6. Datenbankentwurf

Anforderungen an Entwurfsprozeß:

- Informationserhalt
- Konsistenzerhaltung
- Redundanzfreiheit
- Vollständigkeit bezüglich Anforderungsanalyse
- Konsistenz des Beschreibungsdokuments
- Ausdrucksstärke, Verständlichkeit des benutzten Formalismus
- Formale Semantik der Beschreibungskonstrukte
- Lesbarkeit der Dokumente
- Weitere Qualitätseigenschaften:
 - ◆ Unterstützung von Erweiterbarkeit,
 - Modularisierung,
 - Wiederverwendbarkeit,
 - Werkzeugunterstützung,

Stefan Conrad 6-1

Einführung in die Informatik: Systeme und Anwendungen

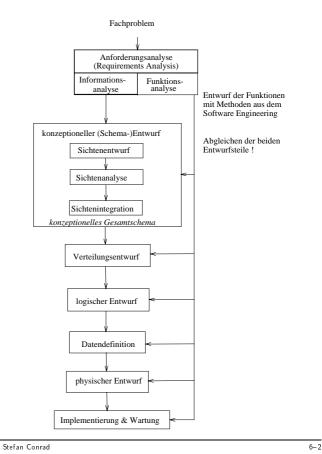
Teil: Datenbanksysteme

Anforderungsanalyse

■ Vorgehensweise: Sammlung des Informationsbedarfs in den Fachabteilungen

■ Ergebnis:

- informale Beschreibung (Texte, tabellarische Aufstellungen, Formblätter, usw.) des Fachproblems
- ◆ Trennen der Information über Daten (Datenanalyse) von den Information über Funktionen (Funktionsanalyse)
- "Klassischer" DB-Entwurf:


nur Datenanalyse und Folgeschritte

■ Funktionsentwurf:

siehe Methoden des Software Engineering

Phasenmodell

Einführung in die Informatik: Systeme und Anwendungen

Einführung in die Informatik: Systeme und Anwendungen

Teil: Datenbanksysteme

Konzeptioneller Entwurf

■ erste formale Beschreibung des Fachproblems, Sprachmittel: semantisches Datenmodell, ER-Modell bzw. Erweiterungen [ER = Entity-Relationship]

■ Vorgehensweise:

- ◆ Modellierung von Sichten z.B. für verschiedene Fachabteilungen
- ◆ Analyse der vorliegenden Sichten in Bezug auf Konflikte
 - Namenskonflikte: Homonyme / Synonyme
 - · Homonyme: Schloß; Kunde
 - Synonyme: Auto, KFZ, Fahrzeug

- Typkonflikte:

verschiedene Strukturen für das gleiche Element

 Wertebereichskonflikte: verschiedene Wertebereiche für ein Element

- Bedingungskonflikte:

z.B. verschiedene Schlüssel für ein Element

– Strukturkonflikte:

gleicher Sachverhalt durch unterschiedliche Konstrukte ausgedrückt

- ◆ Integration der Sichten in ein Gesamtschema
- konzeptionelles Gesamtschema, ■ Ergebnis: (E)ER-Diagramm

Stefan Conrad Stefan Conrad 6-4

Verteilungsentwurf

Sollen die Daten auf mehreren Rechnern verteilt vorliegen, muß Art und Weise der verteilten Speicherung festgelegt werden.

z.B. bei einer Relation KUNDE (KNr, Name, Adresse, PLZ, Kontostand)

■ horizontale Verteilung :

KUNDE_1 (KNr, Name, Adresse, PLZ, Kontostand) where PLZ < 50.000 KUNDE_2 (KNr, Name, Adresse, PLZ, Kontostand)

■ vertikale Verteilung :

where PLZ >= 50.000

KUNDE_Adr (KNr, Name, Adresse, PLZ) und KUNDE_Konto (KNr, Kontostand) (Verbindung über KNr Attribut)

Stefan Conrad 6-5

Einführung in die Informatik: Systeme und Anwendungen

Teil: Datenbanksysteme

Datendefinition

Umsetzung des logischen Schemas in ein konkretes Sche-

Sprachmittel: DDL und DML eines DBMS z.B. Ingres, Oracle

- Datenbankdeklaration in der DDL des DBMS
- Realisierung der Integritätssicherung
- Definition der Benutzersichten

Physischer Entwurf

Ergänzen des physischen Entwurfs um Zugriffsunterstützung bzgl. Effizienzverbesserung, z.B. Definition von Indexen

Logischer Entwurf

- Sprachmittel: Datenmodell des ausgewählten "Realisierungs"-DBMS z.B. relationales Modell
- Vorgehensweise:
 - 1. (automatische) Transformation des konzeptionellen Schemas; z.B. $ER \rightarrow relationales Modell$
 - 2. Verbesserung des relationalen Schemas anhand von Gütekriterien (Normalisierung)

Entwurfsziele: Redundanzvermeidung, . . .

■ Ergebnis: logisches Schema, z.B. Sammlung von Relationenschemata

Stefan Conrad 6-6

Einführung in die Informatik: Systeme und Anwendungen

Teil: Datenbanksysteme

Implementierung und Wartung

Phasen

- der Wartung,
- der weiteren Optimierung der physischen Ebene,
- der Anpassung an neue Anforderungen und Systemplattformen,
- der Portierung auf neue Datenbank-Management-Systeme
- etc