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Chapter 7: Numerical Prediction

1) Introduction

– Numerical Prediction problem, linear and nonlinear 

regression, evaluation measures

2) Piecewise Linear Numerical Prediction Models 

– Regression Trees, axis parallel splits, oblique splits

– Hinging Hyperplane Models

3) Bias-Variance Problem

– Regularization , Ensemble methods

Numerical Prediction  2
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Numerical Prediction

• Related problem to classification: numerical prediction

– Determine the numerical value of an object

– Method: e.g., regression analysis

– Example: prediction of flight delays

• Numerical prediction is different from classification

– Classification refers to predict categorical class label

– Numerical prediction models continuous-valued functions

• Numerical prediction is similar to classification

– First, construct a model

– Second, use model to predict unknown value

• Major method for numerical prediction is regression

– Linear and multiple regression

– Non-linear regression

Classification  Introduction 3
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Examples

 Housing values in suburbs of Boston

• Inputs 

– number of rooms

– Median value of houses in the 

neighborhood

– Weighted distance to five Boston 

employment centers

– Nitric oxides concentration

– Crime rate per capita

– …

• Goal: compute a model of the housing values, which can be used 
to predict the price for a house in that area

Numerical Prediction  Introduction 4
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Examples

• Control engineering: 

– Control the inputs of a system in 

order to lead the outputs to a given 

reference value

– Required: a model of the process

Numerical Prediction  Introduction 5
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Examples

• Fuel injection process: 

– database of spray images 

– Inputs: settings in the pressure chamber

– Outputs: spray features, e.g., penetration

depth, spray width, spray area

Numerical Prediction  Introduction 6

compute a model which 
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Numerical Prediction

• Given: a set of observations

• Compute: a generalized model of the data which enables the prediction 
of the output as a continuous value

• Quality measures:

– Accuracy of the model

– Compactness of the model

– Interpretability of the model

– Runtime efficiency (training, prediction)

Numerical Prediction  Introduction 7
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Linear Regression

• Given a set of 𝑁 observations with inputs of the form 𝐱 = [𝑥1, … , 𝑥𝑑] and 

outputs 𝑦 ∈ ℝ

• Approach: minimize the Sum of Squared Errors (SSE)

• Numerical Prediction: describe the outputs 𝑦 as a linear equation of the 

inputs 

• Train the parameters 𝜷 = [𝛽0 𝛽1 …𝛽𝑑]: 

෍

𝑖=1

𝑁

𝑦𝑖 − 𝑓 𝐱𝑖
2
→ 𝑚𝑖𝑛

Numerical Prediction  Introduction 8

𝑑 = 1: 𝑦 = 0,5645 ⋅ 𝐱 + 1,2274
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Linear Regression

• Matrix notation: let 𝑋 ∈ ℝ𝑁× 𝑑+1 be the matrix containing the inputs, 𝑌 ∈

ℝ𝑁 the outputs, and 𝛽 the resulting coefficients:

• Goal: find the coefficients 𝛽, which minimize the SSE:

min
𝛽

𝑔(𝛽) = min
𝛽

𝑋𝛽 − 𝑌 2
2 = min

𝛽
𝑋𝛽 − 𝑌 𝑇(𝑋𝛽 − 𝑌)

Numerical Prediction  Introduction 9

X =
1 𝑥11 … 𝑥1𝑑
⋮ ⋱ ⋮ ⋮
1 𝑥𝑁1 … 𝑥𝑁𝑑

, 𝑌 =

𝑦1
𝑦2
⋮
𝑦𝑁

⇒ 𝛽 =

𝛽0
𝛽1
⋮
𝛽𝑑

= min
𝛽
(𝛽𝑇𝑋𝑇𝑋𝛽 − 2𝑌𝑇𝑋𝛽 + 𝑌𝑇𝑌)
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Linear Regression

• Set the first derivative of 𝑔 𝛽 = 𝛽𝑇𝑋𝑇𝑋𝛽 − 2𝑌𝑇𝑋𝛽 + 𝑌𝑇𝑌 to zero: 

𝑋𝑇𝑋𝛽 = 𝑋𝑇𝑌

• If 𝑋𝑇𝑋 is non-singular then:

𝛽 = 𝑋𝑇𝑋 −1 ⋅ 𝑋𝑇𝑌

• For 𝑑 = 1, the regression coefficients 𝛽0 and 𝛽1 can be computed as:

𝛽1 =
𝐶𝑜𝑣 𝐱,𝑦

𝑉𝑎𝑟(𝐱)
=

෤𝐱𝑇⋅ ෤𝑦

෤𝐱𝑇⋅෤𝐱
and 𝛽0 = ത𝑦 − 𝛽1 ⋅ ത𝐱

Numerical Prediction  Introduction 10

Note that if ത𝐱 = 0 ⇒ 𝛽1 =
𝐱𝑇𝑦

𝐱𝑇𝐱
and   𝛽0= 0෤𝐱 = 𝐱 − ത𝐱

෤𝑦 = 𝑦 − ത𝑦
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Polynomial Regression

• Second order polynomial for 𝑑 = 1:

with   X =
1 𝑥11 𝑥11

2

⋮ ⋮ ⋮
1 𝑥𝑁1 𝑥𝑁1

2
and   𝛽 = 𝑋𝑇 ⋅ 𝑋 −1 ⋅ 𝑋𝑇 ⋅ 𝑌

• Second order polynomial for 𝑑 = 2:

ො𝑦 = 𝛽0 + 𝛽1 ⋅ 𝑥1 + 𝛽2 ⋅ 𝑥2 + 𝛽3 ⋅ 𝑥1
2 + 𝛽4 ⋅ 𝑥2

2 + 𝛽5 ⋅ 𝑥1 ⋅ 𝑥2

Numerical Prediction  Introduction 11

ො𝑦 = 𝛽0 + 𝛽1 ⋅ 𝑥1 + 𝛽2 ⋅ 𝑥1
2 = 𝑥𝑑 = 1 𝑥1 𝑥1
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Polynomial Regression

• The number of coefficients increases exponentially with 𝑘 and 𝑑

• Model building strategies: forward selection, backward elimination

• The order of the polynomial should be as low as possible, high order 

polynomials tend to overfit the data

Numerical Prediction  Introduction 12
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Nonlinear Regression

• Different nonlinear functions can be approximated

• Transform the data to a linear domain

ො𝑦 = 𝜶 ⋅ 𝑒𝜸𝑥 ⇒ ln ො𝑦 = ln 𝛼 + 𝛾𝑥

⇒ ො𝑦′ = 𝛽0 + 𝛽𝑥

( for ො𝑦′ = ln ො𝑦 ,  𝛽0 = ln 𝛼 , and 𝛽1 = 𝛾)

• The parameters 𝛽0 and 𝛽 are estimated with LS 

• The parameters 𝜶 and 𝜸 are obtained, describing an exponential curve 

which passes through the original observations

• Problem: LS determines normally distributed errors in the transformed 

space ⇒ skewed error distribution in the original space

Numerical Prediction  Introduction 13
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Nonlinear Regression

• Different nonlinear functions can be approximated

• Outputs are estimated by a function with nonlinear parameters, e.g., 

exponential, trigonometric

• Example type of function:

ො𝑦 = 𝛽0 + 𝛽1𝑒
𝛽2𝑥 + sin(𝛽3𝑥)

• Approach: the type of nonlinear function is chosen and the 

corresponding parameters are computed

• No closed form solution exists ⇒ numerical approximations:

– Gauss Newton, Gradient descent, Levenberg-Marquardt

Numerical Prediction  Introduction 14
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Linear and Nonlinear Regression

• Problems:

– Linear regression – most of the real world data has a 

nonlinear behavior

– Polynomial regression – limited, cannot describe 

arbitrary nonlinear behavior

– General nonlinear regression – the type of nonlinear 

function must be specified in advance

Numerical Prediction  Introduction 15
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Piecewise Linear Regression

• Piecewise linear functions:

𝑓 𝐱 = ቐ
𝛽00 + 𝛽01 ⋅ 𝑥1 + …+ 𝛽0𝑑 ⋅ 𝑥𝑑 , 𝐱 ∈ ℘1

⋮
𝛽𝑘0 + 𝛽𝑘1 ⋅ 𝑥1 + …+ 𝛽𝑘𝑑 ⋅ 𝑥𝑑 , 𝐱 ∈ ℘𝑘

• Simple approach

• Able to describe arbitrary functions

• The accuracy is increasing with an increasing number of 

partitions/linear models

• The compactness & interpretability is increasing with a decreasing  

number of partitions/ linear models

• Challenge: find an appropriate partitioning in the input space (number 

and shapes)

Numerical Prediction  Introduction 16
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Goals

1. Introduction of different learning techniques for piecewise linear 
models

2. Discussion of the bias-variance problem, regression and ensemble 
techniques

Classification  Introduction 17

Training set Piecewise linear 
model with 
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Continuous piecewise 
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Chapter 7: Numerical Prediction

1) Introduction

– Numerical Prediction problem, linear and nonlinear 

regression, evaluation measures

2) Piecewise Linear Numerical Prediction Models 

– Regression Trees, axis parallel splits, oblique splits

– Hinging Hyperplane Models

3) Bias-Variance Problem

– Regularization , Ensemble methods

Numerical Prediction  18
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Regression Trees

• Greedy divide and conquer: recursive partitioning of the input space

• Example with input 𝑥 and output 𝑦 :

Numerical Prediction  Regression Trees 19
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Regression Trees

• Example:

Numerical Prediction  Regression Trees 20

𝑥4

𝑥2

𝑥1 𝑥3

𝑥 < 𝑥2
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𝑥6

𝑥5 𝑥7

𝑥 < 𝑥6 𝑥 ≥ 𝑥6

𝑥 ≥ 𝑥7𝑥 < 𝑥7
𝑥 < 𝑥5 𝑥 ≥ 𝑥5
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Regression Trees

• General approach of learning a regression tree:

– Given: set of observations 𝑇

– Find a split of 𝑇 in 𝑇1 and 𝑇2 with minimal summed impurity

imp 𝑇1 + imp 𝑇2

– If the stopping criterion is not reached: repeat for 𝑇1 and 𝑇2

– If the stopping criterion is reached: undo the split

• Internal node denotes a test in the input space

• Branch represents an outcome of the test

• Leaf nodes contain a linear function, used to predict the output

Numerical Prediction  Regression Trees 21
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Impurity Measure

• Variance of the output: 𝑖𝑚𝑝 𝑇 =
1

𝑇
σ 𝐱,𝑦 ∈𝑇 𝑦 − ത𝑦 2

• Better: variance of the residuals:

Numerical Prediction  Regression Trees 22

𝑥1

𝑦

𝑥1

𝑦

minimal 
𝜎𝑜𝑢𝑡𝑝𝑢𝑡

𝑥1

𝑦

minimal 
𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 minimal

𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑖𝑚𝑝 𝑇 =
1

𝑇
෍

𝐱,𝑦 ∈𝑇

𝑦 − 𝑓(𝐱) 2

if constant 
models are 
learned

if linear 
models are 
learned

residuals

minimal 
𝜎𝑜𝑢𝑡𝑝𝑢𝑡
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Stopping Criterion: Impurity Ratio

• The recursive splitting is stopped if:

a) The sample size of a node is below a specified threshold

b) The split is not significant:

• If the relative impurity ratio induced by a split is higher than a 

given threshold, then the split is not  significant

• As the tree grows the resulting piecewise linear model gets more 

accurate. 𝜏 increases, becoming higher than 𝜏0

• Choosing the parameter 𝜏0 ⇔ trading accuracy with overfitting

• stopping too soon ⇒ model is not accurate enough

• stopping too late ⇒ model overfits the observations

Numerical Prediction  Regression Trees 23

𝜏 =
𝑖𝑚𝑝 𝑇1 + 𝑖𝑚𝑝(𝑇2)

𝑖𝑚𝑝(𝑇)
> 𝜏0
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Split Strategy

• The split strategy determines how the training samples are partitioned, 

whether the split is actually performed is decided by the stopping 

criterion

• The most common splits are axis parallel:

– Split = a value in one input dimension

– Compute the impurity of all possible splits in all input dimensions and 

choose at the end the split with the lowest impurity

– For each possible split compute the two corresponding models and their 

impurity ⇒ expensive to compute

Numerical Prediction  Regression Trees 24

𝑥1

𝑥2

4 axis parallel splits in 
the 2D input space, in 

order to separate the red 
from the blue samples
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Strategy for Oblique Splits

• More intuitive to use oblique splits

• An oblique split is a linear separator in the input space instead of a split 

value in an input dimension

• The optimal split (with minimal impurity measure) cannot be efficiently

computed

• Heuristic approach required

Numerical Prediction  Regression Trees 25

𝑥1

𝑥2

1 oblique split in the 2D 
input space, in order to 
separate the red from 

the blue samples
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Strategy for Oblique Splits

• Heuristic approach:

a) Compute a clustering in the full (input + output) space, such that the 

samples are as well as possible described by linear equations

b) Project the clusters onto the input space

c) Use the clusters to train a linear classifier in the input space. Split = 

separating hyperplane in input space

Numerical Prediction  Regression Trees 26
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Strategy for Oblique Splits

• Heuristic approach:

a) Compute a clustering in the full (input + output) space, such that the 

samples are as well as possible described by linear equations

b) Project the clusters onto the input space

c) Use the clusters to train a linear classifier in the input space. Split = 

separating hyperplane in input space

d) Compute linear models for the two linearly separated clusters

Numerical Prediction  Regression Trees 27
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Example Models

• Example piecewise linear models (with oblique splits in the input space):

Numerical Prediction  Regression Trees 28
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Chapter 7: Numerical Prediction

1) Introduction

– Numerical Prediction problem, linear and nonlinear 

regression, evaluation measures

2) Piecewise Linear Numerical Prediction Models 

– Regression Trees, axis parallel splits, oblique splits

– Hinging Hyperplane Models

3) Bias-Variance Problem

– Regularization , Ensemble methods
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𝚫 = 𝜷+ − 𝜷−Hinge:

𝒇 𝐱 = ෍

𝒊=𝟏

𝑲

𝒉𝒊(𝐱)Model:

Hinge function:

Hinging Hyperplane Models

• Hinging Hyperplane Model (HH-model) for continuous models

Numerical Prediction  Hinging Hyperplane Models 30

ℎ 𝐱 = ൞
෤𝐱𝑇𝜷+, ෤𝐱 𝐓⋅ 𝚫 > 0

෤𝐱𝑇𝜷−, ෤𝐱𝐓⋅ 𝚫 ≤ 0

with ෤𝐱𝑇 = 1, x1, … , x𝑛 .

෤𝐱𝑇𝜷−

෤𝐱𝑇𝜷+

෤𝐱𝑇 𝜷+ − 𝜷− < 0 ෤𝐱𝑇 𝜷+ − 𝜷− > 0

𝑦

𝑥1

𝑥2

[ L. Breiman (1993) ]
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Hinging Hyperplane Models

• Hinge Finding Algorithm (HFA)

1) Start with a random partitioning of the input space: 𝜟𝑗 (𝑗 = 0)

2) Determine the two corresponding partitions:

– 𝑆𝑗
− = { 𝐱 | ෤𝐱𝑇𝜟𝑗 ≤ 0} and 𝑆𝑗

+ = { 𝐱 | ෤𝐱𝑇𝜟𝑗 > 0}

3) Compute the regression hyperplanes for 𝑆𝑗
+and 𝑆𝑗

−

Numerical Prediction  Hinging Hyperplane Models 31
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Hinging Hyperplane Models

• Hinge Finding Algorithm (HFA)

3) Compute the regression hyperplanes for 𝑆𝑗
+ and 𝑆𝑗

−

4) Compute the hinge 𝜟𝑗+1 from the regression coefficients  𝜷𝑗
− and 𝜷𝑗

+

5) Determine the new partitions 𝑆𝑗+1
+ and 𝑆𝑗+1

− determined by 𝜟𝑗+1

6) If 𝑆𝑗+1
+ = 𝑆𝑗

+ or 𝑆𝑗+1
+ = 𝑆𝑗

−, then stop, else return to step 3).

Numerical Prediction  Hinging Hyperplane Models 32

𝑥1

𝑥2
𝛥1

𝑥1
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Line Search for the 
Hinge Finding Algorithm

• The Hinge Finding Algorithm (HFA) might not converge – a hinge might 

induce a partitioning outside the defined input space

• Line search: binary search to guarantee convergence (to a local 

minimum) 

• Instead of updating the hinge directly 𝜟𝑗 ⟶𝜟𝑗+1, first check the 

accuracy improvement brought by 𝜟𝑗+1

• If 𝜟𝑗+1 does not improve the model impurity, then perform a binary 

search after the linear combination of 𝜟𝑗 and 𝜟𝑗+1 yielding                   

the lowest impurity

𝜟′𝑗+1= 𝜟𝑖 + 𝜆 𝜟𝑗+1 − 𝜟𝑗 , 𝜆 ∈
1

2
,
1

4
,
1

8
,
1

16

Numerical Prediction  Hinging Hyperplane Models 33
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𝜟𝑗
𝜟𝑗+1
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Fit Multiple Hinges

• Goal: Describe the target function 𝑦 as a sum of 𝑁 hinge functions

𝑦 = ෍
𝑖=1

𝑁

ℎ𝑖 𝑥

• Each hinge function ℎ𝑖 can be seen as fitted to the residual function

𝑦 𝑖 = 𝑦 − ෍
𝑗≠𝑖

ℎ𝑗 𝑥 ,

since then ℎ𝑖 𝑥 = 𝑦 − σ𝑗≠𝑖 ℎ𝑗(𝑥).

• Fit multiple hinges iteratively in 𝑁 steps:

– Start with ℎ1 𝑥 = ⋯ = ℎ𝑁 𝑥 = 0

– Step 𝑛: Fit the 𝑛-th hinge ℎ𝑛 to 𝑦 𝑛 = 𝑦 − ℎ1 𝑥 + ⋯+ ℎ𝑛−1 𝑥 .

Then repeatedly refit ℎ1 to 𝑦 1 , … , and ℎ𝑛−1 to 𝑦[𝑛−1]

until the hinges do not change anymore.

Numerical Prediction  Hinging Hyperplane Models 34
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Fit Multiple Hinges

• Example:

– Step 1: Fit the first hinge function ℎ1 to 𝑦 1 = 𝑦 − 0.

– Step 2: Compute the residual outputs 

𝑦[2] = 𝑦 − ℎ1 𝑥 .

Fit the second hinge function ℎ2 to 𝑦[2]. 

Then refit the first hinge to 𝑦[1] = 𝑦 − ℎ2(𝑥). 

– Step 3: Compute the residual outputs

𝑦[3] = 𝑦 − ℎ1 𝑥 − ℎ2 𝑥 .

Fit the third hinge function ℎ3 to 𝑦 3 .

Then repeatedly refit 

ℎ1 to  𝑦[1] = 𝑦 − ℎ2 𝑥 − ℎ3 𝑥 and 

ℎ2 on  𝑦[2] = 𝑦 − ℎ1 𝑥 − ℎ3 𝑥 .

until no more changes occur.

Numerical Prediction  Hinging Hyperplane Models 35
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Example Models

• Example piecewise linear models (with oblique splits in the input space):

Numerical Prediction  Hinging Hyperplane Models 36
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Chapter 7: Numerical Prediction

1) Introduction

– Numerical Prediction problem, linear and nonlinear 

regression, evaluation measures

2) Piecewise Linear Numerical Prediction Models 

– Regression Trees, axis parallel splits, oblique splits

– Hinging Hyperplane Models

3) Bias-Variance Problem

– Regularization , Ensemble methods
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Underfitting vs. Overfitting

• Underfitting = a learned model is not flexible enough to capture the 

underlying trend

• Overfitting = a learned model is too flexible, allowing to capture illusory 

trends in the data, which appear due to noise
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Bias and Variance

• Assuming that the data generation process can be repeated (with a 

certain amount of randomness) ⇒ obtain several datasets 𝐷𝑖 & for each 

𝐷𝑖 a model 𝑓𝑖 is learned 

• Bias = the difference between the average prediction of these models 

and the correct value

• Variance = the variability of the predictions of the different models
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Bias-Variance Tradeoff

• Underfitting = low variance, high bias (e.g. use mean output as estimator)

• High bias = a model does not approximate the underlying function well

• Overfitting = high variance, low bias

• When a model is too complex, small changes in the data  cause the predicted 

value to change a lot ⇒ high variance 

• Search for the best tradeoff between bias and variance

• Regression: control the bias-variance tradeoff by means of the polynomial 

order/number of coefficients  

• Regression trees: control the bias-variance tradeoff by means of the tree 

size/number of submodels
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Bias and Variance

• Consider the expected prediction error of a learned model:

𝐸𝑟𝑟(𝐱) = 𝐸 𝑓 𝐱 − 𝑦 2

𝐸𝑟𝑟(𝐱) = 𝐸 𝑓 𝐱 2 − 2𝑓 𝐱 𝑦 + 𝑦2

𝐸𝑟𝑟 𝐱 = 𝐸 𝑓 𝐱 2 − 2𝐸 𝑓 𝐱 𝐸 𝑦 + 𝐸 𝑦2

𝐸𝑟𝑟 𝐱 = 𝐸 (𝑓 𝐱 − 𝑓 𝐱 )2 + 𝑓 𝐱 2 − 2𝑓 𝐱 𝐸 𝑦 + 𝐸 𝑦 − 𝐸 𝑦 2 + 𝐸 𝑦 2

𝐸𝑟𝑟 𝐱 = 𝐸 (𝑓 𝐱 − 𝑓 𝐱 )2 + 𝑓 𝐱 − 𝐸 𝑦
2
+ 𝐸 𝑦 − 𝐸 𝑦 2
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(⋆): 𝐸 𝑧2 = 𝐸 (𝑧 − 𝐸[𝑧])2 + 𝐸[𝑧]2
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Bias and Variance

• Consider the expected prediction error of a learned model:

𝐸𝑟𝑟 𝐱 = 𝐸 (𝑓 𝐱 − 𝑓 𝐱 )2 + 𝑓 𝐱 − 𝐸 𝑦
2
+ 𝐸 𝑦 − 𝐸 𝑦 2
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these two types of error, in 

order to minimize the total 
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Regularization 

• Minimizing the sum of squared errors 

෍

𝑥,𝑦 ∈𝑇

𝑓 𝑥 − 𝑦 2 ⟶𝑚𝑖𝑛

computes an unbiased linear model with very high variance

• Idea: give up the unbiasedness and obtain a variance decrease by 

penalizing  the model complexity

• Regularization: simultaneously minimize the sum of squared errors and 

the norm of the coefficient vector

• Linear regularization (ridge regression): 

෍

𝑥,𝑦 ∈𝑇

𝑓 𝑥 − 𝑦 2 + 𝜆 𝛽 2
2 ⟶𝑚𝑖𝑛
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Regularization 

• Lasso regularization: 

argmin
𝛽

෍

𝑥,𝑦 ∈𝑇

𝑓 𝑥 − 𝑦 2, 𝑠. 𝑡. 𝛽 1 ≤ 𝑠

– solvable with a quadratic programming algorithm 

– With an increasing penalty more and more coefficients

are shrunk towards zero, generating more sparse models

• Linear regularization (ridge regression): 

argmin
𝛽

෍

𝑥,𝑦 ∈𝑇

𝑓 𝑥 − 𝑦 2, 𝑠. 𝑡. 𝛽 2
2 ≤ 𝑠

– solvable similar to SSE: 𝛽 = 𝑋𝑇𝑋 + 𝜆𝐼 −1 ⋅ 𝑋𝑇𝑌

– Reduces all coefficients simultaneously 
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Bagging

• When discussing the bias-variance tradeoff, we assumed infinitely many 

replications of our data set, but in practice we have only one training set 

𝑇

• Simulate multiple training sets 𝑇1, 𝑇2, … 𝑇𝑘 by constructing bootstrap 

replicates of the original training set 𝑇, by randomly drawing samples 

from 𝑇 (with replacement) such that |𝑇𝑗| = 𝑇 , 𝑗 ∈ {1, …𝑘}

• Learn a model 𝑓𝑗 for each replicate 𝑇𝑗 (use as test set 𝑇𝑆𝑗 = 𝑇 \𝑇𝑗)

• For each input x,  we have several predictions 𝑦1, … , 𝑦𝑘 ⇒ compute the 

average prediction

• 𝑓 𝐱 ≈ 𝑓 𝐱 ⇒ (𝑓 𝐱 − 𝑓 𝐱 )2 ≈ 0 ⇒ the variance is removed/reduced

• Bias: 𝑓 𝐱 − 𝐸 𝑦
2

is the same as before
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Ensemble Methods

• Bagging: 

– use it for models with a low bias

– If the bias is low, bagging reduces the variance, while bias remains 

the same

– use it for complex models, which tend to overfit the training data

– in practice it might happen that the bagging approach slightly 

increases the bias

• Boosting:

– Can be adapted for regression models

– Reduces the bias in the first iterations

– Reduces the variance in later iterations
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