
DATABASE
SYSTEMS
GROUP

Knowledge Discovery in Databases I: Data Representation 1

Knowledge Discovery in Databases
SS 2016

Lecture: Prof. Dr. Thomas Seidl

Tutorials: Julian Busch, Evgeniy Faerman,
Florian Richter, Klaus Schmid

Ludwig-Maximilians-Universität München
Institut für Informatik
Lehr- und Forschungseinheit für Datenbanksysteme

Chapter 3: Frequent Itemset Mining

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

5) Extensions and Summary

Outline 2

DATABASE
SYSTEMS
GROUP

What is Frequent Itemset Mining?

Frequent Itemset Mining:

Finding frequent patterns, associations, correlations, or causal structures
among sets of items or objects in transaction databases, relational
databases, and other information repositories.

• Given:

– A set of items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚}

– A database of transactions 𝐷, where a transaction 𝑇 ⊆ 𝐼 is a set of items

• Task 1: find all subsets of items that occur together in many
transactions.

– E.g.: 85% of transactions contain the itemset {milk, bread, butter}

• Task 2: find all rules that correlate the presence of one set of items with
that of another set of items in the transaction database.

– E.g.: 98% of people buying tires and auto accessories also get automotive service
done

• Applications: Basket data analysis, cross-marketing, catalog design,
loss-leader analysis, clustering, classification, recommendation systems,
etc.

Frequent Itemset Mining  Introduction 3

DATABASE
SYSTEMS
GROUP

Example: Basket Data Analysis

• Transaction database

D= {{butter, bread, milk, sugar};
{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};
{butter, flour, milk, salt, sugar}}

• Question of interest:

– Which items are bought together frequently?

• Applications

– Improved store layout

– Cross marketing

– Focused attached mailings / add-on sales
– *  Maintenance Agreement

(What the store should do to boost Maintenance Agreement sales)
– Home Electronics  * (What other products should the store stock up?)

Frequent Itemset Mining  Introduction 4

items frequency

{butter} 4

{milk} 4

{butter, milk} 4

{sugar} 3

{butter, sugar} 3

{milk, sugar} 3

{butter, milk, sugar} 3

{eggs} 2

…

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 5

DATABASE
SYSTEMS
GROUP

Mining Frequent Itemsets: Basic
Notions

 Items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} : a set of literals (denoting items)

• Itemset 𝑋: Set of items 𝑋 ⊆ 𝐼

• Database 𝐷: Set of transactions 𝑇, each transaction is a set of items T ⊆
𝐼

• Transaction 𝑇 contains an itemset 𝑋: 𝑋 ⊆ 𝑇

• The items in transactions and itemsets are sorted lexicographically:

– itemset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑘), where 𝑥1 𝑥2…  𝑥𝑘
• Length of an itemset: number of elements in the itemset

• k-itemset: itemset of length k

• The support of an itemset X is defined as: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 = 𝑇 ∈ 𝐷|𝑋 ⊆ 𝑇

• Frequent itemset: an itemset X is called frequent for database 𝐷 iff it is
contained in more than 𝑚𝑖𝑛𝑆𝑢𝑝 many transactions: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ≥
𝑚𝑖𝑛𝑆𝑢𝑝

• Goal 1: Given a database 𝐷and a threshold 𝑚𝑖𝑛𝑆𝑢𝑝 , find all frequent
itemsets X ∈ 𝑃𝑜𝑡(𝐼).

Frequent Itemset Mining  Algorithms 6

DATABASE
SYSTEMS
GROUP

Mining Frequent Itemsets: Basic Idea

• Naïve Algorithm

– count the frequency of all possible subsets of 𝐼 in the database

 too expensive since there are 2m such itemsets for |𝐼| = 𝑚 items

• The Apriori principle (anti-monotonicity):

Any non-empty subset of a frequent itemset is frequent, too!
A ⊆ I with support A ≥ minSup ⇒ ∀A′ ⊂ A ∧ A′ ≠ ∅: support A′ ≥ minSup

Any superset of a non-frequent itemset is non-frequent, too!
A ⊆ I with support A < minSup ⇒ ∀A′ ⊃ A: support A′ < minSup

• Method based on the apriori principle

– First count the 1-itemsets, then the 2-itemsets,
then the 3-itemsets, and so on

– When counting (k+1)-itemsets, only consider those
(k+1)-itemsets where all subsets of length k have been
determined as frequent in the previous step

Frequent Itemset Mining  Algorithms  Apriori Algorithm 7

cardinality of power set

Ø

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD not frequent

DATABASE
SYSTEMS
GROUP

The Apriori Algorithm

variable Ck: candidate itemsets of size k

variable Lk: frequent itemsets of size k

L1 = {frequent items}

for (k = 1; Lk !=; k++) do begin

// JOIN STEP: join Lk with itself to produce Ck+1

// PRUNE STEP: discard (k+1)-itemsets from Ck+1 that

contain non-frequent k-itemsets as subsets

Ck+1 = candidates generated from Lk

for each transaction t in database do

Increment the count of all candidates in Ck+1

that are contained in t

Lk+1 = candidates in Ck+1 with min_support

return k Lk

Frequent Itemset Mining  Algorithms  Apriori Algorithm 8

produce
candidates

prove
candidates

DATABASE
SYSTEMS
GROUP

Generating Candidates (Join Step)

• Requirements for set of all candidate 𝑘 + 1 -itemsets 𝐶𝑘+1
– Completeness:

Must contain all frequent 𝑘 + 1 -itemsets (superset property 𝐶𝑘+1 𝐿𝑘+1)

– Selectiveness:

Significantly smaller than the set of all 𝑘 + 1 -subsets

– Suppose the items are sorted by any order (e.g., lexicograph.)

• Step 1: Joining (𝐶𝑘+1 = 𝐿𝑘 ⋈ 𝐿𝑘)

– Consider frequent 𝑘-itemsets 𝑝 and 𝑞

– 𝑝 and 𝑞 are joined if they share the same first 𝑘 − 1 items

insert into Ck+1

select p.i1, p.i2, …, p.ik–1, p.ik, q.ik

from Lk : p, Lk : q

where p.i1=q.i1, …, p.ik –1 =q.ik–1, p.ik < q.ik

Frequent Itemset Mining  Algorithms  Apriori Algorithm 9

p  Lk=3 (A, C, F)

(A, C, F, G)  Ck+1=4

q  Lk=3 (A, C, G)

DATABASE
SYSTEMS
GROUP

Generating Candidates (Prune Step)

• Step 2: Pruning (𝐿𝑘+1 = {X ∈ 𝐶𝑘+1|𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝})

– Naïve: Check support of every itemset in 𝐶𝑘+1  inefficient for huge 𝐶𝑘+1
– Instead, apply Apriori principle first: Remove candidate (k+1) -itemsets

which contain a non-frequent k -subset s, i.e., s  Lk

forall itemsets c in Ck+1 do
forall k-subsets s of c do

if (s is not in Lk) then delete c from Ck+1

• Example 1

– L3 = {(ACF), (ACG), (AFG), (AFH), (CFG)}

– Candidates after the join step: {(ACFG), (AFGH)}

– In the pruning step: delete (AFGH) because (FGH)  L3, i.e., (FGH) is not a
frequent 3-itemset; also (AGH)  L3

 C4 = {(ACFG)}  check the support to generate L4

Frequent Itemset Mining  Algorithms  Apriori Algorithm 10

DATABASE
SYSTEMS
GROUP

Apriori Algorithm – Full Example

TID items
100 1 3 4 6
200 2 3 5
300 1 2 3 5
400 1 5 6

Frequent Itemset Mining  Algorithms  Apriori Algorithm 11

itemset count
{1} 3
{2} 2
{3} 3
{4} 1
{5} 3
{6} 2

database D
scan D

minSup=0.5 C1 itemset count
{1} 3
{2} 2
{3} 3
{5} 3
{6} 2

L1

𝐿1 ⋈ 𝐿1

itemset
{1 2}
{1 3}
{1 5}
{1 6}
{2 3}
{2 5}
{2 6}
{3 5}
{3 6}
{5 6}

C2

prune C1 scan D

C2 C2 itemsetcount
{1 3} 2
{1 5} 2
{1 6} 2
{2 3} 2
{2 5} 2
{3 5} 2

L2
itemset

{1 2}
{1 3}
{1 5}
{1 6}
{2 3}
{2 5}
{2 6}
{3 5}
{3 6}
{5 6}

itemsetcount
{1 2} 1
{1 3} 2
{1 5} 2
{1 6} 2
{2 3} 2
{2 5} 2
{2 6} 0
{3 5} 2
{3 6} 1
{5 6} 1

𝐿2 ⋈ 𝐿2

itemset
{1 3 5}
{1 3 6}
{1 5 6}
{2 3 5}

C3

prune C2

itemset
{1 3 5}
{1 3 6} ✗
{1 5 6} ✗
{2 3 5}

C3

scan D

itemsetcount
{1 3 5} 1
{2 3 5} 2

C3 itemsetcount
{2 3 5} 2

L3

𝐿3 ⋈ 𝐿3
C4 is empty

DATABASE
SYSTEMS
GROUP

How to Count Supports of
Candidates?

• Why is counting supports of candidates a problem?

– The total number of candidates can be very huge

– One transaction may contain many candidates

• Method: Hash-Tree

– Candidate itemsets are stored in a hash-tree

– Leaf nodes of hash-tree contain lists of itemsets and their support (i.e.,
counts)

– Interior nodes contain hash tables

– Subset function finds all the candidates contained in a transaction

Frequent Itemset Mining  Algorithms  Apriori Algorithm 12

h(K) = K mod 3

e.g. for 3-Itemsets

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

DATABASE
SYSTEMS
GROUP

Hash-Tree – Construction

• Searching for an itemset

– Start at the root (level 1)

– At level d: apply the hash function h to the d-th item in the itemset

• Insertion of an itemset

– search for the corresponding leaf node, and insert the itemset into that leaf

– if an overflow occurs:

• Transform the leaf node into an internal node

• Distribute the entries to the new leaf nodes according to the hash
function

Frequent Itemset Mining  Algorithms  Apriori Algorithm 13

h(K) = K mod 3

for 3-Itemsets

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

DATABASE
SYSTEMS
GROUP

Hash-Tree – Counting

• Search all candidate itemsets contained in a transaction T = (t1 t2 ... tn) for a
current itemset length of k

• At the root

– Determine the hash values for each item t1 t2 ... tn-k+1 in T

– Continue the search in the resulting child nodes

• At an internal node at level d (reached after hashing of item 𝑡𝑖)
– Determine the hash values and continue the search for each item 𝑡𝑗 with 𝑖 < 𝑗 ≤ 𝑛 −

𝑘 + 𝑑

• At a leaf node

– Check whether the itemsets in the leaf node are contained in transaction T

Frequent Itemset Mining  Algorithms  Apriori Algorithm 14

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

3

9 7 3,9 7

1,7

9,12

Pruned subtrees

Tested leaf nodes

Transaction (1, 3, 7, 9, 12)

h(K) = K mod 3

in our example n=5 and k=3

DATABASE
SYSTEMS
GROUP

Is Apriori Fast Enough? —
Performance Bottlenecks

• The core of the Apriori algorithm:

– Use frequent (k – 1)-itemsets to generate candidate frequent k-itemsets

– Use database scan and pattern matching to collect counts for the candidate
itemsets

• The bottleneck of Apriori: candidate generation

– Huge candidate sets:

• 104 frequent 1-itemsets will generate 107 candidate 2-itemsets

• To discover a frequent pattern of size 100, e.g., {a1, a2, …, a100}, one
needs to generate 2100  1030 candidates.

– Multiple scans of database:

• Needs n or n+1 scans, n is the length of the longest pattern

 Is it possible to mine the complete set of frequent itemsets without
candidate generation?

Frequent Itemset Mining  Algorithms  Apriori Algorithm 15

DATABASE
SYSTEMS
GROUP

Mining Frequent Patterns Without
Candidate Generation

• Compress a large database into a compact, Frequent-Pattern tree (FP-
tree) structure

– highly condensed, but complete for frequent pattern mining

– avoid costly database scans

• Develop an efficient, FP-tree-based frequent pattern mining method

– A divide-and-conquer methodology: decompose mining tasks into smaller
ones

– Avoid candidate generation: sub-database test only!

• Idea:

– Compress database into FP-tree, retaining the itemset association
information

– Divide the compressed database into conditional databases, each associated
with one frequent item and mine each such database separately.

Frequent Itemset Mining  Algorithms  FP-Tree 16

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:

1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

Frequent Itemset Mining  Algorithms  FP-Tree 17

item frequency

f 4

c 4

a 3
b 3

m 3

p 3

1&2
header table:

TID items bought

100 {f, a, c, d, g, i, m, p}

200 {a, b, c, f, l, m, o}

300 {b, f, h, j, o}

400 {b, c, k, s, p}

500 {a, f, c, e, l, p, m, n}

sort items in the order

of descending support
minSup=0.5

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:

1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Frequent Itemset Mining  Algorithms  FP-Tree 18

item frequency
f 4
c 4
a 3
b 3
m 3
p 3

header table:

TID items bought (ordered) frequent
items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}

200 {a, b, c, f, l, m, o} {f, c, a, b, m}

300 {b, f, h, j, o} {f, b}

400 {b, c, k, s, p} {c, b, p}

500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

for each transaction only
keep its frequent items
sorted in descending
order of their frequencies

1&2
3a

for each transaction build a path in the FP-tree:
- If a path with common prefix exists:

increment frequency of nodes on this path
and append suffix

- Otherwise: create a new branch

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:

1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Frequent Itemset Mining  Algorithms  FP-Tree 19

item frequency head

f 4

c 4

a 3
b 3

m 3

p 3

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

header table:

TID items bought (ordered) frequent
items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}

200 {a, b, c, f, l, m, o} {f, c, a, b, m}

300 {b, f, h, j, o} {f, b}

400 {b, c, k, s, p} {c, b, p}

500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1&2
3a

3b

header table
references the
occurrences of the
frequent items in the
FP-tree

DATABASE
SYSTEMS
GROUP

Benefits of the FP-tree Structure

• Completeness:

– never breaks a long pattern of any transaction

– preserves complete information for frequent pattern mining

• Compactness

– reduce irrelevant information—infrequent items are gone

– frequency descending ordering: more frequent items are more likely to be
shared

– never be larger than the original database (if not count node-links and
counts)

– Experiments demonstrate compression ratios over 100

Frequent Itemset Mining  Algorithms  FP-Tree 20

DATABASE
SYSTEMS
GROUP

Mining Frequent Patterns Using
FP-tree

• General idea (divide-and-conquer)

– Recursively grow frequent pattern path using the FP-tree

• Method

– For each item, construct its conditional pattern-base (prefix paths), and then
its conditional FP-tree

– Repeat the process on each newly created conditional FP-tree …

– …until the resulting FP-tree is empty, or it contains only one path (single
path will generate all the combinations of its sub-paths, each of which is a
frequent pattern)

Frequent Itemset Mining  Algorithms  FP-Tree 21

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree

2) Construct conditional FP-tree from each conditional pattern-base

3) Recursively mine conditional FP-trees and grow frequent patterns
obtained so far

– If the conditional FP-tree contains a single path, simply enumerate all the
patterns

Frequent Itemset Mining  Algorithms  FP-Tree 22

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional Pattern Base

1) Construct conditional pattern base for each node in the FP-tree

– Starting at the frequent header table in the FP-tree

– Traverse FP-tree by following the link of each frequent item (dashed lines)

– Accumulate all of transformed prefix paths of that item to form a conditional
pattern base

• For each item its prefixes are regarded as condition for it being a suffix. These
prefixes form the conditional pattern base. The frequency of the prefixes can be
read in the node of the item.

Frequent Itemset Mining  Algorithms  FP-Tree 23

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

item frequency head

f 4

c 4

a 3
b 3

m 3

p 3

header table:

item cond. pattern base

f {}

c f:3, {}

a fc:3

b fca:1, f:1, c:1
m fca:2, fcab:1

p fcam:2, cb:1

conditional pattern base:

DATABASE
SYSTEMS
GROUP

Properties of FP-tree for Conditional
Pattern Bases

• Node-link property

– For any frequent item ai, all the possible frequent patterns that contain ai

can be obtained by following ai's node-links, starting from ai's head in the
FP-tree header

• Prefix path property

– To calculate the frequent patterns for a node ai in a path P, only the prefix
sub-path of ai in P needs to be accumulated, and its frequency count should
carry the same count as node ai.

Frequent Itemset Mining  Algorithms  FP-Tree 24

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔

2) Construct conditional FP-tree from each conditional pattern-base

– The prefix paths of a suffix represent the conditional basis.
They can be regarded as transactions of a database.

– Those prefix paths whose support ≥ minSup, induce a conditional FP-tree

– For each pattern-base

• Accumulate the count for each item in the base

• Construct the FP-tree for the frequent items of the pattern base

Frequent Itemset Mining  Algorithms  FP-Tree 25

conditional pattern base: m-conditional FP-tree

{}|m

f:3

c:3

a:3

item frequency

f 3 ..

c 3 ..

a 3 ..
b 1✗

item cond. pattern base

f {}

c f:3

a fc:3

b fca:1, f:1, c:1
m fca:2, fcab:1

p fcam:2, cb:1

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔

2) Construct conditional FP-tree from each conditional pattern-base

Frequent Itemset Mining  Algorithms  FP-Tree 26

conditional pattern base:

{}|m

f:3

c:3

a:3

item cond. pattern base

f {}

c f:3

a fc:3

b fca:1, f:1, c:1
m fca:2, fcab:1

p fcam:2, cb:1

{}|f = {} {}|c

f:3

{}|a

f:3

c:3

{}|b = {} {}|p

c:3

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔

2) Construct conditional FP-tree from each conditional pattern-base ✔

3) Recursively mine conditional FP-trees and grow frequent patterns
obtained so far

– If the conditional FP-tree contains a single path, simply enumerate all the
patterns (enumerate all combinations of sub-paths)

Frequent Itemset Mining  Algorithms  FP-Tree 27

example:
m-conditional FP-tree

{}|m

f:3

c:3

a:3

All frequent patterns
concerning m

m,

fm, cm, am,

fcm, fam, cam,

fcam

just a single path

DATABASE
SYSTEMS
GROUP

FP-tree: Full Example

Frequent Itemset Mining  Algorithms  FP-Tree 28

item frequency head

f 4

b 3

c 3

{}

b:1

c:1

header table:

TID items bought (ordered) frequent items

100 {b, c, f} {f, b, c}

200 {a, b, c} {b, c}

300 {d, f} {f}

400 {b, c, e, f} {f, b, c}

500 {f, g} {f}

minSup=0.4
f:4

b:2

c:2

database:

item cond. pattern base

f {}

b f:2, {}

c fb:2, b:1

conditional pattern base:

DATABASE
SYSTEMS
GROUP

FP-tree: Full Example

Frequent Itemset Mining  Algorithms  FP-Tree 29

{}

b:1

c:1

f:4

b:2

c:2

item cond. pattern base

f {}

b f:2

c fb:2, b:1

conditional pattern base 1:

{}|f = {} {}|b

f:2

{}|c

b:1f:2

b:2

item cond. pattern base

b f:2

f {}

conditional pattern base 2:

{}|fc = {} {}|bc

f:2

{{f}}
{{b},{fb}}

{{fc}}
{{bc},{fbc}}

DATABASE
SYSTEMS
GROUP

Principles of Frequent Pattern
Growth

• Pattern growth property

– Let  be a frequent itemset in DB, B be 's conditional pattern base, and 
be an itemset in B. Then    is a frequent itemset in DB iff  is frequent
in B.

• “abcdef ” is a frequent pattern, if and only if

– “abcde ” is a frequent pattern, and

– “f ” is frequent in the set of transactions containing “abcde ”

Frequent Itemset Mining  Algorithms  FP-Tree 30

DATABASE
SYSTEMS
GROUP

0

10

20

30

40

50

60

70

80

90

100

0 0,5 1 1,5 2 2,5 3

Support threshold(%)

R
u

n
 t

im
e(

se
c.

)

D1 FP-grow th runtime

D1 Apriori runtime

Why Is Frequent Pattern Growth
Fast?

• Performance study in [Han, Pei&Yin ’00] shows

– FP-growth is an order of
magnitude faster than Apriori,
and is also faster than
tree-projection

• Reasoning

– No candidate generation, no candidate test

• Apriori algorithm has to proceed breadth-first

– Use compact data structure

– Eliminate repeated database scan

– Basic operation is counting and FP-tree building

Frequent Itemset Mining  Algorithms  FP-Tree 31

Data set T25I20D10K:
T 25 avg. length of transactions
I 20 avg. length of frequent itemsets
D 10K database size (#transactions)

DATABASE
SYSTEMS
GROUP

Maximal or Closed Frequent Itemsets

• Big challenge: database contains potentially a huge number of frequent
itemsets (especially if minSup is set too low).

– A frequent itemset of length 100 contains 2100-1 many frequent subsets

• Closed frequent itemset:
An itemset X is closed in a data set D if there exists no proper super-
itemset Y such that 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑌) in D.

– The set of closed frequent itemsets contains complete information regarding
its corresponding frequent itemsets.

• Maximal frequent itemset:
An itemset X is maximal in a data set D if there exists no proper super-
itemset Y such that 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑌 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝 in D.

– The set of maximal itemsets does not contain the complete support
information

– More compact representation

Frequent Itemset Mining  Algorithms  Maximal or Closed Frequent Itemsets 32

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 33

DATABASE
SYSTEMS
GROUP

Simple Association Rules:
Introduction

• Transaction database:

D= {{butter, bread, milk, sugar};
{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};
{butter, flour, milk, salt, sugar}}

• Frequent itemsets:

• Question of interest:

– If milk and sugar are bought, will the customer always buy butter as well?

𝑚𝑖𝑙𝑘, 𝑠𝑢𝑔𝑎𝑟 ⇒ 𝑏𝑢𝑡𝑡𝑒𝑟 ?

– In this case, what would be the probability of buying butter?

Frequent Itemset Mining  Simple Association Rules 34

items support

{butter} 4

{milk} 4

{butter, milk} 4

{sugar} 3

{butter, sugar} 3

{milk, sugar} 3

{butter, milk, sugar} 3

DATABASE
SYSTEMS
GROUP

Simple Association Rules: Basic
Notions

 Items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} : a set of literals (denoting items)

• Itemset 𝑋: Set of items 𝑋 ⊆ 𝐼

• Database 𝐷: Set of transactions 𝑇, each transaction is a set of items T ⊆ 𝐼

• Transaction 𝑇 contains an itemset 𝑋: 𝑋 ⊆ 𝑇

• The items in transactions and itemsets are sorted lexicographically:

– itemset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑘), where 𝑥1  𝑥2  …  𝑥𝑘

• Length of an itemset: cardinality of the itemset (k-itemset: itemset of length
k)

• The support of an itemset X is defined as: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 = 𝑇 ∈ 𝐷|𝑋 ⊆ 𝑇

• Frequent itemset: an itemset X is called frequent iff 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝

• Association rule: An association rule is an implication of the form 𝑋 ⇒ 𝑌
where 𝑋, 𝑌 ⊆ 𝐼 are two itemsets with 𝑋 ∩ 𝑌 = ∅.

• Note: simply enumerating all possible association rules is not reasonable!
 What are the interesting association rules w.r.t. 𝐷?

Frequent Itemset Mining  Simple Association Rules 35

DATABASE
SYSTEMS
GROUP

Interestingness of Association Rules

• Interestingness of an association rule:
Quantify the interestingness of an association rule with respect to a
transaction database D:

– Support: frequency (probability) of the entire rule with respect to D

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 ⇒ 𝑌 = 𝑃 𝑋 ∪ 𝑌 =
{𝑇 ∈ 𝐷|𝑋 ∪ 𝑌 ⊆ 𝑇}

𝐷
= 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

“probability that a transaction in 𝐷 contains the itemset 𝑋 ∪ 𝑌”

– Confidence: indicates the strength of implication in the rule

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑋 ⇒ 𝑌 = 𝑃 𝑌|𝑋 =
{𝑇 ∈ 𝐷|𝑋 ∪ 𝑌 ⊆ 𝑇}

{𝑇 ∈ 𝐷|𝑋 ⊆ 𝑇}
=
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
“conditional probability that a transaction in 𝐷 containing the itemset 𝑋 also
contains itemset 𝑌”

– Rule form: “𝐵𝑜𝑑𝑦 ⇒ 𝐻𝑒𝑎𝑑 [𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒]”

• Association rule examples:

– buys diapers  buys beers [0.5%, 60%]

– major in CS ∧ takes DB  avg. grade A [1%, 75%]

Frequent Itemset Mining  Simple Association Rules 36

buys beer

buys diapers
buys both

DATABASE
SYSTEMS
GROUP

Mining of Association Rules

• Task of mining association rules:
Given a database 𝐷, determine all association rules having a 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ≥
𝑚𝑖𝑛𝑆𝑢𝑝 and a 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ≥ 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 (so-called strong association
rules).

• Key steps of mining association rules:

1) Find frequent itemsets, i.e., itemsets that have at least support = 𝑚𝑖𝑛𝑆𝑢𝑝

2) Use the frequent itemsets to generate association rules

• For each itemset 𝑋 and every nonempty subset Y ⊂ 𝑋 generate rule Y ⇒ (𝑋 −
𝑌) if 𝑚𝑖𝑛𝑆𝑢𝑝 and 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 are fulfilled

• we have 2|𝑋| − 2 many association rule candidates for each itemset 𝑋

• Example
frequent itemsets

rule candidates: A ⇒ 𝐵; 𝐵 ⇒ 𝐴; A ⇒ 𝐶; 𝐶 ⇒ A; 𝐵 ⇒ 𝐶; C ⇒ 𝐵;
𝐴, 𝐵 ⇒ 𝐶; 𝐴, 𝐶 ⇒ 𝐵; 𝐶, 𝐵 ⇒ 𝐴; 𝐴 ⇒ 𝐵, 𝐶; 𝐵 ⇒ 𝐴, 𝐶; 𝐶 ⇒ 𝐴, 𝐵

Frequent Itemset Mining  Simple Association Rules 37

1-itemset count 2-itemset count 3-itemset count

{A}

{B}

{C}

3

4

5

{A, B}

{A, C}

{B, C}

3

2

4

{A, B, C} 2

DATABASE
SYSTEMS
GROUP

Generating Rules from Frequent
Itemsets

• For each frequent itemset X

– For each nonempty subset Y of X, form a rule Y ⇒ (𝑋 − 𝑌)

– Delete those rules that do not have minimum confidence
Note: 1) support always exceeds 𝑚𝑖𝑛𝑆𝑢𝑝

2) the support values of the frequent itemsets suffice to calculate the
confidence

• Example: 𝑋 = {𝐴, 𝐵, 𝐶}, 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 = 60%
– conf (A  B) = 3/3; ✔

– conf (B  A) = 3/4; ✔

– conf (A  C) = 2/3; ✔

– conf (C  A) = 2/5; ✗

– conf (B  C) = 4/4; ✔

– conf (C  B) = 4/5; ✔

– conf (A  B, C) = 2/3; ✔ conf (B, C  A) = ½ ✗

– conf (B  A, C) = 2/4; ✗ conf (A, C  B) = 1 ✔

– conf (C  A, B) = 2/5; ✗ conf (A, B  C) = 2/3 ✔

• Exploit anti-monotonicity for generating candidates for strong
association rules!

Frequent Itemset Mining  Simple Association Rules 38

itemset count

{A}

{B}

{C}

3

4

5

{A, B}

{A, C}

{B, C}

3

2

4

{A, B, C} 2

DATABASE
SYSTEMS
GROUP

Interestingness Measurements

• Objective measures

– Two popular measurements:

– support and

– confidence

• Subjective measures [Silberschatz & Tuzhilin, KDD95]

– A rule (pattern) is interesting if it is

– unexpected (surprising to the user) and/or

– actionable (the user can do something with it)

Frequent Itemset Mining  Simple Association Rules 39

DATABASE
SYSTEMS
GROUP

Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

• Among 5000 students

– 3000 play basketball (=60%)

– 3750 eat cereal (=75%)

– 2000 both play basket ball and eat cereal (=40%)

• Rule play basketball  eat cereal [40%, 66.7%] is misleading because
the overall percentage of students eating cereal is 75% which is higher
than 66.7%

• Rule play basketball  not eat cereal [20%, 33.3%] is far more
accurate, although with lower support and confidence

• Observation: play basketball and eat cereal are negatively correlated

 Not all strong association rules are interesting and some can be
misleading.
 augment the support and confidence values with interestingness
measures such as the correlation 𝐴 ⇒ 𝐵 [𝑠𝑢𝑝𝑝, 𝑐𝑜𝑛𝑓, 𝑐𝑜𝑟𝑟]

Frequent Itemset Mining  Simple Association Rules 40

DATABASE
SYSTEMS
GROUP

Other Interestingness Measures:
Correlation

• Lift is a simple correlation measure between two items A and B:

! The two rules 𝐴 ⇒ 𝐵 and 𝐵 ⇒ 𝐴 have the same correlation coefficient.

• take both P(A) and P(B) in consideration

• 𝑐𝑜𝑟𝑟𝐴,𝐵 > 1 the two items A and B are positively correlated

• 𝑐𝑜𝑟𝑟𝐴,𝐵 = 1 there is no correlation between the two items A and B

• 𝑐𝑜𝑟𝑟𝐴,𝐵 < 1 the two items A and B are negatively correlated

Frequent Itemset Mining  Simple Association Rules 41

𝑐𝑜𝑟𝑟𝐴,𝐵 =
𝑃(𝐴 ڂ 𝐵)

𝑃 𝐴 𝑃(𝐵)
=

𝑃 𝐵 𝐴)

𝑃 𝐵
=

𝑐𝑜𝑛𝑓(𝐴⇒𝐵)

𝑠𝑢𝑝𝑝(𝐵)

DATABASE
SYSTEMS
GROUP

Other Interestingness Measures:
Correlation

• Example 2:

• X and Y: positively correlated

• X and Z: negatively related

• support and confidence of X=>Z dominates

• but items X and Z are negatively correlated

• Items X and Y are positively correlated

Frequent Itemset Mining  Simple Association Rules 42

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

rule support confidence correlation

𝑋 ⇒ 𝑌 25% 50% 2

𝑋 ⇒ 𝑍 37.5% 75% 0.86

𝑌 ⇒ 𝑍 12.5% 50% 0.57

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 43

DATABASE
SYSTEMS
GROUP

Hierarchical Association Rules:
Motivation

• Problem of association rules in plain itemsets

– High minsup: apriori finds only few rules

– Low minsup: apriori finds unmanagably many rules

• Exploit item taxonomies (generalizations, is-a hierarchies) which exist
in many applications

• New task: find all generalized association rules between generalized
items  Body and Head of a rule may have items of any level of the
hierarchy

• Generalized association rule: 𝑋 ⇒ 𝑌
with 𝑋, 𝑌 ⊂ 𝐼, 𝑋 ∩ 𝑌 = ∅ and no item in 𝑌 is an ancestor of any item in 𝑋
i.e., 𝑗𝑎𝑐𝑘𝑒𝑡𝑠 ⇒ 𝑐𝑙𝑜𝑡ℎ𝑒𝑠 is essentially true

Frequent Itemset Mining  Further Topics  Hierarchical Association Rules 44

shoes

sports shoes bootsouterwear

jackets jeans

clothes

shirts

DATABASE
SYSTEMS
GROUP

Hierarchical Association Rules:
Motivating Example

• Examples

Jeans  boots

jackets  boots

Outerwear boots Support > minsup

• Characteristics

– Support(“outerwear  boots”) is not necessarily equal to the sum
support(“jackets  boots”) + support(“jeans  boots”)
e.g. if a transaction with jackets, jeans and boots exists

– Support for sets of generalizations (e.g., product groups) is higher
than support for sets of individual items
If the support of rule “outerwear  boots” exceeds minsup, then the
support of rule “clothes  boots” does, too

Frequent Itemset Mining  Further Topics  Hierarchical Association Rules 45

Support < minSup

DATABASE
SYSTEMS
GROUP

Mining Multi-Level Associations

• A top_down, progressive deepening approach:

– First find high-level strong rules:

• milk  bread [20%, 60%].

– Then find their lower-level “weaker” rules:

• 1.5% milk  wheat bread [6%, 50%].

• Different min_support threshold across multi-levels lead to different
algorithms:

– adopting the same min_support across multi-levels

– adopting reduced min_support at lower levels

Frequent Itemset Mining  Further Topics  Hierarchical Association Rules 46

Food

breadmilk

3.5%

SunsetFraser

1.5% whitewheat

Wonder

DATABASE
SYSTEMS
GROUP

Minimum Support for Multiple Levels

• Uniform Support

+ the search procedure is simplified (monotonicity)

+ the user is required to specify only one support threshold

• Reduced Support
(Variable Support)

+ takes the lower frequency of items in lower levels into consideration

Frequent Itemset Mining  Further Topics  Hierarchical Association Rules 47

minsup = 5 %

minsup = 5 %milk
support = 10 %

3.5%
support = 6 %

1.5%
support = 4 %

milk
support = 10 %

3.5%
support = 6 %

1.5%
support = 4 %

minsup = 3 %

minsup = 5 %

DATABASE
SYSTEMS
GROUP

Multilevel Association Mining using
Reduced Support

• A top_down, progressive deepening approach:

– First find high-level strong rules:

• milk  bread [20%, 60%].

– Then find their lower-level “weaker” rules:

• 1.5% milk  wheat bread [6%, 50%].

3 approaches using reduced Support:

• Level-by-level independent method:

– Examine each node in the hierarchy, regardless of whether or not its parent
node is found to be frequent

• Level-cross-filtering by single item:

– Examine a node only if its parent node at the preceding level is frequent

• Level-cross- filtering by k-itemset:

– Examine a k-itemset at a given level only if its parent k-itemset at the
preceding level is frequent

Frequent Itemset Mining  Further Topics  Hierarchical Association Rules 48

Food

breadmilk

3.5%

SunsetFraser

1.5% whitewheat

Wonder

level-wise processing (breadth first)

DATABASE
SYSTEMS
GROUP

Multilevel Associations: Variants

• A top_down, progressive deepening approach:

– First find high-level strong rules:

• milk  bread [20%, 60%].

– Then find their lower-level “weaker” rules:

• 1.5% milk  wheat bread [6%, 50%].

• Variations at mining multiple-level association rules.

– Level-crossed association rules:

• 1.5 % milk  Wonder wheat bread

– Association rules with multiple, alternative hierarchies:

• 1.5 % milk  Wonder bread

Frequent Itemset Mining  Further Topics  Hierarchical Association Rules 49

Food

breadmilk

3.5%

SunsetFraser

1.5% whitewheat

Wonder
level-wise processing (breadth first)

DATABASE
SYSTEMS
GROUP

Multi-level Association: Redundancy
Filtering

• Some rules may be redundant due to “ancestor” relationships between
items.

• Example

– 𝑅1: milk  wheat bread [support = 8%, confidence = 70%]

– 𝑅2: 1.5% milk  wheat bread [support = 2%, confidence = 72%]

• We say that rule 1 is an ancestor of rule 2.

• Redundancy:
A rule is redundant if its support is close to the “expected” value, based
on the rule’s ancestor.

Frequent Itemset Mining  Further Topics  Hierarchical Association Rules 50

DATABASE
SYSTEMS
GROUP

Interestingness of Hierarchical
Association Rules: Notions

Let 𝑋, 𝑋′, 𝑌, 𝑌′ ⊆ 𝐼 be itemsets.

• An itemset 𝑋′ is an ancestor of 𝑋 iff there exist ancestors 𝑥1
′ , … , 𝑥𝑘

′ of
𝑥1, … , 𝑥𝑘 ∈ 𝑋 and 𝑥𝑘+1, … , 𝑥𝑛 with 𝑛 = 𝑋 such that

𝑋′ = {𝑥1
′ , … , 𝑥𝑘

′ , 𝑥𝑘+1, … , 𝑥𝑛}.

• Let 𝑋′ and 𝑌′ be ancestors of 𝑋 and 𝑌. Then we call the rules 𝑋′ 𝑌′,
𝑋𝑌′, and 𝑋′𝑌 ancestors of the rule X  Y .

• The rule X´  Y´ is a direct ancestor of rule X  Y in a set of rules if:

– Rule X´  Y‘ is an ancestor of rule X  Y, and

– There is no rule X“  Y“ such that X“  Y“ is an ancestor of
X  Y and X´  Y´ is an ancestor of X“  Y“

• A hierarchical association rule X  Y is called R-interesting if:

– There are no direct ancestors of X  Y or

– The actual support is larger than R times the expected support or

– The actual confidence is larger than R times the expected confidence

Frequent Itemset Mining  Further Topics  Hierarchical Association Rules 51

DATABASE
SYSTEMS
GROUP

Expected Support and Expected
Confidence

• How to compute the expected support?
Given the rule for X  Y and its ancestor rule X´  Y´ the expected
support of X  Y is defined as:

𝐸𝑍′ P 𝑍 =
P(𝑧1)

P(𝑧1
′)
× ⋯×

P 𝑧𝑗

P(𝑧𝑗
′)
× P 𝑍′

where 𝑍 = 𝑋 ∪ 𝑌 = {𝑧1, … , 𝑧𝑛}, 𝑍
′ = 𝑋′ ∪ 𝑌′ = {𝑧1

′ , … , 𝑧𝑗
′, 𝑧𝑗+1, … , 𝑧𝑛} and

each 𝑧𝑖
′ ∈ 𝑍′ is an ancestor of 𝑧𝑖 ∈ 𝑍

Frequent Itemset Mining  Further Topics  Hierarchical Association Rules 52

[SA’95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.

DATABASE
SYSTEMS
GROUP

Expected Support and Expected
Confidence

• How to compute the expected confidence?
Given the rule for X  Y and its ancestor rule X´  Y´, then the
expected confidence of X  Y is defined as:

𝐸𝑋′⇒𝑌′ P 𝑌|𝑋 =
P(𝑦1)

P(𝑦1
′)
× ⋯×

P 𝑦𝑗

P 𝑦𝑗
′
× P 𝑌′|𝑋′

where 𝑌 = {𝑦1, … , 𝑦𝑛} and 𝑌′ = 𝑦1
′ , … , 𝑦𝑗

′, 𝑦𝑗+1, … , 𝑦𝑛 and each 𝑦𝑖
′ ∈ 𝑌′ is

an ancestor of 𝑦𝑖 ∈ 𝑌

Frequent Itemset Mining  Further Topics  Hierarchical Association Rules 53

[SA’95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.

DATABASE
SYSTEMS
GROUP

Interestingness of Hierarchical
Association Rules:Example

• Example

– Let R = 1.6

•

Frequent Itemset Mining  Further Topics  Hierarchical Association Rules 54

Item Support

clothes 20

outerwear 10

jackets 4

No rule support R-interesting?

1 clothes  shoes 10 yes: no ancestors

2 outerwear  shoes 9 yes:
Support > R *exp. support (wrt. rule 1) =

(1.6 ⋅ (
10

20
⋅ 10)) = 8

3 jackets  shoes 4 Not wrt. support:
Support > R * exp. support (wrt. rule 1) = 3.2
Support < R * exp. support (wrt. rule 2) = 5.75
 still need to check the confidence!

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Simple Association Rules

– Basic notions, rule generation, interestingness measures

3) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Multidimensional and Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Summary

Outline 55

DATABASE
SYSTEMS
GROUP

Multi-Dimensional Association:
Concepts

• Single-dimensional rules:

– buys milk  buys bread

• Multi-dimensional rules:  2 dimensions

– Inter-dimension association rules (no repeated dimensions)

• age between 19-25  status is student  buys coke

– hybrid-dimension association rules (repeated dimensions)

• age between 19-25  buys popcorn  buys coke

Frequent Itemset Mining  Extensions & Summary 56

DATABASE
SYSTEMS
GROUP

Techniques for Mining Multi-
Dimensional Associations

• Search for frequent k-predicate set:

– Example: {age, occupation, buys} is a 3-predicate set.

– Techniques can be categorized by how age is treated.

1. Using static discretization of quantitative attributes

– Quantitative attributes are statically discretized by using predefined concept
hierarchies.

2. Quantitative association rules

– Quantitative attributes are dynamically discretized into “bins”based on the
distribution of the data.

3. Distance-based association rules

– This is a dynamic discretization process that considers the distance between
data points.

Frequent Itemset Mining  Extensions & Summary 57

DATABASE
SYSTEMS
GROUP

Quantitative Association Rules

• Up to now: associations of boolean attributes only

• Now: numerical attributes, too

• Example:

– Original database

– Boolean database

Frequent Itemset Mining  Further Topics  Quantitative Association Rules 58

ID age marital status # cars

1 23 single 0

2 38 married 2

ID age: 20..29 age: 30..39 m-status: single m-status: married . . .

1 1 0 1 0 . . .

2 0 1 0 1 . . .

DATABASE
SYSTEMS
GROUP

Quantitative Association Rules: Ideas

• Static discretization

– Discretization of all attributes before mining the association rules

– E.g. by using a generalization hierarchy for each attribute

– Substitute numerical attribute values by ranges or intervals

• Dynamic discretization

– Discretization of the attributes during association rule mining

– Goal (e.g.): maximization of confidence

– Unification of neighboring association rules to a generalized rule

Frequent Itemset Mining  Further Topics  Quantitative Association Rules 59

DATABASE
SYSTEMS
GROUP

Partitioning of Numerical Attributes

• Problem: Minimum support

– Too many intervals too small support for each individual interval

– Too few intervals  too small confidence of the rules

• Solution

– First, partition the domain into many intervals

– Afterwards, create new intervals by merging adjacent interval

• Numeric attributes are dynamically discretized such that the confidence
or compactness of the rules mined is maximized.

Frequent Itemset Mining  Further Topics  Quantitative Association Rules 60

DATABASE
SYSTEMS
GROUP

Quantitative Association Rules

• 2-D quantitative association rules: Aquan1  Aquan2  Acat

• Cluster “adjacent” association
rules to form general rules
using a 2-D grid.

• Example:

Frequent Itemset Mining  Further Topics  Quantitative Association Rules 61

age(X,”30-34”)  income(X,”24K - 48K”)
 buys(X,”high resolution TV”)

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Summary

Outline 62

DATABASE
SYSTEMS
GROUP

Chapter 3: Summary

• Mining frequent itemsets

– Apriori algorithm, hash trees, FP-tree

• Simple association rules

– support, confidence, rule generation, interestingness measures
(correlation), …

• Further topics

– Hierarchical association rules: algorithms (top-down progressive
deepening), multilevel support thresholds, redundancy and R-
interestingness

– Quantitative association rules: partitioning numerical attributes, adaptation
of apriori algorithm, interestingness

• Extensions: multi-dimensional association rule mining

Frequent Itemset Mining  Extensions & Summary 63

