37	52080	Nose Pains		James	М	34	52066

k-Anonymity ensures privacy by Suppression or Generalization of quasiidentifiers.

(k-ANONYMITY): Given a set of quasi-identifiers in a database table, the database table is said to be k-Anonymous, if the sequence of records in each quasi-identifier exists at least (k-1) times.

Suppression:

- Accomplished by replacing a part or the entire attribute value by "*"
- Suppress **Postal Code** : $52057 \rightarrow 52^{***}$
- Suppress Gender : i) Male \rightarrow * ii) Female \rightarrow *

Generalization of Postal Code:

Generalization can be achieved by (Spatial) Clustering

Example of *k*-Anonymity

Remove Key Attributes

Suppress or Generalize Quasi-Identifiers

Released Hospital Records

Key Attribute	Quasi-Identifier		Sensitive Attribute			Public	Records	5	
Name	Gender	Age	Zip Code	Disease		Name	Gender	Age	Zip Code
	*	2*	520*	Breast Cancer]?	Alice	F	29	52066
2	*	2*	520*	Breast		Theo	М	41	52074
nc Nc	*	2*	520*	Lung Cancer		John	М	24	52062
4°	*	3*	520*	Heart		Betty	F	37	52080
		2*	F20*	Disease		James	М	34	52066
	*	3*	520*	Fever					
	*	3*	520*	Nose Pains	J				

This database table is **3-Anonymous**

Oversuppression leads to stronger privacy but poorer Data Utility

Generalize postal code to [5206*,5207*] and [5207*,5208*] *K*-Anonymity is still satisfied with better Data Utility

Released Hospital Records

	Quasi-Identifier					Public	Records	5
Gender	Age	Zip Code	Disease		Name	Gender	Age	Zip Code
*	2*	[5206*, 5207*]	Breast Cancer	7 ?	Alice	F	29	52066
*	2*	[5206*, 5207*]	Breast Cancer	-	Theo	М	41	52074
*	2*	[5206*, 5207*]	Lung Cancer		John	м	24	52062
*	3*	[5207*, 5208*]	Heart Disease	1		_	07	50000
*	3*	[5207*, 5208*]	Fever	?	Betty	F	37	52080
*	3*	[5207*, 5208*]	Nose Pains		James	М	34	52066

Adversary cannot identify Alice or her disease from the released record However, *k*-Anonymity still has several shortcomings

Unsorted Attack: Different subsets of the record are released unsorted Linkage Attack: Different versions of the released table can be linked to compromise *k*-Anonymity results.

Released Records 1

	Quasi-Identifier				
Gender	r Age Zip Code		Disease		
*	2*	[5206*, 5207*]	Breast Cancer		
*	2* [5206*, 5207*]		Breast Cancer		
*	2*	[5206*, 5207*]	Lung Cancer		
*	3*	[5207*, 5208*]	Heart Disease		
*	3*	[5207*, 5208*]	Fever		
*	3*	[5207*, 5208*]	Nose Pains		

Released Records 2

	Sensitive Attribute		
Gender	Age	Zip Code	Disease
F	2*	520*	Breast Cancer
F	2*	520*	Breast Cancer
Μ	2*	520*	Lung Cancer
М	3*	520*	Heart Disease
М	3*	520*	Fever
F	3*	520*	Nose Pains

Jones is at Row three. Jones has Lung Cancer!

Unsorted attack can be solved by *Randomizing* the order of the rows.

Attack on *k*-Anonymity

LMU

Background Knowledge attack Lack of diversity of the sensitive attribute values (homogeneity)

1. Background Knowledge

Released Records Attacker's Knowledge: Alice is Female ii) i) 29 years old Sensitive **Quasi-Identifier Attribute** Attacker's Knowledge: Jones is Zip Code Gender Age Disease ii) Male i) 21 years old 2* F 520* Breast Cancer F 2* 520* **Breast Cancer** 2. Homogeneity 2* 520* Lung Cancer Μ • 2* 520* Lung Cancer Μ

3*

3*

3*

Μ

Μ

F

520*

520*

520*

Heart Disease

Fever

Nose Pains

- All Females within 20 years have Breast Cancer. No diversity!!!
 → Alice has Breast Cancer!
- All 2*-aged males have lung cancer
 → Jones has Lung Cancer!

This led to the creation of a new privacy model called *I*-diversity

Addresses the homogeneity and background knowledge attacks Accomplishes this by providing "well represented" sensitive attributes for each sequence of quasi-identifiers (Distinct *I*-Diversity)

Micro Data

Quasi- Identifier	Sensitive Attribute
•••	Headache
•••	Cancer

Anonymized 1

Quasi- Identifier	Sensitive Attribute
QI 1	Headache
QI 1	Headache
QI 1	Headache
QI 2	Cancer
QI 2	Cancer

Anonymized 2

Quasi- Identifier	Sensitive Attribute
QI 1	Headache
QI 3	Cancer
QI 2	Headache
QI 2	Headache
QI 4	Cancer

Diversity of Equivalent class

not "diverse"

QI 1: 50% "diverse"

Other variants of *I*-Diversity

- Entropy I-Diversity: For each equivalent class, the entropy of the distribution of its sensitive values must be at least log(l)
- Probabilistic I-Diversity: The most frequent sensitive value of an equivalent class must be at most 1/l

Limitations of *I*-Diversity

- Is not necessary at times
- Is difficult to achieve: For large record size, many equivalent classes will be needed to satisfy *I*-Diversity
- Does not consider the distribution of sensitive attributes

The *I*-diversity approach is insufficient to prevent sensitive attribute disclosure
 This led to the proposal of another privacy definition called *t*-Closeness
 t-Closeness achieves privacy by keeping the distribution of each quasi identifier's sensitive attribute "close" to their distribution in the database

For Example: Let *P* be the distribution of a sensitive attribute and *Q* denotes the distribution of all attributes in the database table

Given a threshold *t*:

an equivalent class satisfies t-closeness if the distance between P and Q is less than or equal to t

A table satisfies *t*-closeness if all its equivalent classes have *t*-closeness

- *k*-Anonymity, *I*-Diversity, *t*-Closeness make assumptions about the adversary
- They at times fall short of their goal to prevent data disclosure
- There is another privacy paradigm which does not rely on background knowledge
- It is called Differential Privacy

- Privacy through data perturbation
- Addition of a small amount of noise to the true data
- True value of a data can be masked from adversaries
- Used for the perturbation of query results of count, sum, mean functions, as well as other statistical query functions.

Core Idea:

- The addition or removal of one record from a database does not reveal any information to an adversary
- This means your presence or absence in the database does not reveal or leak any information from the database
- This achieves a strong sense of privacy

ε -DIFFERENTIAL PRIVACY:

A randomized mechanism A(x) provides ε -differential privacy if for any two databases D_1 and D_2 that differ on at most one element, and all output S Range(A),

$$\frac{\Pr[A(D_1) \in S]}{\Pr[A(D_2) \in S]} \le \exp(\epsilon)$$

 $\boldsymbol{\varepsilon}$ is the privacy parameter called privacy budget or privacy level

Sensitivity of a Function

Sensitivity is important for noise derivation

The sensitivity of a function is defined as the maximum change that occurs if one record is added or removed from a database D_1 to form another database D_2 .

$$|| f(D_2) - f(D_1) || \le S(f)$$

Types of Sensitivities

- i) Global Sensitivity ii) Local Sensitivity

(LOCAL SENSITIVITY)): Local Sensitivity of a function $f : D^n \to \mathbb{R}^d$ for all x and x' which differ in one entry is $LS_f(x) = \max_{d(x,x')=1} \|f(x) - f(x')\|_1$.

(GLOBAL SENSITIVITY): Global Sensitivity of a function $f: D^n \to \mathbb{R}^d$ is given by $GS_f = \max_x LS_f(x)$.

Data Perturbation in Differential Privacy is achieved by noise addition

Different kinds of noise

- Laplace noise
- Gaussian noise
- Exponential Mechanism

Output query is ε -indistinguishable when sensitivity $\frac{GS_f}{\epsilon}$ and noise of $Lap\left(\frac{GS_f}{\epsilon}\right)$ stronger is used for perturbation

Theorem For a given function $f : D^n \to \mathbb{R}^d$, which has sensitivity S(f), a mechanism $A(x) = f(x) + Lap(\frac{S(f)}{\epsilon})^d$ provides ϵ -differential privacy.

Exponential Mechanism

- Extension the notion of differential privacy to incorporate non-real value functions
 - Example: Color of a car, category of a car
- Guarantees privacy by approximating the true value of a data using quality function or utility function.
- Exponential Mechanism requires: 1) Input dataset 2) Output range 3) Utility function
- It maps several input data to some outputs
- The output whose mapping has the best score is chosen and sampled with a given probability such that differential privacy is guaranteed.

Theorem For a given input \mathcal{X} and a function $u : (\mathcal{X} \times y) \to \mathbb{R}$, an algorithm that chooses an output y with a probability $\propto \exp(-\epsilon \frac{u(\mathcal{X},y)}{2\Delta u})$ is ϵ -differential private.

There are two types of composition

- Sequential Composition
- Parallel Composition
- Sequential Composition:
 - Exhibited when a sequence of computation provides differential privacy in isolation.
 - The final privacy guarantee is said to be the sum of each ε -differential privacy.
- Parallel Composition:
 - Occurs when the input data is partitioned in disjoint sets, independent of the original data
 - The final privacy from such a sequence of computation depends on the worst computation guarantee of the sequence

- Privacy Preserving Data Mining
- k-Anonymity Privacy Paradigm
 - k-Anonymity
 - I-diversity
 - t-Closeness
- Differential Privacy
 - Sensitivity
 - Noise Perturbation
 - Composition