Knowledge Discovery in Databases
SS 2016

Chapter 3: Frequent ltemset Mining

Lecture: Prof. Dr. Thomas SeidI

Tutorials: Julian Busch, Evgeniy Faerman,
Florian Richter, Klaus Schmid

1)

2)

3)

4)
5)

Introduction

— Transaction databases, market basket data analysis
Mining Frequent ltemsets

— Apriori algorithm, hash trees, FP-tree

Simple Association Rules

— Basic notions, rule generation, interestingness measures
Further Topics

Extensions and Summary

w

amese, VWHat is Frequent ltemset Mining?

SYSTEMS
GROUP

NI

==)
T

St) 2

| oo
s \(—-:ng,-‘\‘.
KA | sV g

Frequent Itemset Mining:

Finding frequent patterns, associations, correlations, or causal structures
among sets of items or objects in transaction databases, relational
databases, and other information repositories.

e QGiven:
— Asetofitems I ={iy, iy, ..., 0}
— A database of transactions D, where a transaction T € [is a set of items

« Task 1: find all subsets of items that occur together in many
transactions.
— E.qg.: 85% of transactions contain the itemset {milk, bread, butter}
« Task 2: find all rules that correlate the presence of one set of items with
that of another set of items in the transaction database.

— E.g.: 98% of people buying tires and auto accessories also get automotive service
done

« Applications: Basket data analysis, cross-marketing, catalog design,
loss-leader analysis, clustering, classification, recommendation systems,
etc.

Frequent Itemset Mining = Introduction

w

amese, EXample: Basket Data Analysis

SYSTEMS
GROUP

« Transaction database

D= {{butter, bread, milk, sugar};
{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};

{butter, flour, milk, salt, sugar}}

-_—

e UL 7
=\ T\

——

e Question of interest: items frequency

. . {butter} 4
_ ?
Which items are bought together frequently il 4
{butter, milk} 4
. . {sugar} 3
° Appllcatlons {butter, sugar} 3
— Improved store layout {milk, sugar} 3
— Cross marketing {butter, milk, sugar} ;

o {eggs!}
— Focused attached mailings / add-on sales

— * = Maintenance Agreement
(What the store should do to boost Maintenance Agreement sales)

— Home Electronics = * (What other products should the store stock up?)

Frequent Itemset Mining = Introduction 4

1) Introduction

— Transaction databases, market basket data analysis
2) Mining Frequent Itemsets

— Apriori algorithm, hash trees, FP-tree
3) Simple Association Rules

— Basic notions, rule generation, interestingness measures
4) Further Topics

— Hierarchical Association Rules

« Motivation, notions, algorithms, interestingness
— Quantitative Association Rules

« Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

w

Mining Frequent Itemsets: Basic
ssens | Notions

GROUP

= Jtems I = {iy,i,,..,in}:asetof literals (denoting items)
« [temset X: Setof items X C |

« Database D: Set of transactions T, each transaction is a set of items T C
I

« Transaction T contains an itemsetX: X C T
« The items in transactions and itemsets are sorted lexicographically:
— itemset X = (x4, x,, ..., X3,), where x;<x,<... <x,
« Length of an itemset: number of elements in the itemset
« k-itemset: itemset of length k
« The support of an itemset X is defined as: support(X) = {T € D|X € T}|

« Frequent itemset: an itemset X is called frequent for database D iff itis
contained in more than minSup many transactions: support(X) =
minSup

« Goal 1: Given a database Dand a threshold minSup, find all frequent
itemsets X € Pot(1).

Frequent Itemset Mining = Algorithms 6

w

smesl MINING Frequent Itemsets: Basic Idea

SYSTEMS
GROUP

S e el

=] ‘j 3 \
MU
. .}| WS

x
.

L)
X

Naive Algorithm
— count the frequency of all possible subsets of I in the database
—> too expensive since there are 2™ such itemsets for [I| = m items
\/ cardinality of power set
The Apriori principle (anti-monotonicity):
Any non-empty subset of a frequent itemset is frequent, too!
A <€ [with support(A) = minSup = VA' € AAA" # @:support(A’) = minSup

Any superset of a non-frequent itemset is non-frequent, too!
A € I with support(A) < minSup = VA’ D A:support(A’) < minSup

CABCD) hot frequent

Method based on the apriori principle

— First count the 1-itemsets, then the 2-itemsets,
then the 3-itemsets, and so on

— When counting (k+1)-itemsets, only consider those
(k+1)-itemsets where all subsets of length k have been
determined as frequent in the previous step

Frequent Itemset Mining = Algorithms = Apriori Algorithm

variable C,: candidate itemsets of size k
variable L,: frequent itemsets of size k

L, = {frequent items}
for (k=1; L, |=J; k++) do begin
// JOIN STEP: join L, with itself to produce C,,,

produce // PRUNE STEP: discard (k+1)-itemsets from C, , that
candidates contain non-frequent k-itemsets as subsets

. C.,;=candidates generated from L,

~ for each transaction t in database do

prove | Increment the count of all candidates in C,;
candidates that are contained in ¢

- L,,;=candidates in C,,; with min_support
return U, L,

« Requirements for set of all candidate (k + 1)-itemsets Cy 41

— Completeness:
Must contain all frequent (k + 1)-itemsets (superset property Cy41 2 Li+1)

— Selectiveness:
Significantly smaller than the set of all (k + 1)-subsets

— Suppose the items are sorted by any order (e.qg., lexicograph.)
« Step 1:Joining (Cx4q1 = Ly ™ L)

— Consider frequent k-itemsets p and g

- p and q are joined if they share the same first k — 1 items

pel,; (A CF)
insert into C,; Lo
select p.iy, p.i5, ..., P-Iy_q, P-Ir, Q-1 (A, C,F,G) e Cpop,
fromL, :p, L,:q t /S
where p.i;=q.i;, ..., p.iy_1=Q9.i,_4, P-ix< q.i, qe L5 (A C, Q)

e Step 2: Pruning (Ly41 = {X € Cyy1|Support(X) = minSup})
— Naive: Check support of every itemset in Cy,1 € inefficient for huge Cy 4

— Instead, apply Apriori principle first: Remove candidate (k+17) -itemsets
which contain a non-frequent k -subset s, i.e., s ¢ L,

forall itemsets c in C,,, do
forall k-subsets s of c do
if (s is notin L,) then delete ¢ from C,,,

« Example 1
- Ly ={(ACF), (ACG), (AFG), (AFH), (CFG)}
— Candidates after the join step: {(ACFG), (AFGH)}

— In the pruning step: delete (AFGH) because (FGH) ¢ L, i.e., (FGH) is not a
frequent 3-itemset; also (AGH) ¢ L,

- C,={(ACFG)} -> check the support to generate L,

w

DATABASE
SYSTEMS
GROUP

minSup=0.5

Apriori Algorithm — Full Example

IMU |

C, [itemset[count L, litemset|count
database D m 3 M 3
TID |items scan D (2) (2) 2
100 {1346 {3} 3 : {3} 3
200 [235 4 | 1 5) | 3 Ly > Ly
300 |1235 {5} 3 {6} 2
400 [156 {6} 2
<>C2 itemset C, litemset C, litemseticount L, [itemset]count
{12} {12} 12y | 1 13| 2
{13} [prune C, | {13} |scanD | {13} | 2 {15 | 2
{15) 15 |=———2 {15} | 2 |=—2>| (16| 2
{16} {1 6} {16} | 2 23y 2
{2 3} {2 3} {23} | 2 25| 2
{2 5} {2 5} {25} 2 {35/ | 2
{2 6} {2 6} {26} | O
{3 5} {35} {35}] 2
{3 6} {3 6} {36} 1 L, W L,
{5 6} {5 6} {56}] 1
C C, litemset Clitemset C,litemseticount| Llitemsetjcount
{135} =135} |=—>[(135} 1 |[—>[{235}] 2)
(136} prune C,|(136) X| scan D {235} 2
{15 6) (156} X Ly ™ Lg
{235} {235} CC4 Is empty

Frequent Itemset Mining = Algorithms = Apriori Algorithm

11

— One transaction may contain many candidates
Method: Hash-Tree
Candidate itemsets are stored in a hash-tree

‘ \2
e.g. for 3-ltemsets ____

(357)
]

h(K) = K mod 3

Interior nodes contain hash tables
Subset function finds all the candidates contained in a transaction

0/1]2

0[1[2)

Why is counting supports of candidates a problem?
— The total number of candidates can be very huge

_eaf nodes of hash-tree contain lists of itemsets and their support (i.e.,
counts)

%

o e
_
[ep RN o]
[EENEEY

(1411)

(179)

'SLU

1[2]

(247)
(5710)

I
(

w

Hash-Tree — Construction

DATABASE 2!
SYSTEMS I_Mu S b
GROUP &

« Searching for an itemset
— Start at the root (level 1)
— At level d: apply the hash function h to the d-th item in the itemset
« Insertion of an itemset
— search for the corresponding leaf node, and insert the itemset into that leaf
— if an overflow occurs:
« Transform the leaf node into an internal node

» Distribute the entries to the new leaf nodes according to the hash
function

0l1]2
N J —
0[1]2] 0[1]2] 0]1]2]

for 3-ltemsets

367)|(0[L[2]| 357)|{7912)|(x410)[(789) || (238) |[0]L1]2][(256)
h(K) = K mod 3 3510)||(1612)|| (179) {111 12)| (567) (257)
(58 11)
(34 15) (3711) (246)|[(247
(3411) (279)]{(5710)
(348)

Frequent Itemset Mining = Algorithms = Apriori Algorithm 13

w

DATABASE
SYSTEMS
GROUP

Hash-Tree — Counting M U

« Search all candidate itemsets contained in a transaction T=(t; t, ... t,) for a

current itemset length of k

« At the root
Determine the hash values for each item t; ¢, ... t,,,,In T
Continue the search in the resulting child nodes

« Atan internal node at level d (reached after hashing of item ¢;)
— Determine the hash values and continue the search for each item t; withi <j <n —

k+d

At a leaf node

Check whether the itemsets in the leaf node are contained in transaction T

in our example n=5 and k=3
h(K) = K mod 3

Transaction (1, 3,7, 9, 12)

Tested leaf nodes

: Pruned subtrees

9,12

o[1]2

(367)

(3415)|}

(1411)i
(179) |

Frequent Itemset Mining = Algorithms - Apriori Algorithm 14

« The core of the Apriori algorithm:
— Use frequent (k — 1)-itemsets to generate candidate frequent k-itemsets

— Use database scan and pattern matching to collect counts for the candidate
itemsets

« The bottleneck of Apriori: candidate generation

— Huge candidate sets:
« 10% frequent 1-itemsets will generate 107 candidate 2-itemsets

« To discover a frequent pattern of size 100, e.g., {a;, a,, ..., @490}, ONE
needs to generate 2"~ 1030 candidates.

— Multiple scans of database:
 Needs nor n+1 scans, n is the length of the longest pattern

- Is it possible to mine the complete set of frequent itemsets without
candidate generation?

« Compress a large database into a compact, Frequent-Pattern tree (FP-
tree) structure

— highly condensed, but complete for frequent pattern mining
— avoid costly database scans

« Develop an efficient, FP-tree-based frequent pattern mining method

— A divide-and-conquer methodology: decompose mining tasks into smaller
ones

— Avoid candidate generation: sub-database test only!

e |dea:

— Compress database into FP-tree, retaining the itemset association
information

— Divide the compressed database into conditional databases, each associated
with one frequent item and mine each such database separately.

Construct FP-tree from a Transaction
ssrems | DB

GROUP

w

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)
2. Order frequent items in frequency descending order

TID | items bought

100 |{f, a,¢ d, g, i, m p}
200 [{a, b, c f | m, o}
300 ({b, 1, h,], o

400 | {b, ¢, k, s, p}

500 |{a, f,c, e |, p, m n}

header table:

@ item | frequency
f 4
C 4 sort items in the order
a 3 ;
minSup=0.5 | b ; of descending support
m 3
p 3

Frequent Itemset Mining = Algorithms = FP-Tree

mu

17

w

Construct FP-tree from a Transaction ol
) DB (MU

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)
2. Order frequent items in frequency descending order
3. Scan DB again, construct FP-tree starting with most frequent item per transaction

TID | items bought i(toerr%?sred) frequent for each transaction only
100 |{f, a, ¢ d, g, i, mpt |{fc a m, p} keep its frequent items
200 |fa, b, c £, I, m, o} {f, ¢, a, b, m} sorted in descending

300 |1ib, £ h, j, o} tf, b} order of their frequencies
400 |({b, ¢, k, s, p} {c, b, p}

500 |{a, f,c,e I, p,m nt |{f c, a m, p}

header table: ~—~\

item [frequency . 3a
&2/ z j for each transaction build a path in the FP-tree:
5 3 - If a path with common prefix exists:
b 3 increment frequency of nodes on this path
m 3 and append suffix
p 3 - Otherwise: create a new branch

Frequent Itemset Mining = Algorithms = FP-Tree 18

Construct FP-tree from a Transaction

DATABASE ot
s DR LMU

GROUP

w

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)
2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree starting with most frequent item per transaction
3b

TID |items bought i(%)err%%red) frequent D/ o
100 |{fa,c d, g i mp |{fc a m,p) /\
200 ({a, b, c, 1, I, m, o} {f, c, a, b, m}
300 |{b, f h,j, o} {f, b} —-3f4 | _~cl
400 | {b, c, k, s, p} {c, b, p} P |
500 |fa, fc, e |, p,mnt |{fc a m, p /// > 31 b 14 b1
- header tab]{e r\h}d@ T | : |
|tefm reqiency ia ////// ///// > a-3 : 0:1
header table c 4 ./////,//”////,//” ~ I /7‘
references the 2 3 ./’///////”:/,,—; m:24| b:1/ //
ocurmencesatve | 5|5 | o =
m 3 - = - 9 M-
FP-tree b 3 .- >/ p:2ym:l

Frequent Itemset Mining = Algorithms = FP-Tree 19

« Completeness:
never breaks a long pattern of any transaction
preserves complete information for frequent pattern mining

« Compactness

reduce irrelevant information—infrequent items are gone
frequency descending ordering: more frequent items are more likely to be
shared

never be larger than the original database (if not count node-links and
counts)

Experiments demonstrate compression ratios over 100

* General idea (divide-and-conquer)
— Recursively grow frequent pattern path using the FP-tree

e Method

— For each item, construct its conditional pattern-base (prefix paths), and then
its conditional FP-tree

— Repeat the process on each newly created conditional FP-tree ...

— ...until the resulting FP-tree is empty, or it contains only one path (single
path will generate all the combinations of its sub-paths, each of which is a
frequent pattern)

1)
2)
3)

Construct conditional pattern base for each node in the FP-tree
Construct conditional FP-tree from each conditional pattern-base

Recursively mine conditional FP-trees and grow frequent patterns
obtained so far

— If the conditional FP-tree contains a single path, simply enumerate all the
patterns

DATABASE

GROUP

w

Major Steps to Mine FP-tree:
s=tvs | Conditional Pattern Base LMU

1) Construct conditional pattern base for each node in the FP-tree
— Starting at the frequent header table in the FP-tree
— Traverse FP-tree by following the link of each frequent item (dashed lines)

— Accumulate all of transformed prefix paths of that item to form a conditional
pattern base

« For each item its prefixes are regarded as condition for it being a suffix. These
prefixes form the conditional pattern base. The frequency of the prefixes can be
read in the node of the item.

{}
header table: i

item | frequency | head I conditional pattern base:
f 4 o S ~ [item cond. pattern base
c 4 17" c:3] bi1x bi1 |0
a 3 1 Sy T l o f:3, {}
b 3 - —\\;:3 | Le-d a |fc3
m 3 T\ L7 b fca:1, f:1, c:1
p 3 habie N)| m:Z\TI b:1'| ./ m fca:2, fcab:1

N] =t p fcam:2, cb:1
p:2 ﬁ m:1

Frequent Itemset Mining = Algorithms = FP-Tree 23

* Node-link property
— For any frequent item a, all the possible frequent patterns that contain a;

can be obtained by following a;'s node-links, starting from a;'s head in the
FP-tree header

* Prefix path property

— To calculate the frequent patterns for a node a; in a path P, only the prefix
sub-path of a; in P needs to be accumulated, and its frequency count should
carry the same count as node a,.

w

Major Steps to Mine FP-tree:
ssews | Conditional FP-tree LV

GROUP

1) Construct conditional pattern base for each node in the FP-tree

2) Construct conditional FP-tree from each conditional pattern-base

— The prefix paths of a suffix represent the conditional basis.
—>They can be regarded as transactions of a database.

— Those prefix paths whose support = minSup, induce a conditional FP-tree

— For each pattern-base
« Accumulate the count for each item in the base
« Construct the FP-tree for the frequent items of the pattern base

conditional pattern base: m-conditional FP-tree
item | cond. pattern base item | frequency {m
f {} f 3 l
o f:3 C 3
a |fc:3 a 3 £.3
b fca:1, f:1, c:1 b 1X |
m | fca:2, fcab:1 —— 3
p fcam:2, cb:1 |
a.3

Frequent Itemset Mining = Algorithms = FP-Tree 25

1) Construct conditional pattern base for each node in the FP-tree
2) Construct conditional FP-tree from each conditional pattern-base

conditional ﬁattern base:

{}

f:3

fc:3

fca:1, f:1, c:1
fca:2, fcab:1
fcam:2, cb:1

Ulf={} {}llc {}|Ia b ={} {},Im {}‘Ip

"OBO‘Q)O*

3 3 3 c:3
l l
c'3 c.3
l
a.s

1) Construct conditional pattern base for each node in the FP-tree
2) Construct conditional FP-tree from each conditional pattern-base

3) Recursively mine conditional FP-trees and grow frequent patterns
obtained so far

— If the conditional FP-tree contains a single path, simply enumerate all the
patterns (enumerate all combinations of sub-paths)

example:

m-conditional FP-tree All frequent patterns

{}Im concerning m
| | m,
-3 Justa Slngle patg fm, cm, am
l o, fam, c:
s fcm, fam, cam,
| fcam

a.s

w

DATABASE FP_tree: FU" Example
SYSTEMS
GROUP
database:
TID | items bought | (ordered) frequent items
100 |{b, c, {f, b, c
200 |{a, b, ¢} {b, c}
300 |{d, f# {f
400 |{b, c e f} {f, b, c}
500 |{f, ¢} {fl
minSup=0.4 header table: =
p=0. .
item | frequency | head | >
f 4 o———" "~
b 3 -
c 3 I~ 7
T~

conditional pattern base:

item | cond. pattern base
f {}
b f:2, {}
C fb:2, b:1

Frequent Itemset Mining = Algorithms = FP-Tree

LMU

b:1

{}
f:4| >
L/

/
b:2 7

//
c:2 |/

w

DATABASE FP'tFEEZ FU" Example

SYSTEMS

{ conditional pattern base 1:
item | cond. pattern base

. . f {}
f-|4 bil b |2
b o1 o fb:2, b:1

I
Cc:2

{}c conditional pattern base 2:
item | cond. pattern base
= b f:2

gIf=9 o =1 a1 > |7

f f:2 b:2
i {{b}.{fb}}

{}ifc={| [{bc

{{fc}} P {{bc}.{fbc}}

Frequent Itemset Mining = Algorithms = FP-Tree 29

« Pattern growth property

— Let a be a frequent itemset in DB, B be a's conditional pattern base, and 8
be an itemsetin B. Then a U B is a frequent itemset in DB iff B is frequent
in B.

« “abcdef” is a frequent pattern, if and only if

— "abcde " is a frequent pattern, and
— “f"is frequent in the set of transactions containing “abcde "

w

DATABASE
SYSTEMS
GROUP

Fast?

Why Is Frequent Pattern Growth

« Performance study in [Han, Pei&Yin ‘00] shows

— FP-growth is an order of
magnitude faster than Apriori,
and is also faster than
tree-projection

« Reasoning

Run time(sec.)

100 -

90 A
80
70 ~
60 -
50 -~
40 -
30 A
20 A
10 -

(0]

. Data set T25120D10K:

! T25 avg. length of transactions

! I20 avg. length of frequent itemsets
| D 10K database size (#transactions)
|
\

\ ——&—— D1 FP-grow th runtime

\ — —x— — D1 Apriori runtime

~
>~ =
T T

-~ _ o

0]

0,5 1 1,5 2 2,5 3
Support threshold (%)

— No candidate generation, no candidate test
« Apriori algorithm has to proceed breadth-first

— Use compact data structure

— Eliminate repeated database scan
— Basic operation is counting and FP-tree building

Frequent Itemset Mining = Algorithms = FP-Tree

31

w

anensel Maximal or Closed Frequent Itemsets

SYSTEMS
GROUP

‘,
v -
< \-'
'_\‘
)
|
/75
Chy P

L0 n'] e

Big challenge: database contains potentially a huge number of frequent
itemsets (especially if minSup is set too low).

— A frequent itemset of length 100 contains 2'9°-1 many frequent subsets
Closed frequent itemset:

An itemset X is closed in a data set D if there exists no proper super-
itemset Y such that support(X) = support(Y) in D.

— The set of closed frequent itemsets contains complete information regarding
its corresponding frequent itemsets.
Maximal frequent itemset:
An itemset X is maximal in a data set D if there exists no proper super-
itemset Y such that support(Y) = minSup in D.

— The set of maximal itemsets does not contain the complete support
information

— More compact representation

Frequent Itemset Mining = Algorithms = Maximal or Closed Frequent Itemsets 32

1) Introduction

— Transaction databases, market basket data analysis
2) Mining Frequent Itemsets

— Apriori algorithm, hash trees, FP-tree
3) Simple Association Rules

— Basic notions, rule generation, interestingness measures
4) Further Topics

— Hierarchical Association Rules

« Motivation, notions, algorithms, interestingness
— Quantitative Association Rules

« Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

« Transaction database:

D= {{butter, bread, milk, sugar};
{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};

{butter, flour, milk, salt, sugar}}

* Frequent itemsets: items support

{butter}

{milk}

{butter, milk}
{sugar}

{butter, sugar}
{milk, sugar}
{butter, milk, sugar}

W wwwhsD D

e Question of interest:

— If milk and sugar are bought, will the customer always buy butter as well?
milk, sugar = butter ?

— In this case, what would be the probability of buying butter?

Items I = {iy, i, ..,i,n}: a setof literals (denoting items)
Iltemset X: Set of items X € [

Database D: Set of transactions T, each transaction is a set of items T € |
Transaction T contains an itemset X: X €T
The items in transactions and itemsets are sorted lexicographically:

— itemset X = (xy,x,, ..., %,), Wwhere x; <x,_ ... <x,

Length of an itemset: cardinality of the itemset (k-itemset: itemset of length
k)

The support of an itemset X is defined as: support(X) = {T € D|X € T}|
Frequent itemset: an itemset X is called frequent iff support(X) = minSup

Association rule: An association rule is an implication of the form X =Y
where X,Y € [are two itemsets with X NnY = @.

Note: simply enumerating all possible association rules is not reasonable!
- What are the interesting association rules w.r.t. D?

w

smese| INtErestingness of Association Rules

SYSTEMS
GROUP

* Interestingness of an association rule:
Quantify the interestingness of an association rule with respect to a
transaction database D:

— Support: frequency (probability) of the entire rule with respect to D
HT e D|IXUY C T}
D]

“probability that a transaction in D contains the itemset X U Y”
— Confidence: indicates the strength of implication in the rule
{T € DIXUY S T}| support(XUY)

support(X =>Y) =P(XUY) =

= support(X UY)

confidence(X =Y) = P(Y|X) =

{T €D|IX<ST} support(X)
“conditional probability that a transaction in D containing the itemset X also
contains itemset Y” buvs diabers

— Rule form: “Body = Head [support, confidence]” buys bot
« Association rule examples:

— buys diapers = buys beers [0.5%, 60%]

— major in CS A takes DB = avg. grade A [1%, 75%]

Frequent Itemset Mining = Simple Association Rules 36

w

smesel MINING Of Association Rules

SYSTEMS

GROUP

« Task of mining association rules:
Given a database D, determine all association rules having a support =
minSup and a confidence = minConf (so-called strong association

rules).

« Key steps of mining association rules:
_’9@ 1) Find frequent itemsets, i.e., itemsets that have at least support = minSup
oo 2) Use the frequent itemsets to generate association rules

a“’éé
» For each itemset X and every nonempty subset Y € X generate rule Y = (X —
Y) if minSup and minConf are fulfilled
« we have 21X — 2 many association rule candidates for each itemset X
« Example
frequent Itemsets 1-itemset | count 2-itemset | count 3-itemset | count
{A} 3 {A, B} 3 {A,B,C} |2
{B} 4 {A C} 2
{C} 5 {B, C} 4

rule candidates: A=>B:B=>A4; A=C;: C=>A; B> C; C= B;
A B=>CAC>B;C,B=>AA=>B,C;B=>A4,C;C > A,B

Frequent Itemset Mining = Simple Association Rules

w

Generating Rules from Frequent
ssens | |[temsets

GROUP

* For each frequent itemset X
— For each nonempty subset Y of X, formaruleY= (X —-Y)

— Delete those rules that do not have minimum confidence
Note: 1) support always exceeds minSup
2) the support values of the frequent itemsets suffice to calculate the

confidence
° Example: X = {A,B, C}, minConf = 60% itemset count
— conf (A = B) =3/3; {A} 3
- conf(B=A) = 3/4, {B} 4
— conf(A= C)=2/3; €} 5
— conf(C=A)=2/5; X (A B 3
— conf (B = C) =4/4; (A, C) 5
— conf (C = B) =4/5; (B, C) 4
— conf (A= B, C) =2/3; conf(B,C=A)=72 X
({A,B,C} |2

— conf(B=A, C)=2/4; X conf (A, C = B) =1
— conf(C= A, B)=2/5; X conf (A, B= C) =2/3

« Exploit anti-monotonicity for generating candidates for strong
association rules!

Frequent Itemset Mining = Simple Association Rules 38

« Objective measures
— Two popular measurements:
— support and
— confidence

« Subjective measures [Silberschatz & Tuzhilin, KDD95]
— Arule (pattern) is interesting if it is
— unexpected (surprising to the user) and/or
— actionable (the user can do something with it)

w

amensel CFItiCISM to Support and Confidence

SYSTEMS
GROUP

o

>
/=50
5y -.r_—‘_é:; A
A P
Kt vV g

Example 1 [Aggarwal & Yu, PODS98]

Among 5000 students
— 3000 play basketball (=60%)
— 3750 eat cereal (=75%)
— 2000 both play basket ball and eat cereal (=40%)
Rule play basketball = eat cereal [40%, 66.7%)] is misleading because

the overall percentage of students eating cereal is 75% which is higher
than 66.7%

Rule play basketball = not eat cereal [20%), 33.3%] is far more
accurate, although with lower support and confidence

Observation: play basketball and eat cereal are negatively correlated

Not all strong association rules are interesting and some can be
misleading.

- augment the support and confidence values with interestingness
measures such as the correlation A = B [supp, conf, corr]

Frequent Itemset Mining = Simple Association Rules

40

Lift is a simple correlation measure between two items A and B:

__ P(AUB) P(B|A) _ conf(A>B)
COTTAB = pyp®) ~ P(B) sup(®)

® —

The two rules A = B and B = A have the same correlation coefficient.
take both P(A) and P(B) in consideration

corrug >1 the two items A and B are positively correlated

corrug =1 thereis no correlation between the two items A and B

corryg <1 thetwo items A and B are negatively correlated

« Example 2:

« Xand Y: positively correlated

« Xand Z: negatively related

« support and confidence of X=>Z dominates

* butitems X and Z are negatively correlated

« ltems X and Y are positively correlated

rule support confidence correlation
X=>Y 25% 50% 2
X=>Z 37.5% 75% 0.86
Y=1Z 12.5% 50% 0.57

1) Introduction

— Transaction databases, market basket data analysis
2) Mining Frequent Itemsets

— Apriori algorithm, hash trees, FP-tree
3) Simple Association Rules

— Basic notions, rule generation, interestingness measures
4) Further Topics

— Hierarchical Association Rules

« Motivation, notions, algorithms, interestingness
— Quantitative Association Rules

« Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Problem of association rules in plain itemsets
— High minsup: apriori finds only few rules
— Low minsup: apriori finds unmanagably many rules

Exploit item taxonomies (generalizations, is-a hierarchies) which exist
In many applications

clothes shoes
— —
outerwear shirts sports shoes boots
—
jackets jeans

ﬂ\ ﬂ\
New task: find all generalized association rules between generalized

items = Body and Head of a rule may have items of any level of the
hierarchy

Generalized association rule: X =Y
with X, Y cLXNnY =@ and no item in Y is an ancestor of any item in X
I.e., jackets = clothes is essentially true

« Examples
Jeans = boots
jackets = boots
Outerwear = boots Support > minsup

} Support < minSup

e (Characteristics

— Support(“outerwear = boots”) is not necessarily equal to the sum
support(“jackets = boots”) + support(“jeans = boots")
e.qg. iIf a transaction with jackets, jeans and boots exists

— Support for sets of generalizations (e.qg., product groups) is higher
than support for sets of individual items
If the support of rule “outerwear = boots” exceeds minsup, then the
support of rule “clothes = boots” does, too

« A top_down, progressive deepening approach:

— First find high-level strong rules:
e milk = bread [20%, 60%].

— Then find their lower-level “weaker” rules:

Food

milk bread

* 1.5% milk = wheat bread [6%, 50%]. 3 50/, 1.5%

wheat || white

J/ / AN N
Fraser | | Sunset | | Wonder
/N /N
« Different min_support threshold across multi-levels lead to different

algorithms:
— adopting the same min_support across multi-levels
— adopting reduced min_support at lower levels

w

amese, MiNimum Support for Multiple Levels

GROUP FTN]

SYSTEMS

« Uniform Support milk ' —co
PP support = 10 % minsup = 5 %

3-50/0 i __________ j._-__S_(_))é_““““-E mlnsup —_ 5 0/0
support = 6 % . support =4 % |

+ the search procedure is simplified (monotonicity)
+ the user is required to specify only one support threshold

 Reduced Support

milk _ ~

(Variable Support) support = 10 % minsup = 5 %
3.5% 1.5% . _ a0

support = 6 % support = 4 % minsup = 3 %

+ takes the lower frequency of items in lower levels into consideration

Frequent Itemset Mining = Further Topics = Hierarchical Association Rules 47

w

Multilevel Association Mining using
~stews | Reduced Support

« A top_down, progressive deepening approach:
{— First find high-level strong rules: Food
 milk = bread [20%, 60%].

— Then find their lower-level “weaker” rules: milk bread
 1.5% milk = wheat bread [6%, 50%]. 350, 150, wheat | white
level-wise processing (breadth first) 7
3 approaches using reduced Support: Fraser | | Sunset | | Wonder
« Level-by-level independent method. /NN

— Examine each node in the hierarchy, regardless of whether or not its parent
node is found to be frequent

« Level-cross-filtering by single item:
— Examine a node only if its parent node at the preceding level is frequent
« Level-cross- filtering by k-itemset:

— Examine a k-itemset at a given level only if its parent k-itemset at the
preceding level is frequent

Frequent Itemset Mining = Further Topics = Hierarchical Association Rules 48

« A top_down, progressive deepening approach:

First find high-level strong rules:
e milk = bread [20%, 60%].

— Then find their lower-level “weaker” rules:

Food

milk bread

* 1.5% milk = wheat bread [6%, 50%]. 3 50/, 1.5%

wheat || white

7 N
level-wise processing (breadth first) / / \\
Fraser | | Sunset | | Wonder

/SN /N

« Variations at mining multiple-level association rules.
— Level-crossed association rules:
« 1.5 % milk = Wonder wheat bread

— Association rules with multiple, alternative hierarchies:
e 1.5 % milk = Wonder bread

Some rules may be redundant due to “ancestor” relationships between
items.

Example
- R;: milk = wheat bread [support = 8%, confidence =70%]
- R,: 1.5% milk = wheat bread [support = 2%, confidence =72%]

We say that rule 1 is an ancestor of rule 2.

Redundancy:
A rule is redundant if its support is close to the “expected” value, based
on the rule’s ancestor.

w

M o o 2 AN
Interestingness of Hierarchical il

ssews | Aggociation Rules: Notions

=
K vV ngr

N

Let X, X', Y,Y’' € I be itemsets.
« An itemset X' is an ancestor of X iff there exist ancestors x, ..., x;, of
X1, e, Xx € X and Xy4q, ..., X, With n = |X| such that
X' ={x1, e, Xppy Xje 1y oo r X -

e LetX' and Y' be ancestors of X and Y. Then we call the rules X' = Y’,
X=Y', and X'=Y ancestors of therule X =Y .

e Therule X"= Y is adirect ancestor of rule X =Y in a set of rules if:
— Rule X" = Y'is an ancestor of rule X =Y, and

— There is no rule X" = Y" such that X" = Y"” is an ancestor of
X=Yand X’= Y is an ancestor of X" = Y"

« A hierarchical association rule X = Y is called R-interesting if:
— There are no direct ancestors of X = Y or
— The actual support is larger than R times the expected support or
— The actual confidence is larger than R times the expected confidence

Frequent Itemset Mining = Further Topics = Hierarchical Association Rules 51

 How to compute the expected support?
Given the rule for X = Y and its ancestor rule X" = Y’ the expected

support of X = Y is defined as:

P(Zl) P(Z]) X P(Z’)

P P

where Z=XUY ={zy,..,2,}, Z' =X'"UY' = {z], ...,Z]f,zj+1, ., Zn} @and
each z; € Z' is an ancestor of z; € Z

E,[P(Z)] =

[SA'95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.

 How to compute the expected confidence?
Given the rule for X = Y and its ancestor rule X" = Y’, then the

expected confidence of X = Y is defined as:
P .
P(yl) (y]) X P(yllXI)

EXIﬁYI[P(le)] = P(y{) X X P(yf)
]

where Y = {yy, ..., ¥n} and Y’ = {y1, ..., ¥}, ¥j41, -, ¥} and each y; € Y'is
an ancestorof y; €Y

[SA'95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.

w

Interestingness of Hierarchical

DATABASE ° ° »
ssews | Association Rules:Example LMU
* Example ltem Support
— LetR=1.6 clothes 20
outerwear 10
jackets 4
No | rule support | R-interesting?
clothes = shoes 10 yes: no ancestors
2 outerwear = shoes |9 yes:
Support >R *exp. support (wrt. rule 1) =
10
(1.6 - (2—0- 10)) =8
3 jackets = shoes 4 Not wrt. support:
Support > R * exp. support (wrt. rule 1) = 3.2
Support < R * exp. support (wrt. rule 2) =5.75
—> still need to check the confidence!

Frequent Itemset Mining = Further Topics = Hierarchical Association Rules

1) Introduction

— Transaction databases, market basket data analysis
2) Simple Association Rules

— Basic notions, rule generation, interestingness measures
3) Mining Frequent ltemsets

— Apriori algorithm, hash trees, FP-tree
4) Further Topics

— Hierarchical Association Rules

« Motivation, notions, algorithms, interestingness
— Multidimensional and Quantitative Association Rules

« Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Summary

« Single-dimensional rules:

— buys milk = buys bread

e Multi-dimensional rules: > 2 dimensions

— Inter-dimension association rules (no repeated dimensions)
« age between 19-25 A status is student = buys coke

— hybrid-dimension association rules (repeated dimensions)

« age between 19-25 A buys popcorn = buys coke

« Search for frequent k-predicate set:
— Example: {age, occupation, buys} is a 3-predicate set.
— Techniques can be categorized by how age is treated.
1. Using static discretization of quantitative attributes

— Quantitative attributes are statically discretized by using predefined concept
hierarchies.

2. Quantitative association rules
— Quantitative attributes are dynamically discretized into “bins”based on the
distribution of the data.

3. Distance-based association rules
— This is a dynamic discretization process that considers the distance between

data points.

« Up to now: associations of boolean attributes only
« Now: numerical attributes, too

« Example:
— Original database

ID age marital status # cars
1 23 single 0
2 38 married 2

— Boolean database

ID | age: 20..29 age: 30..39 m-status: single m-status: married
1 1 0 1 0
2 0 1 0 1

« Static discretization
— Discretization of all attributes before mining the association rules
— E.g. by using a generalization hierarchy for each attribute
— Substitute numerical attribute values by ranges or intervals

« Dynamic discretization
— Discretization of the attributes during association rule mining
— Goal (e.g.): maximization of confidence
— Unification of neighboring association rules to a generalized rule

Problem: Minimum support
— Too many intervals — too small support for each individual interval
— Too few intervals — too small confidence of the rules

Solution
— First, partition the domain into many intervals
— Afterwards, create new intervals by merging adjacent interval

Numeric attributes are dynamically discretized such that the confidence
or compactness of the rules mined is maximized.

2-D quantitative association rules: A

Cluster “adjacent” association
rules to form general rules
using a 2-D grid.

income

Example:

1 A A

quan

quan

2::> Acat

70-80K

60-70K

50-60K

40-50K

30-40K

20-30K

<20K

age(x,"30_34n) A income(x,”24K - 48K”)
= buys(X,”high resolution TV")

32

33

34 3 36 37

'

1) Introduction

— Transaction databases, market basket data analysis
2) Mining Frequent Itemsets

— Apriori algorithm, hash trees, FP-tree
3) Simple Association Rules

— Basic notions, rule generation, interestingness measures
4) Further Topics

— Hierarchical Association Rules

« Motivation, notions, algorithms, interestingness
— Quantitative Association Rules

« Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Summary

Mining frequent itemsets
— Apriori algorithm, hash trees, FP-tree

Simple association rules

— support, confidence, rule generation, interestingness measures
(correlation), ...

Further topics

— Hierarchical association rules: algorithms (top-down progressive
deepening), multilevel support thresholds, redundancy and R-
Interestingness

— Quantitative association rules: partitioning numerical attributes, adaptation
of apriori algorithm, interestingness

Extensions: multi-dimensional association rule mining

