Chapter 7:
Numerical Prediction

Lecture: Prof. Dr. Thomas Seidl

Tutorials: Julian Busch, Evgeniy Faerman, Florian Richter, Klaus Schmid

© for the original version: Jörg Sander and Martin Ester, Jiawei Han and Micheline Kamber
Chapter 7: Numerical Prediction

1) Introduction
 - Numerical Prediction problem, linear and nonlinear regression, evaluation measures

2) Piecewise Linear Numerical Prediction Models
 - Regression Trees, axis parallel splits, oblique splits
 - Hinging Hyperplane Models

3) Bias-Variance Problem
 - Regularization, Ensemble methods
Numerical Prediction

• Related problem to classification: **numerical prediction**
 – Determine the numerical value of an object
 – Method: e.g., regression analysis
 – Example: prediction of flight delays

• Numerical prediction is **different** from classification
 – Classification refers to predict categorical class label
 – Numerical prediction models continuous-valued functions

• Numerical prediction is **similar** to classification
 – First, construct a model
 – Second, use model to predict unknown value
 • Major method for numerical prediction is regression
 – Linear and multiple regression
 – Non-linear regression
Examples

- Housing values in suburbs of Boston
 - Inputs
 - number of rooms
 - Median value of houses in the neighborhood
 - Weighted distance to five Boston employment centers
 - Nitric oxides concentration
 - Crime rate per capita
 - ...
 - Goal: compute a model of the housing values, which can be used to predict the price for a house in that area
Examples

• Control engineering:
 – Control the inputs of a system in order to lead the outputs to a given reference value
 – Required: a model of the process

![Diagram of control system]
- Controller
- Process
- Inputs (manipulated variables)
- Optimization
- Process model
- Measured outputs

Wind turbine

Diesel engine

Numerical Prediction → Introduction
Examples

• Fuel injection process:
 – database of spray images
 – Inputs: settings in the pressure chamber
 – Outputs: spray features, e.g., penetration depth, spray width, spray area

compute a model which predicts the spray features, for input settings which have not been measured
Numerical Prediction

• Given: a set of observations
• Compute: a generalized model of the data which enables the prediction of the output as a continuous value

Quality measures:
– Accuracy of the model
– Compactness of the model
– Interpretability of the model
– Runtime efficiency (training, prediction)
Linear Regression

• Given a set of N observations with inputs of the form $\mathbf{x} = [x_1, \ldots, x_d]$ and outputs $y \in \mathbb{R}$

• Approach: minimize the **Sum of Squared Errors (SSE)**

• Numerical Prediction: describe the outputs y as a linear equation of the inputs

$$\hat{y} = f(\mathbf{x}) = \beta_0 + \beta_1 \cdot x_1 + \ldots + \beta_d \cdot x_d = [1 \; x_1 \; \ldots \; x_d] \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_d \end{bmatrix} = [1 \; x_1 \; \ldots \; x_d] \cdot \mathbf{\beta}$$

• Train the parameters $\mathbf{\beta} = [\beta_0 \; \beta_1 \; \ldots \; \beta_d]$:

$$\sum_{i=1}^{N} (y_i - f(\mathbf{x}_i))^2 \rightarrow min$$

$$d = 1: \quad y = 0,5645 \cdot x + 1,2274$$

Numerical Prediction → Introduction
Linear Regression

• Matrix notation: let $X \in \mathbb{R}^{N \times (d+1)}$ be the matrix containing the inputs, $Y \in \mathbb{R}^N$ the outputs, and β the resulting coefficients:

$$X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & \cdots & x_{Nd} \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \Rightarrow \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_d \end{bmatrix}$$

• Goal: find the coefficients β, which minimize the SSE:

$$\min_{\beta} g(\beta) = \min_{\beta} \|X\beta - Y\|_2^2 = \min_{\beta} (X\beta - Y)^T (X\beta - Y)$$

$$= \min_{\beta} (\beta^T X^T X\beta - 2Y^T X\beta + Y^T Y)$$
Linear Regression

- Set the first derivative of \(g(\beta) = \beta^T X^T X\beta - 2Y^T X\beta + Y^T Y \) to zero:
 \[
 X^T X\beta = X^T Y
 \]

- If \(X^T X \) is non-singular then:
 \[
 \beta = (X^T X)^{-1} \cdot X^T Y
 \]

- For \(d = 1 \), the regression coefficients \(\beta_0 \) and \(\beta_1 \) can be computed as:
 \[
 \beta_1 = \frac{\text{Cov}(x,y)}{\text{Var}(x)} = \frac{\bar{x}^T \bar{y}}{\bar{x}^T \bar{x}}
 \]
 and
 \[
 \beta_0 = \bar{y} - \beta_1 \cdot \bar{x}
 \]

Note that if \(\bar{x} = 0 \) \(\Rightarrow \) \(\beta_1 = \frac{x^T y}{x^T x} \) and \(\beta_0 = 0 \)
Polynomial Regression

• Second order polynomial for \(d = 1 \):
 \[
 \hat{y} = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_1^2 = x_d = [1 \ x_1 \ x_1^2] \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}
 \]

 with \(X = \begin{bmatrix} 1 & x_{11} & x_{11}^2 \\ \vdots & \vdots & \vdots \\ 1 & x_{N1} & x_{N1}^2 \end{bmatrix} \) and \(\beta = (X^T \cdot X)^{-1} \cdot X^T \cdot Y \)

• Second order polynomial for \(d = 2 \):
 \[
 \hat{y} = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \beta_3 \cdot x_1^2 + \beta_4 \cdot x_2^2 + \beta_5 \cdot x_1 \cdot x_2
 \]
Polynomial Regression

- The number of coefficients increases exponentially with k and d
- Model building strategies: forward selection, backward elimination
- The order of the polynomial should be as low as possible, high order polynomials tend to overfit the data

Linear model

Polynomial model 2nd order

Polynomial model 6th order
Nonlinear Regression

• Different nonlinear functions can be approximated

• Transform the data to a linear domain

\[\hat{y} = \alpha \cdot e^{\gamma x} \Rightarrow \ln(\hat{y}) = \ln(\alpha) + \gamma x \]

\[\Rightarrow \hat{y}' = \beta_0 + \beta x \]

(for \(\hat{y}' = \ln(\hat{y}) \), \(\beta_0 = \ln(\alpha) \), and \(\beta_1 = \gamma \))

• The parameters \(\beta_0 \) and \(\beta \) are estimated with LS

• The parameters \(\alpha \) and \(\gamma \) are obtained, describing an exponential curve which passes through the original observations

• Problem: LS determines normally distributed errors in the transformed space \(\Rightarrow \) skewed error distribution in the original space
Nonlinear Regression

• Different nonlinear functions can be approximated
• Outputs are estimated by a function with nonlinear parameters, e.g., exponential, trigonometric
• Example type of function:
 \[\hat{y} = \beta_0 + \beta_1 e^{\beta_2 x} + \sin(\beta_3 x) \]
• Approach: the type of nonlinear function is chosen and the corresponding parameters are computed
• No closed form solution exists \(\Rightarrow\) numerical approximations:
 – Gauss Newton, Gradient descent, Levenberg-Marquardt
Linear and Nonlinear Regression

• Problems:
 – Linear regression – most of the real world data has a nonlinear behavior
 – Polynomial regression – limited, cannot describe arbitrary nonlinear behavior
 – General nonlinear regression – the type of nonlinear function must be specified in advance
Piecewise Linear Regression

• Piecewise linear functions:

\[f(x) = \begin{cases}
\beta_0 + \beta_1 \cdot x_1 + \ldots + \beta_d \cdot x_d, & x \in \mathcal{P}_1 \\
\vdots \\
\beta_k \cdot x_1 + \ldots + \beta_d \cdot x_d, & x \in \mathcal{P}_k
\end{cases} \]

• Simple approach
• Able to describe arbitrary functions
• The **accuracy** is increasing with an increasing number of partitions/linear models
• The **compactness & interpretability** is increasing with a decreasing number of partitions/linear models
• **Challenge:** find an appropriate partitioning in the input space (number and shapes)
1. Introduction of different learning techniques for piecewise linear models

2. Discussion of the bias-variance problem, regression and ensemble techniques
Chapter 7: Numerical Prediction

1) Introduction
 - Numerical Prediction problem, linear and nonlinear regression, evaluation measures

2) Piecewise Linear Numerical Prediction Models
 - Regression Trees, axis parallel splits, oblique splits
 - Hinging Hyperplane Models

3) Bias-Variance Problem
 - Regularization, Ensemble methods
Regression Trees

- Greedy divide and conquer: recursive partitioning of the input space
- Example with input x and output y:

![Graph showing regression tree with input x and output y.]
Regression Trees

• **Example:**

```
\[ x \leq x_4 \]
\[ x > x_4 \]
\[ x < x_2 \]
\[ x \geq x_2 \]
\[ x < x_3 \]
\[ x \geq x_3 \]
\[ x < x_5 \]
\[ x \geq x_5 \]
\[ x < x_6 \]
\[ x \geq x_6 \]
\[ x < x_7 \]
\[ x \geq x_7 \]
```
Regression Trees

• General approach of learning a regression tree:
 – Given: set of observations T
 – Find a split of T in T_1 and T_2 with minimal summed impurity
 \[\text{imp}(T_1) + \text{imp}(T_2) \]
 – If the stopping criterion is not reached: repeat for T_1 and T_2
 – If the stopping criterion is reached: undo the split

• Internal node denotes a test in the input space
• Branch represents an outcome of the test
• Leaf nodes contain a linear function, used to predict the output
Impurity Measure

- Variance of the output: \(\text{imp}(T) = \frac{1}{|T|} \sum_{(x,y) \in T} (y - \bar{y})^2 \)

- Better: variance of the residuals:

\[\text{imp}(T) = \frac{1}{|T|} \sum_{(x,y) \in T} (y - f(x))^2 \]

if constant models are learned

if linear models are learned
Stopping Criterion: Impurity Ratio

- The recursive splitting is stopped if:
 a) The sample size of a node is below a specified threshold
 b) The split is not significant:

 - If the relative impurity ratio induced by a split is higher than a given threshold, then the split is not significant

 \[\tau = \frac{imp(T_1) + imp(T_2)}{imp(T)} \] \[> \tau_0 \]

 - As the tree grows the resulting piecewise linear model gets more accurate. \(\tau \) increases, becoming higher than \(\tau_0 \)

- Choosing the parameter \(\tau_0 \) ⇔ trading accuracy with overfitting
- stopping too soon ⇒ model is not accurate enough
- stopping too late ⇒ model overfits the observations
Split Strategy

- The split strategy determines how the training samples are partitioned, whether the split is actually performed is decided by the stopping criterion.

- The most common splits are axis parallel:
 - Split = a value in one input dimension
 - Compute the impurity of all possible splits in all input dimensions and choose at the end the split with the lowest impurity
 - For each possible split compute the two corresponding models and their impurity ⇒ expensive to compute

4 axis parallel splits in the 2D input space, in order to separate the red from the blue samples.
Strategy for Oblique Splits

- More intuitive to use oblique splits
- An oblique split is a linear separator in the input space instead of a split value in an input dimension
- The optimal split (with minimal impurity measure) cannot be efficiently computed
- Heuristic approach required
Strategy for Oblique Splits

- Heuristic approach:
 a) Compute a clustering in the full (input + output) space, such that the samples are as well as possible described by linear equations
 b) Project the clusters onto the input space
 c) Use the clusters to train a linear classifier in the input space. Split = separating hyperplane in input space
Strategy for Oblique Splits

• Heuristic approach:
 a) Compute a clustering in the full (input + output) space, such that the samples are as well as possible described by linear equations
 b) Project the clusters onto the input space
 c) Use the clusters to train a linear classifier in the input space. Split = separating hyperplane in input space
 d) Compute linear models for the two linearly separated clusters
Example Models

- Example piecewise linear models (with oblique splits in the input space):
Chapter 7: Numerical Prediction

1) Introduction
 - Numerical Prediction problem, linear and nonlinear regression, evaluation measures

2) Piecewise Linear Numerical Prediction Models
 - Regression Trees, axis parallel splits, oblique splits
 - Hinging Hyperplane Models

3) Bias-Variance Problem
 - Regularization, Ensemble methods
Hinging Hyperplane Models

- **Hinging Hyperplane Model (HH-model)** for continuous models

Model: \(f(x) = \sum_{i=1}^{K} h_i(x) \)

Hinge: \(\Delta = \beta^+ - \beta^- \)

Hinge function:

\[
 h(x) = \begin{cases}
 \tilde{x}^T \beta^+, & \tilde{x}^T \cdot \Delta > 0 \\
 \tilde{x}^T \beta^-, & \tilde{x}^T \cdot \Delta \leq 0
\end{cases}
\]

with \(\tilde{x}^T = (1, x_1, \ldots, x_n) \).

[L. Breiman (1993)]

Numerical Prediction → Hinging Hyperplane Models
Hinging Hyperplane Models

- **Hinge Finding Algorithm (HFA)**

1) Start with a random partitioning of the input space: Δ_j ($j = 0$)

2) Determine the two corresponding partitions:

$$S_j^- = \{ \mathbf{x} \mid \mathbf{x}^T \Delta_j \leq 0 \} \text{ and } S_j^+ = \{ \mathbf{x} \mid \mathbf{x}^T \Delta_j > 0 \}$$

3) Compute the regression hyperplanes for S_j^+ and S_j^-
Hinge Finding Algorithm (HFA)

3) Compute the regression hyperplanes for S_j^+ and S_j^-

4) Compute the hinge Δ_{j+1} from the regression coefficients β_j^- and β_j^+

5) Determine the new partitions S_{j+1}^+ and S_{j+1}^- determined by Δ_{j+1}

6) If $S_{j+1}^+ = S_j^+$ or $S_{j+1}^+ = S_j^-$, then stop, else return to step 3).
The Hinge Finding Algorithm (HFA) might not converge – a hinge might induce a partitioning outside the defined input space.

Line search: binary search to guarantee convergence (to a local minimum).

Instead of updating the hinge directly $\Delta_j \rightarrow \Delta_{j+1}$, first check the accuracy improvement brought by Δ_{j+1}.

If Δ_{j+1} does not improve the model impurity, then perform a binary search after the linear combination of Δ_j and Δ_{j+1} yielding the lowest impurity.

$$
\Delta'_{j+1} = \Delta_i + \lambda (\Delta_{j+1} - \Delta_j), \quad \lambda \in \left\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \right\}
$$
Fit Multiple Hinges

• Goal: Describe the target function y as a sum of N hinge functions

$$y = \sum_{i=1}^{N} h_i(x)$$

• Each hinge function h_i can be seen as fitted to the residual function

$$y[i] = y - \sum_{j \neq i} h_j(x),$$

since then $h_i(x) = y - \sum_{j \neq i} h_j(x)$.

• Fit multiple hinges iteratively in N steps:

 − Start with $h_1(x) = \cdots = h_N(x) = 0$

 − Step n: Fit the n-th hinge h_n to $y[n] = y - (h_1(x) + \cdots + h_{n-1}(x))$. Then repeatedly refit h_1 to $y[1]$, \ldots, and h_{n-1} to $y[n-1]$ until the hinges do not change anymore.
Fit Multiple Hinges

• Example:
 – Step 1: Fit the first hinge function \(h_1 \) to \(y_{[1]} = y - 0 \).
 – Step 2: Compute the residual outputs
 \[
 y_{[2]} = y - h_1(x).
 \]
 Fit the second hinge function \(h_2 \) to \(y_{[2]} \).
 Then refit the first hinge to \(y_{[1]} = y - h_2(x) \).
 – Step 3: Compute the residual outputs
 \[
 y_{[3]} = y - h_1(x) - h_2(x).
 \]
 Fit the third hinge function \(h_3 \) to \(y_{[3]} \).
 Then repeatedly refit
 \[
 h_1 \text{ to } y_{[1]} = y - h_2(x) - h_3(x) \text{ and }
 h_2 \text{ on } y_{[2]} = y - h_1(x) - h_3(x).
 \]
 until no more changes occur.
Example Models

- Example piecewise linear models (with oblique splits in the input space):
Chapter 7: Numerical Prediction

1) Introduction
 - Numerical Prediction problem, linear and nonlinear regression, evaluation measures

2) Piecewise Linear Numerical Prediction Models
 - Regression Trees, axis parallel splits, oblique splits
 - Hinging Hyperplane Models

3) Bias-Variance Problem
 - Regularization, Ensemble methods
Underfitting vs. Overfitting

- **Underfitting** = a learned model is not flexible enough to capture the underlying trend
- **Overfitting** = a learned model is too flexible, allowing to capture illusory trends in the data, which appear due to noise

Polynomial models

- Underfitting
- Good fitting
- Overfitting

Piecewise linear models

- Underfitting
- Good fitting
- Overfitting
• Assuming that the data generation process can be repeated (with a certain amount of randomness) ⇒ obtain several datasets D_i & for each D_i a model f_i is learned

• **Bias** = the difference between the average prediction of these models and the correct value

• **Variance** = the variability of the predictions of the different models

Image after http://scott.fortmann-roe.com/docs/BiasVariance.html
Bias-Variance Tradeoff

- Underfitting = low variance, high bias (e.g. use mean output as estimator)
- High bias = a model does not approximate the underlying function well
- Overfitting = high variance, low bias
- When a model is too complex, small changes in the data cause the predicted value to change a lot ⇒ high variance

- **Search for the best tradeoff between bias and variance**
- Regression: control the bias-variance tradeoff by means of the polynomial order/number of coefficients
- Regression trees: control the bias-variance tradeoff by means of the tree size/number of submodels
Bias and Variance

Consider the expected prediction error of a learned model:

\[\text{Err}(\mathbf{x}) = E[(f(\mathbf{x}) - y)^2] \]

\[\text{Err}(\mathbf{x}) = E[f(\mathbf{x})^2 - 2f(\mathbf{x})y + y^2] \]

\[\text{Err}(\mathbf{x}) = E[f(\mathbf{x})^2] - 2E[f(\mathbf{x})]E[y] + E[y^2] \]

\[\text{Err}(\mathbf{x}) = E[(f(\mathbf{x}) - \overline{f(\mathbf{x})})^2] + \overline{f(\mathbf{x})}^2 - 2\overline{f(\mathbf{x})}E[y] + E[(y - E[y])^2] + E[y^2] \]

\[\text{Err}(\mathbf{x}) = E[(f(\mathbf{x}) - \overline{f(\mathbf{x})})^2] + (\overline{f(\mathbf{x})} - E[y])^2 + E[(y - E[y])^2] \]

error due to the variance of \(f \)

error due to the bias of \(f \)

(systematic error)

irreducible error

\((\star): E[z^2] = E[(z - E[z])^2] + E[z]^2\)
Consider the expected prediction error of a learned model:

\[Err(x) = E[(f(x) - \bar{f}(x))^2] + \left(\bar{f}(x) - E[y]\right)^2 + E[(y - E[y])^2] \]

- Error due to the variance of \(f \)
- Error due to the bias of \(f \) (systematic error)
- Irreducible error

Carefully balance between these two types of error, in order to minimize the total expected prediction error.
Regularization

- Minimizing the sum of squared errors

\[\sum_{(x,y) \in T} (f(x) - y)^2 \rightarrow \min \]

computes an unbiased linear model with very high variance

- Idea: give up the unbiasedness and obtain a variance decrease by penalizing the model complexity

- Regularization: simultaneously minimize the sum of squared errors and the norm of the coefficient vector

- Linear regularization (ridge regression):

\[\sum_{(x,y) \in T} (f(x) - y)^2 + \lambda \| \beta \|_2^2 \rightarrow \min \]
Regularization

- Lasso regularization:
 \[
 \arg\min_\beta \sum_{(x,y) \in T} (f(x) - y)^2, \quad s.t. \|\beta\|_1 \leq s
 \]
 - solvable with a quadratic programming algorithm
 - With an increasing penalty more and more coefficients are shrunk towards zero, generating more sparse models

- Linear regularization (ridge regression):
 \[
 \arg\min_\beta \sum_{(x,y) \in T} (f(x) - y)^2, \quad s.t. \|\beta\|_2^2 \leq s
 \]
 - solvable similar to SSE: \(\beta = (X^TX + \lambda I)^{-1} \cdot X^TY \)
 - Reduces all coefficients simultaneously
Bagging

- When discussing the bias-variance tradeoff, we assumed infinitely many replications of our data set, but in practice we have only one training set T
- Simulate multiple training sets T_1, T_2, \ldots, T_k by constructing bootstrap replicates of the original training set T, by randomly drawing samples from T (with replacement) such that $|T_j| = |T|, j \in \{1, \ldots, k\}$
- Learn a model f_j for each replicate T_j (use as test set $T_{Sj} = T \setminus T_j$)
- For each input x, we have several predictions $y_1, \ldots, y_k \Rightarrow$ compute the average prediction
- $f(x) \approx \overline{f(x)} \Rightarrow (f(x) - \overline{f(x)})^2 \approx 0 \Rightarrow$ the variance is removed/reduced
- Bias: $(\overline{f(x)} - E[y])^2$ is the same as before
Ensemble Methods

• Bagging:
 – use it for models with a low bias
 – If the bias is low, bagging reduces the variance, while bias remains the same
 – use it for complex models, which tend to overfit the training data
 – in practice it might happen that the bagging approach slightly increases the bias

• Boosting:
 – Can be adapted for regression models
 – Reduces the bias in the first iterations
 – Reduces the variance in later iterations