Hauptseminar KDD SS 2002

Prof. Dr. Hans-Peter Kriegel

Eshref Januzaj

Karin Kailing

Peer Kröger

Matthias Schubert

Session: Clustering

Inhalt

Einleitung

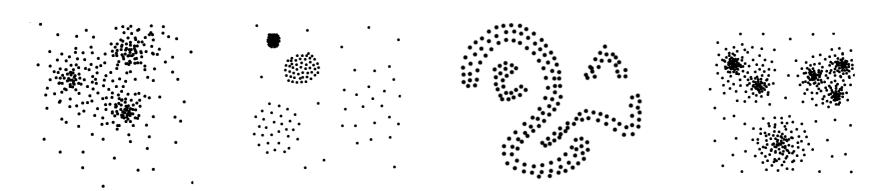
• Klassifikation von Clustering-Verfahren

• Dichte-basierte Verfahren

Einleitung

Ziel des Clustering

- Identifikation einer endlichen Menge von Kategorien, Klassen oder Gruppen (*Cluster*) in den Daten
- Objekte im gleichen Cluster sollen möglichst ähnlich sein
- Objekte aus verschiedenen Clustern sollen möglichst unähnlich zueinander sein



Cluster unterschiedlicher Größe, Form und Dichte hierarchische Cluster

Einleitung

Anwendungen (Überblick)

- Kundensegmentierung
 Clustering der Kundentransaktionen
- Bestimmung von Benutzergruppen auf dem Web Clustering der Web-Logs
- Strukturierung von großen Mengen von Textdokumenten Hierarchisches Clustering der Textdokumente
- Erstellung von thematischen Karten aus Satellitenbildern Clustering der aus den Rasterbildern gewonnenen Featurevektoren

Klassifikation von Clustering-Verfahren

Partitionierende Verfahren

- Parameter: Anzahl k der Cluster, Distanzfunktion
- sucht ein "flaches" Clustering in k Cluster mit minimalen Kosten

Hierarchische Verfahren

- Parameter: Distanzfunktion für Punkte und für Cluster
- bestimmt Hierarchie von Clustern, mischt jeweils die ähnlichsten Cluster

Dichtebasierte Verfahren

- Parameter: minimale Dichte in einem Cluster, Distanzfunktion
- erweitert Punkte um ihre Nachbarn solange Dichte groß genug

Andere Clustering-Verfahren

- Fuzzy Clustering
- Graph-theoretische Verfahren
- neuronale Netze

Partitionierende Verfahren

Grundlagen

Ziel

eine Partitionierung in k Cluster mit minimalen Kosten

Lokal optimierendes Verfahren

- wähle *k* initiale Cluster-Repräsentanten
- optimiere diese Repräsentanten iterativ
- ordne jedes Objekt seinem ähnlichsten Repräsentanten zu

Typen von Cluster-Repräsentanten

- Mittelwert des Clusters (Konstruktion zentraler Punkte \Rightarrow Centroide)
- Element des Clusters (Auswahl repräsentativer Punkte \Rightarrow Medoide)
- Wahrscheinlichkeitsverteilung des Clusters (*Erwartungsmaximierung*)

Partitionierende Verfahren

Übersicht

- •Clustering durch Varianz-Minimierung
- •k-means [MacQueen 67]
- •PAM [Kaufman & Rousseeuw 1990]
- •CLARANS [Ng & Han 1994]
- •EM-Algorithmus [Dempster, Laird & Rubin 1977]

Hierarchische Verfahren

Grundlagen

Ziel

Konstruktion einer Hierarchie von Clustern (*Dendrogramm*), so daß immer die Cluster mit minimaler Distanz verschmolzen werden

Dendrogramm

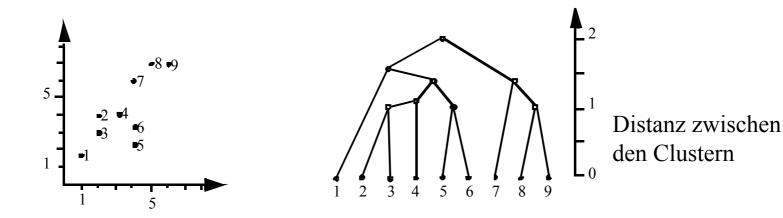
ein Baum, dessen Knoten jeweils ein Cluster repräsentieren, mit folgenden Eigenschaften:

- die Wurzel repräsentiert die ganze DB
- die Blätter repräsentieren einzelne Objekte
- ein innerer Knoten repräsentiert die Vereinigung aller Objekte, die im darunterliegenden Teilbaum repräsentiert werden

Hierarchische Verfahren

Grundlagen

Beispiel eines Dendrogramms



Typen von hierarchischen Verfahren

- Bottom-Up Konstruktion des Dendrogramms (agglomerative)
 - \Rightarrow Algorithmus *Single-Link*
- Top-Down Konstruktion des Dendrogramms (divisive)

Grundlagen

Idee

- Cluster als Gebiete im *d*-dimensionalen Raum, in denen die Objekte dicht beieinander liegen
- getrennt durch Gebiete, in denen die Objekte weniger dicht liegen

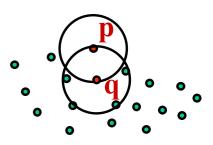
Anforderungen an dichtebasierte Cluster

- für jedes Objekt eines Clusters überschreitet die lokale Punktdichte einen gegebenen Grenzwert
- die Menge von Objekten, die den Cluster ausmacht, ist räumlich zusammenhängend

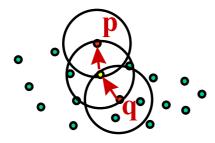
Grundbegriffe [Ester, Kriegel, Sander & Xu 1996]

• Ein Objekt $o \in O$ heißt Kernobjekt, wenn gilt:

$$|N_{\varepsilon}(o)| \ge MinPts$$
, wobei $N_{\varepsilon}(o) = \{o' \in O \mid dist(o, o') \le \varepsilon\}$.

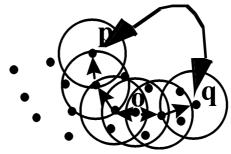


- Ein Objekt $p \in O$ ist direkt dichte-erreichbar von $q \in O$ bzgl. ε und MinPts, wenn gilt: $p \in N_{\varepsilon}(q)$ und q ist ein Kernobjekt in O.
- Ein Objekt *p* ist *dichte-erreichbar* von *q*, wenn es eine Kette von direkt erreichbaren Objekten zwischen *q* und *p* gibt.



Grundbegriffe

• Zwei Objekte p und q dichte-verbunden, wenn sie beide von einem dritten Objekt o aus dichte-erreichbar sind.



• Ein *Cluster C* bzgl. ε und *MinPts* ist eine nicht-leere Teilmenge von *O* mit für die die folgenden Bedingungen erfüllt sind:

Maximalität: $\forall p, q \in O$: wenn $p \in C$ und q dichte-erreichbar von p ist, dann ist auch $q \in C$.

Verbundenheit: $\forall p,q \in C$: p ist dichte-verbunden mit q.

Grundbegriffe

• Grundlegende Eigenschaft

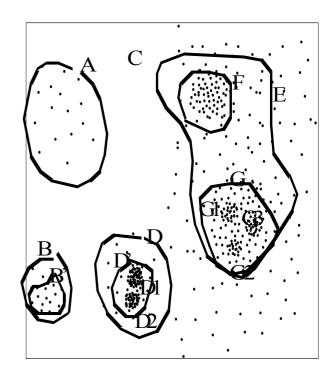
Sei C ein dichte-basierter Cluster und sei $p \in C$ ein Kernobjekt. Dann gilt:

 $C = \{o \in O \mid o \text{ dichte-erreichbar von } p \text{ bzgl. } \epsilon \text{ und } MinPts\}.$

 \Rightarrow Algorithmus *DBSCAN* [Ester, Kriegel, Sander & Xu 1996]

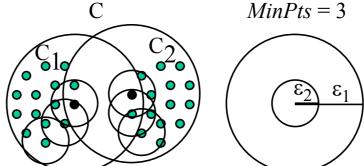
Probleme

- hierarchische Cluster
- stark unterschiedliche Dichte in verschiedenen Bereichen des Raumes
- Cluster und Rauschen sind nicht gut getrennt



Grundlagen [Ankerst, Breunig, Kriegel & Sander 1999]

• für einen konstanten *MinPts*-Wert sind dichte-basierte Cluster bzgl. eines kleineren ε vollständig in Clustern bzgl. eines größeren ε enthalten



• in einem DBSCAN-ähnlichen Durchlauf gleichzeitig das Clustering für verschiedene Dichte-Parameter bestimmen

zuerst die dichteren Teil-Cluster, dann den dünneren Rest-Cluster

• kein Dendrogramm, sondern eine auch noch bei sehr großen Datenmengen übersichtliche Darstellung der Cluster-Hierarchie

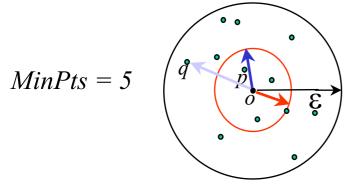
Grundbegriffe

Kerndistanz eines Objekts p bzgl. ε und MinPts

$$Kerndistanz_{\varepsilon,MinPts}(o) = \begin{cases} UNDEFINIERT, \ wenn \ |N_{\varepsilon}(o)| < MinPts \\ MinPtsDistanz(o), \ sonst \end{cases}$$

Erreichbarkeitsdistanz eines Objekts p relativ zu einem Objekt o

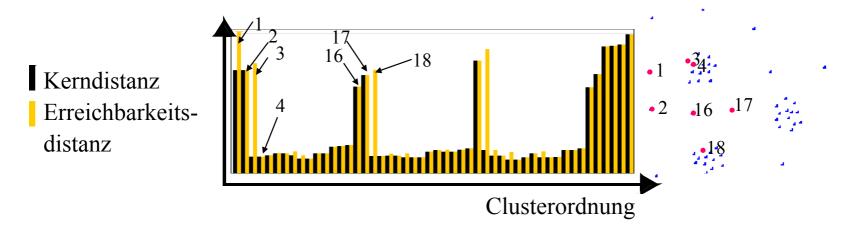
 $Erreichbarkeits distanz_{\varepsilon, \mathit{MinPts}}(p, o) = \begin{cases} \mathit{UNDEFINIERT}, \ \mathit{wenn} \ |N_{\varepsilon}(o)| < \mathit{MinPts} \\ \max \{\mathit{Kerndistanz}(o), \mathit{dist}(o, p)\}, \ \mathit{sonst} \end{cases}$



- \longrightarrow Kerndistanz(o)
- \longrightarrow Erreichbarkeitsdistanz(p,o)
- → Erreichbarkeitsdistanz(q,o)

Clusterordnung

- OPTICS liefert nicht direkt ein (hierarchisches) Clustering, sondern eine "Clusterordnung" bzgl. ε und *MinPts*
- Clusterordnung bzgl. ɛ und MinPts
 - beginnt mit einem beliebigen Objekt
 - als nächstes wird das Objekt besucht, das zur Menge der bisher besuchten Objekte die minimale Erreichbarkeitsdistanz besitzt



Erreichbarkeits-Diagramm

- Zeigt die Erreichbarkeitsdistanzen (bzgl. ε und *MinPts*) der Objekte als senkrechte, nebeneinanderliegende Balken
- in der durch die Clusterordnung der Objekte gegebenen Reihenfolge

