Knowledge Discovery in Databases
SS 2016

Chapter 7:
Numerical Prediction

Lecture: Prof. Dr. Thomas SeidI

Tutorials: Julian Busch, Evgeniy Faerman,
Florian Richter, Klaus Schmid

© for the original version: Jorg Sander and Martin Ester, Jiawei Han and Micheline Kamber

1) Introduction

— Numerical Prediction problem, linear and nonlinear

regression, evaluation measures
2) Piecewise Linear Numerical Prediction Models
— Regression Trees, axis parallel splits, oblique splits
— Hinging Hyperplane Models
3) Bias-Variance Problem

— Regqularization , Ensemble methods

« Related problem to classification: numerical prediction
— Determine the numerical value of an object ﬁizlﬁi/ of
— Method: e.qg., regression analysis A

— Example: prediction of flight delays

predicted
value
Al e |
« Numerical prediction is different from classification query

— Classification refers to predict categorical class label
— Numerical prediction models continuous-valued functions

* Numerical prediction is similar to classification
— First, construct a model

— Second, use model to predict unknown value
* Major method for numerical prediction is regression
— Linear and multiple regression
— Non-linear regression

w

DATABASE Exa m I es :
P Lmuxm

SYSTEMS
GROUP

o

i
| — Py
N \{__:ng.,\.
Ky vV e

= Housing values in suburbs of Boston
* |nputs
— number of rooms
— Median value of houses in the
neighborhood
— Weighted distance to five Boston
employment centers
— Nitric oxides concentration
— Crime rate per capita

« Goal: compute a model of the housing values, which can be used
to predict the price for a house in that area

Numerical Prediction = Introduction

w

DATABASE Exa m p I es

LMU
GROUP

« Control engineering: - ~N
— Control the inputs of a system in CUTE ST
order to lead the outputs to a given optiizaton process model
reference value X)
— Required: a model of the process Inputs measured
(manipulatedy, outputs
variables)

Process

Y gy (BATPCA)

Cp (power coefficient)

SO M ko ® O

50 20 u (%)
CA) EGR

A (pitch angle) U (

TSR (tip-speed ratio)

Wind turbine Diesel engine

Numerical Prediction = Introduction

W

DATABASE Exa m p I es

SYSTEMS
GROUP

« Fuel injection process:
— database of spray images
— Inputs: settings in the pressure chamber
— OQutputs: spray features, e.g., penetration
depth, spray width, spray area
30 !miil
!’i[! f"‘ et iol
5 ! L e |||§!
L
5) |" !
gl S 1!‘"
§ t“ I.' lll ll oph ""
10- K) . ettt ﬂlm
S L
- s\u\ ’) 2 nl"'| ——

Numerical Prediction = Introduction

\

.

LMU

compute a model which
predicts the spray features, for

Input settings which have not
been measured

e« (Given: a set of observations

« Compute: a generalized model of the data which enables the prediction
of the output as a continuous value

—_—
INPUTS
(PREDICTORS)
—

* Quality measures:
— Accuracy of the model

NUMERICAL
PREDICTION
MODEL

—>

>

— Compactness of the model
— Interpretability of the model
— Runtime efficiency (training, prediction)

OUTPUTS
(RESPONSES)

Given a set of N observations with inputs of the form x = [x4, ..., x4] and

outputsy e R

Approach: minimize the Sum of Squared Errors (SSE)

Numerical Prediction: describe the outputs y as a linear equation of the

inputs

}7=f(x)=,30+,31°x1+ +:ded=[1 X1 -

Train the parameters B = [y B1 .- Bal:

y

N
Z(yi — fx)* - min)
i=1

By
. br] _ 1 .
xal - [77 =11 % .xql- B
B4
\ d=1. y= 0,56:15 X+ 1,2274

« Matrix notation: let X € R¥N*(@*+D pe the matrix containing the inputs, Y €

RN the outputs, and £ the resulting coefficients:

1 X11 e X1d g}ll -go_
X=|: =~ y y = |72 => p=|"!
XNd y. '

1 x
N N Ba.

« Goal: find the coefficients §, which minimize the SSE:

ming(B) = mﬂinllXﬁ — Y3 = mﬁin(Xb’ -N'Xp-Y)

= mb;n(ﬂTXTXﬁ —2YTXB + YTY)

Set the first derivative of g(B) = BTXTXB — 2YTXB + Y'Y to zero:
XTXB = xTY

If XTX is non-singular then:
g =&X'x)"t.-xTy
For d = 1, the regression coefficients 5, and ; can be computed as:

B, = Cov(xy) %13
1

 var(x) %7 and Po=Yy—P1-X

o \

Note thatifx=0 = B, === and B,=0

xTx

« Second order polynomial for d = 1:

Bo
J=PBo+PBr-x1+ Br-xf=x5=1[1x, xf]lﬁﬁ]
B2

1 X11 x121_
with X=|[: : | and p=XT-X)"t.-XxT.vy
1 xm x}%u_

« Second order polynomial for d = 2:

J=PBo+B1-x1+ Bo-x3+ B3 xf+Pa-x5+ Ps-x1 - X3

« The number of coefficients increases exponentially with k and d

« Model building strategies: forward selection, backward elimination

« The order of the polynomial should be as low as possible, high order

polynomials tend to overfit the data

Linear model Polynomial model 2™ order Polynomial model 6" order
4,5 4,5 5

4 4 « N\
3,5 > 3,5 4 / 2
2&33 22 3

2 2 2
1,5 1,5

; : 1 [‘/
0,5 0,5

0 . . 0 0

0 2 4 0 2 4 0 2 4

« Different nonlinear functions can be approximated

« Transform the data to a linear domain
y=a-e¥ = In(y) =In(a) + yx
= §' = Bo + Bx
(for ' =In(y), By = In(a),and By =y)
« The parameters , and S are estimated with LS

« The parameters a and y are obtained, describing an exponential curve

which passes through the original observations

* Problem: LS determines normally distributed errors in the transformed

space = skewed error distribution in the original space

« Different nonlinear functions can be approximated

« Qutputs are estimated by a function with nonlinear parameters, e.q.,

exponential, trigonometric
« Example type of function:
¥ = Bo + PreF?* + sin(Bsx)
« Approach: the type of nonlinear function is chosen and the

corresponding parameters are computed
* No closed form solution exists = numerical approximations:

— Gauss Newton, Gradient descent, Levenberg-Marquardt

* Problems:

— Linear regression — most of the real world data has a
nonlinear behavior
— Polynomial regression — limited, cannot describe

arbitrary nonlinear behavior

— General nonlinear regression — the type of nonlinear

function must be specified in advance

Piecewise linear functions:

Boo + Bo1 - X1+ ...+ Boa - Xa, X € 4

f(x) = :
By + Bt X1 + ot Brg - Xq X E P \

Simple approach

1,) 8k
Able to describe arbitrary functions are partitions
. : : : : in the input
The accuracy is increasing with an increasing number of space

partitions/linear models

The compactness & interpretability is increasing with a decreasing
number of partitions/ linear models

Challenge: find an appropriate partitioning in the input space (number
and shapes)

DATABASE <:i()EaIS;

MU
GROUP g

w

Cp (power coefficient)

1. Introduction of different learning techniques for piecewise linear
models

{power coefficient)
(power coefficient)

c
=]
S

A (pitch ang

15 ' A (pitch angle)

TOR Uprspeed rate) P 2 TSR (ip-speed ratio)
Training set Piecewise linear Continuous piecewise
model with linear model with HH-
regression trees models

2. Discussion of the bias-variance problem, regression and ensemble
techniques

Classification = Introduction 17

1) Introduction

— Numerical Prediction problem, linear and nonlinear

regression, evaluation measures
2) Piecewise Linear Numerical Prediction Models
— Regression Trees, axis parallel splits, oblique splits
— Hinging Hyperplane Models
3) Bias-Variance Problem

— Regqularization , Ensemble methods

* Greedy divide and conquer: recursive partitioning of the input space

 Example with input x and output y :

A

y

|
|
|
1
X1 X2 X3 X4 X5 x6 X7 x

w

Regression Trees

DATABASE
SYSTEMS
GROUP

 Example:

R

=

A 4

L™
*
¢ ! .
Xy ~
x < X X = X
¢ f
- .
X1 X3
x<x1J &xel x<x3j X = X3
,ﬁﬂﬂ.‘.

/ ' /

Numerical Prediction = Regression Trees

o

LMU

Y

x < Xg

x<x5

General approach of learning a regression tree:

— Given: set of observations T

— Find asplitof T in T; and T, with minimal summed impurity
imp(Ty) + imp(T3)

— If the stopping criterion is not reached: repeat for T; and T,

— If the stopping criterion is reached: undo the split

Internal node denotes a test in the input space

Branch represents an outcome of the test

Leaf nodes contain a linear function, used to predict the output

w

wmers| IMPUrity Measure

SYSTEMS
GROUP

mu

« Variance of the output: imp(T) = l?llz(x,y)g(y —)

Y A
|
. . " .: . . .
minimal { wlo S | if constant if linear
[] =
Coutput || o8® - : models are Imodelz ”
{ | learned €arne

|

)xl

« Better: variance of the residuals:

y

minimal

Oresiduals

@esiduals
. 1
el mp(T) =) =G0

ol (X3)ET

>
X1

Numerical Prediction = Regression Trees 22

w

omense, StOPPING Criterion: Impurity Ratio

SYSTEMS
GROUP

* The recursive splitting i1s stopped if:
a) The sample size of a node is below a specified threshold

b) The split is not significant:

'« If the relative impurity ratio induced by a split is higher than a
given threshold, then the split is not significant
imp(Ty) + imp(T3)
T = . TO
g imp (T) y

* As the tree grows the resulting piecewise linear model gets more

accurate. T increases, becoming higher than t,
« Choosing the parameter 7y & trading accuracy with overfitting
« stopping too soon = model is not accurate enough

« stopping too late = model overfits the observations

Numerical Prediction > Regression Trees 23

w

amense| OPlIt Strateqgy

SYSTEMS
GROUP

The split strategy determines how the training samples are partitioned,
whether the split is actually performed is decided by the stopping
criterion

The most common splits are axis parallel:
— Split = a value in one input dimension

— Compute the impurity of all possible splits in all input dimensions and
choose at the end the split with the lowest impurity

— For each possible split compute the two corresponding models and their

Impurity = expensive to compute A
X2

_

order to separate the red
from the blue samples

4 axis parallel splits in
the 2D input space, In

Numerical Prediction = Regression Trees

24

w

mese| Otrategy for Oblique Splits

SYSTEMS
GROUP

 More intuitive to use oblique splits

« An oblique splitis a linear separator in the input space instead of a split
value in an input dimension

« The optimal split (with minimal impurity measure) cannot be efficiently
computed

« Heuristic approach required

[1 oblique split in the 2D\

A Input space, in order to

separate the red from
the blue samples)

Numerical Prediction = Regression Trees 25

w

mese| Otrategy for Oblique Splits

SYSTEMS
GROUP

» Heuristic approach:

a) Compute a clustering in the full (input + output) space, such that the
samples are as well as possible described by linear equations

b) Project the clusters onto the input space

c) Use the clusters to train a linear classifier in the input space. Split =

separating hyperplane in input space

Numerical Prediction = Regression Trees

Ny
: ..:.o::..: : ° a)
: o..:. :.o :>
X . :... .:.o: o...’.o

Vv

26

Heuristic approach:

a)

Compute a clustering in the full (input + output) space, such that the
samples are as well as possible described by linear equations

Project the clusters onto the input space

Use the clusters to train a linear classifier in the input space. Split =
separating hyperplane in input space

Compute linear models for the two linearly separated clusters

N

« Example piecewise linear models (with oblique splits in the input space):

(bar"CA)

dPrnax

Y
penetration depth

injection time

time

C (power coefficient)
=
!

p

15 572 . A (pitch angle)

TSR (tip-speed ratio)

1) Introduction

— Numerical Prediction problem, linear and nonlinear

regression, evaluation measures
2) Piecewise Linear Numerical Prediction Models
— Regression Trees, axis parallel splits, oblique splits
— Hinging Hyperplane Models
3) Bias-Variance Problem

— Regqularization , Ensemble methods

w

amel HINGING Hyperplane Models

SYSTEMS
GROUP

« Hinging Hyperplane Model (HH-model) for continuous models

K
A Model: f(x) = Zhi(x)
Y T 1 i=1
X' p
Hinge: A = B* — B~
e Hinge function:
I// //’,,z” : iTﬂ+’ X’T, A >0
o : h(x) =

X2 : XTp~, xXT'A <0

:/ . with XT = (1,x4, ..., X,,).

X1 i
X'(B*—-B7)<0 X'(BT—-B7)>0

[L. Breiman (1993)]

Numerical Prediction = Hinging Hyperplane Models 30

w

amel HINGING Hyperplane Models

SYSTEMS

GROUP

 Hinge Finding Algorithm (HFA)
1) Start with a random partitioning of the input space: 4; (j = 0)
2) Determine the two corresponding partitions:
- S]_={X|)’ZTA]SO}andSJ+={X|iTA]>O}
3) Compute the regression hyperplanes for Sj+and Si”

y/

Numerical Prediction = Hinging Hyperplane Models

31

Hinge Finding Algorithm (HFA)

3)

4)

5)

6)

Compute the regression hyperplanes for Sj+ and §;°
Compute the hinge 4;,, from the regression coefficients B; and [}}’
Determine the new partitions S/, and S/, determined by 4;,,

|f Sf;l = Sj+ or S]-JSr1 = S7, then stop, else return to step 3).

w

DATABASE

SYSTEMS
GROUP

Line Search for the
Hinge Finding Algorithm

Num

The Hinge Finding Algorithm (HFA) might not converge — a hinge might
Induce a partitioning outside the defined input space A AN

X5 \

Line search: binary search to guarantee convergence (to a local
minimum)

Instead of updating the hinge directly 4; — 4;,4, first check the
accuracy improvement brought by 4,4

It 4;,, does not improve the model impurity, then perform a binary A,

search after the linear combination of 4; and 4,4, yielding 4; = | \‘
v)

the lowest impurity \ \\“
\

v\

i} Wi

16 W\

‘-

erical Prediction 2 Hinging Hyperplane Models 33

A’j+1= Ai + /’L(A]+1 - A]), /1 (S {1;

-[klr—\
oolr—x

« Goal: Describe the target function y as a sum of N hinge functions

N
y = h;(x)

i=1
« Each hinge function h; can be seen as fitted to the residual function
yip=y —) hiX),
j#i
since then h;j(x) =y — Xixi hi(x).
« Fit multiple hinges iteratively in N steps:
- Start W|th hl(x) = = hN(.X') - 0

— Step n: Fit the n-th hinge hy, to Yy =y — (hy(x) + -+ + hyp_1 (x)).
Then repeatedly refit hy to Y4}, ..., and hy_4 10 ypp_qg
until the hinges do not change anymore.

 Example: . ..

— Step 1: Fit the first hinge function hy to y[;; =y — 0.

— Step 2: Compute the residual outputs
Viz) =¥ — hi (). ﬂ

Fit the second hinge function h; to yp.
Then refit the first hinge to yj1; =y — ha(x).
— Step 3: Compute the residual outputs /.‘_‘\
YB1 =Y — hy(x) — hy(x).

Fit the third hinge function h3 to y3.
Then repeatedly refit

hy to yp1p =y — ha(x) — hs(x) and
h, on Y1 =y — hy(x) — hs(x).

until no more changes occur.

w

sneasel EXample Models

SYSTEMS
GROUP

Ydeax

penetration depth

EGR

300
USOI

injection time time

C_ (power coefficient)

p

g 120

(pitch angle)
TSR (tip-speed ratio)

Numerical Prediction = Hinging Hyperplane Models 36

1) Introduction

— Numerical Prediction problem, linear and nonlinear

regression, evaluation measures
2) Piecewise Linear Numerical Prediction Models
— Regression Trees, axis parallel splits, oblique splits
— Hinging Hyperplane Models
3) Bias-Variance Problem

— Regqularization , Ensemble methods

w

wnese Underfitting vs. Overfitting M U

GROUP

« Underfitting = a learned model is not flexible enough to capture the
underlying trend

« Overfitting = a learned model is too flexible, allowing to capture illusory
trends in the data, which appear due to noise

Polynomial |, °° “e .
models S
underfitting Good fitting overfitting

Piecewise
linear
models

Numerical Prediction = Bias-Variance Tradeoff 38

w

sl Bias and Variance

SYSTEMS I_MU Wi
GROUP =<1

« Assuming that the data generation process can be repeated (with a
certain amount of randomness) = obtain several datasets D; & for each
D; a model f; is learned

- Bias = the difference between the average prediction of these models
and the correct value

- Variance = the variability of the predictions of the different models

va riancq)

bias
Image after http://scott.fortmann-roe.com/docs/BiasVariance.html

Numerical Prediction = Bias-Variance Tradeoff 39

« Underfitting = low variance, high bias (e.g. use mean output as estimator)

« High bias = a model does not approximate the underlying function well
« Overfitting = high variance, low bias

« When a model is too complex, small changes in the data cause the predicted

value to change a lot = high variance
« Search for the best tradeoff between bias and variance

« Regression: control the bias-variance tradeoff by means of the polynomial

order/number of coefficients

« Regression trees: control the bias-variance tradeoff by means of the tree

size/number of submodels

[(*):E[z?] = E[(z — E[z])?] + E[z]?]

« Consider the expected prediction error of a learned model:
Err(x) = E[(f(x) — »)?]
Err(x) = E[f(0)? —2f(0)y + y°]
. Err(x) = E[f(x)?] = 2E[f®IE[y] + E[y?]

Err(x) = E[(f(x) — F))?] + F(X)? — 2f(X)E[y] + E[(y — E[y])?] + E[y]?

Err() = E[(F(0 — F00)] + (FG0 — Ely])” + ElGy — ED?]

-
error due to the error due to the irreducible
variance of f bias of f error

(systematic error)

« Consider the expected prediction error of a learned model:

Err(x) = E[(f(0) ~ 7)) + (F00 ~ E])” + E[~ EBD?]

error due to the error due to the
variance of f bias of f
(systematic error)

irreducible
error

N
7

Carefully balance between
these two types of error, in
order to minimize the total
expected prediction error

prediction error

N

model ;:omplexity

« Minimizing the sum of squared errors

D (f) =)? — min
(x,y)eT
computes an unbiased linear model with very high variance

« |dea: give up the unbiasedness and obtain a variance decrease by
penalizing the model complexity

« Regularization: simultaneously minimize the sum of squared errors and
the norm of the coefficient vector

« Linear regularization (ridge regression):

> () =) +20BI3 — min
(x,y)€T

w

smese| REQUIArization

SYSTEMS
GROUP

unregularized

, , error function
L constraint region
« Lasso regularization: R

N\
N
AN

argmin) (f@) =y stlfliss N

(x,y)€T
— solvable with a quadratic programming algorithm \V 7 1
— With an increasing penalty more and more coefficients

are shrunk towards zero, generating more sparse models

« Linear regularization (ridge regression):
B2 A

argmin) (fW -»)? stlpl3<s
g (x,y)ET @

— solvable similarto SSE: p = (XTX + A~ 1 - XTY

— Reduces all coefficients simultaneously \J g

Numerical Prediction = Bias-Variance Tradeoff 44

When discussing the bias-variance tradeoff, we assumed infinitely many

replications of our data set, but in practice we have only one training set
T

Simulate multiple training sets Ty, T, ... Ty, by constructing bootstrap

replicates of the original training set T, by randomly drawing samples

from T (with replacement) such that |T;| = |T|,j € {1, ...k}

Learn a model f; for each replicate T (use as test set Tg; = T \T})

For each input x, we have several predictions yy, ..., y, = compute the

average prediction

fx) = f(x) = (f(x) — f(x))? = 0 = the variance is removed/reduced

Bias: (f(x) — E[y])2 is the same as before

- Bagging:
use it for models with a low bias

If the bias is low, bagging reduces the variance, while bias remains
the same

use it for complex models, which tend to overfit the training data

In practice it might happen that the bagging approach slightly
Increases the bias

« Boosting:

Can be adapted for regression models
Reduces the bias in the first iterations

Reduces the variance in later iterations

