Realm-Based Spatial Data Types:
The ROSE Algebrat

Ralf Hartmut Glting
Markus Schneider

Praktische Informatik 1V, FernUniversitét Hagen
Postfach 940, D-5800 Hagen, Germany
gueting@fernuni-hagen.de, schneide@fernuni-hagen.de

Abstract: Spatial data types or algebras for database systems should (i) be fully general (which
means, closed under set operations, hence e.g. a region value can be a set of polygons with holes),
(ii) have formally defined semantics, (iii) be defined in terms of finite representations available in
computers, (iv) offer facilities to enforce geometric consistency of related spatial objects, and (v) be
independent of a particular DBM S data model, but cooperate with any. We offer such a definition. A
central ideaisto use realms as geometric domains underlying spatial datatypes. A realm as ageneral
database concept is a finite, dynamic, user-defined structure underlying one or more system data
types. A geometric realm defined here is a planar graph over a finite resolution grid. Problems of
numerical robustness and topological correctness are solved below and within the realm layer so that
spatial algebras defined above arealm enjoy very nice algebraic properties. Realms also interact with
aDBM S to enforce geometric consistency on object creation or update. The ROSE algebrais defined
on top of realms and offers general types to represent point, line, and region features together with a
comprehensive set of operations. It is described within a polymorphic type system and interacts with
a DBMS data model and query language through an abstract object model interface. An example
integration of ROSE into the object-oriented data model O, and its query language is presented.

Keywords. Spatia data types, algebra, realm, finite resolution, numerical robustness, topological
correctness, geometric consistency, object model interface, ROSE.

1 Thiswork was supported by the DFG (Deutsche Forschungsgemeinschaft) under grant Gu 293/1-1

1 Introduction

We consider a spatial database system to be afull-fledged DBM S with additional capabilitiesfor the
representation and manipulation of geometric data. As such, it provides the database technology
needed to support applications such as geographic information systems. The standard DBM S view for
the organization of spatial information is the following: A database consists of several classes of
objects. A spatial object isjust an object with an associated value (“attribute”) of a spatial data type,
such as, for example, point, line, or region. This is true regardiess of whether the DBMS uses a
relational, complex object, object-oriented or some other data model. Hence the definition and
implementation of spatial data types is probably the most fundamental issue in the development of
spatial database systems.

Although spatial data types (SDTs) are used routinely in the description of spatial query languages
(e.g. [LIN87, JoC88, SvH91, To90]), have been implemented in some prototype systems (e.g.
[ROFS88, OrM 88, Gii89]), and some formal definitions have been given [Gi88a, ScV89, GaNT91],
thereis still no completely satisfactory solution available according to the following criteria:

» Generality. The geometric objects used as SDT values should be as general as possible. For
example, a region value should be able to represent a collection of digoint areas each of
which may have holes. More precisely, this means that the domains of data types point, line,
and region must be closed under union, intersection, and difference of their underlying point
sets. This alows for the definition of powerful data type operations with nice closure
properties.

» Rigorous definition. The semantics of SDTS, that is, the possible values for the types and the
functions associated with the operations, must be defined formally to avoid ambiguities for
the user and the implementor.

» Finite resolution. The formal definitions must take into account the finite representations
available in computers. This has so far been neglected in definitions of SDTs. It isleft to the
programmer to close this gap between theory and practice which leads rather inevitably not
only to numerical but also topological errors.

» Treatment of geometric consistency. Distinct spatial objects may be related through
geometric consistency constraints (e.g. adjacent regions have a common boundary). The
definition of SDTs must offer facilities to enforce such consistency.

* General object model interface. Spatial datatypes as such are rather useless; they need to be
integrated into a DBMS data model and query language. However, a definition of SDTs
should be valid regardless of a particular DBMS datamodel and therefore not depend on it.?
Instead, the SDT definition should be based on an abstract interface to the DBM S data model
which we call the object model interface.

The purpose of this paper (together with acompanion paper [GUS93]) isto develop aformal definition
of spatial datatypesfulfilling these criteria. A central ideaisto introduce into the DBM S the concept
of arealm. A realmisin general afinite, user defined structure that is used as a basis for one or more
system data types. Realms are somewhat similar to enumeration types in programming languages. A
realm used as abasisfor spatial datatypesisessentialy afinite set of points and non-intersecting line

2 Thisalso holdsfor theimplementation level: A spatial type extension package (STEP) should be able to cooperate with
any extensible DBM S offering a suitable interface regardless of its data model.

segments. Intuitively, it describes the complete underlying geometry of an application. All points,
lines and regions associated with objects (from now on called spatial attribute values) can be defined
in terms of points and line segments present in the realm. In fact, in a database spatial attribute values
are then never created directly but only by selecting some realm objects. They are never updated
directly. Instead, updates are performed on the realm and from there propagated to the dependent
attribute values.

Hence, al attribute values occurring in a database are realm-based. Furthermore, the algebraic
operations for the spatial data types are defined to construct only geometric objects that are realm-
based as well. So the spatial algebrais closed with respect to a given realm. This meansin particular
that no two values of spatia data types occurring in geometric computation have “proper”
intersections of line segments. Instead, two initially intersecting segments have aready been split at
the intersection point when they were entered into the realm. One could say that any two intersecting
SDT values (say, lines or regions) “ have become acquainted” already when they were entered into the
realm. Thisisacrucial property for the correct and efficient implementation of geometric operations.

Realm objects - points and segments - are defined not in abstract Euclidean space but in terms of finite
representations. All geometric primitives and realm operations (e.g. updates) are defined in error-free
integer arithmetic. For mapping an application’s set of intersecting line segmentsinto arealm’s set of
non-intersecting segments the concept of redrawing and finite resolution geometry from [GrY 86] is
used. Although intersection points computed with finite resolution in general move away from their
exact Euclidean position, this concept ensures that the unavoidable distortion of geometry (that is, the
numerical error) remains bounded and very small and that essentially3 no topological errors occur.
This means that a programmer has a precise specification that directly lends itself to a correct
implementation. It also meansthat the spatial algebra obeys algebraic laws precisely in theory aswell
as in practice. Furthermore, it is rather obvious that realms also solve the geometric consistency
problem.

Most closely related to thiswork are the formal definitions of spatial datatypes (or algebras) given by
Guting [GU88a, Gui88h], Scholl and Voisard [ScV 89, V092], and Gargano et al. [GaNT91]. All of
these proposalsdo not fulfill most of the criteriagiven above. In [Gli88a, GUi88b] datatypesfor points,
lines, and regions are available but too restricted, e.g. aregion is a single simple polygon (without
holes). In [ScV89] general regions are defined; in Voisard's thesis [V092] this has been extended to
general typesfor points and lines. However, the definitions are unnecessarily complex. In [GaNT91]
thereisonly asingletypefor all kinds of geometric objects; avalueisessentially aset of setsof pixels.
We fed this is not sufficient, since many interesting spatial operations cannot be expressed. As
mentioned, all of these proposals give formal definitions. However, those of Giting and of Scholl and
Voisard are not based on finite resolution; hence the numeric correctness problems are not addressed.
Gargano et al. base their definitions in principle on afinite underlying set (of pixels). But thisis not
practical since these finite representations are far too large to be efficiently manageable. The
geometric consistency problem is not solved in any of these proposals; there is some weak support in
[GU884] through an area datatype, but it is not sufficient. Finally, all three proposals have connected
their spatial typesto afixed data model — Giting and Gargano et al. to the relational model and Scholl
and Voisard to a complex object algebra. Only Scholl and Voisard emphasize a clean interface

3 Seethediscussion in Section 2 and in [GUS93].

between the spatial algebra and the general object model. We shall extend their work by offering an
abstract interface not dependent on any particular data model.

Separating geometric primitives from the remainder of geometric modeling was already proposed by
Frank and Kuhn [FrK86]. Because of the conflict between the infinite precision real numbers of
Euclidean geometry and the finite precision number systems of computers they suggest to abandon
coordinate-based geometry and to only consider the topological structures of point sets underlying
gpatial values. Their topological data model (later continued in [EgFJ89]) is based on simplicial
complexes and has a similar purpose as our concept of realms. Essentialy they offer an irregular
triangular network partition of the plane as a geometric domain over which spatial objects could be
defined. However, the connections are missing to the underlying finite arithmetic aswell asto spatial
datatypes based on thismodel. Also, in our view atriangular partition containstoo much information;
it is sufficient to keep those points and segments in a geometric domain that are needed for spatial
attribute values. Finally, their model is an abstract one whereas we show realms within a database
context.

Our description and formal development of realm-based spatial data typesis given in two papers. In
thefirst paper [GUS93] the lower layers, namely numerically robust geometric primitives, realms and
their update operations and a number of realm-based structures (cycles, faces, ...) and primitives have
been defined. In this paper spatial datatypes points, lines, and regions and their operations, that is, the
gpatial algebra (called ROSE algebra), are described and defined formally. Related issues such as
modeling partitions of the plane within the type system and an abstract object model interface are
addressed. We al so show how the ROSE algebra can beintegrated withaDBM S data model and query
language, using O, as an example. In the following section we first provide an informal overview of
the compl ete concept.

2 Overview: Realm-Based Spatial Data Types

A realmisaset of points and non-intersecting line segments over adiscrete domain, that is, agrid, as
shown in Figure 1.

Figure 1. Example of arealm

Values of spatial datatypes can be composed from the objects present in arealm. Figure 2 shows some
values definable over the realm of Figure 1. Our realm-based spatial datatypesare called points, lines,

Figure 2: Realm objects defined over the realm of Figure 1

and regions, hence A and B represent regions values, C is alines value, and D a points value. The
precise structure of these values is not yet relevant here. One can imagine A and B to belong to two
adjacent countries, C to represent ariver, and D acity.

The underlying grid of arealm arises ssmply from the fact that numbers have a finite representation
in computer memory. In practice, these representations will be of fixed length and correspond to
INTEGER or REAL data types available in programming languages (or to special, higher precision
implementations of number systems). Of course, the resolution will be much finer than could be
shown in Figure 1.

The concept of arealm as abasis of spatial data types serves the following purposes.

» It enforces geometric consistency of related spatial objects. For example, the common part
of the borders of countries A and B is exactly the same for both objects.

» It guarantees nice closure properties for the computation with spatial data types above the
realm. For example, the intersection of region B with line C (the part of river C lying within
country B) is aso arealm-based lines value.

e It shields geometric computation in query processing from numeric correctness and
robustness problems. This is because such problems arise essentially from the computation
of intersection points of line segments which normally do not lie on the grid. With realm-
based SDTs, there are never any new intersection points computed in query processing.
Instead, the numeric problems are treated below the realm level, namely, whenever updates
are made to arealm.

» Additionally, adata structure representing arealm can be used as an index into the database.
Our implementation concept assumes that each point and segment in a realm has an
associated list of logical pointersto the spatial attribute values defined over it in the database.

Let us now focus on the treatment of numerical correctness problems below and within the realm
level. Thisis necessary because geometric data coming from the application are not intersection-free,
as required for arealm. Application data can at the lowest level of abstraction be viewed as a set of
points and intersecting line segments. These need to be transformed into a realm. As mentioned
before, the fundamental problem is that intersection points usually do not lie on the grid.

Figure 3 Figure 4

In Figure 3, theintersection point D’ of line segments A and B will be moved to the closest grid point
D. Thisleads, for example, to the following topological errors: (1) A test whether D lieson A or B
fails. (2) A test whether D lies properly within some area defined below A and B will incorrectly yield
true. (3) If thereis another segment C between the true intersection point and D, D will be reported to
lie on the wrong side of C. The basic idea to avoid these errorsis to slightly change segments A and
B by transforming them into chains of segments going through D, as shown in Figure 4. However, this
does not suffice, since it allows a segment to drift (through a series of intersections) by an arbitrary
distance from its origina position. For example, a further intersection of A with some segment C
(Figure 5) is resolved as shown in Figure 6, where intersection point E has aready a considerable
distance from the true intersection point of A and C. Note in particular that segment A hasin Figure
6 been moved to the other side of agrid point (indicated by the arrow) which may later be reported to
lie on the wrong side of A.

Figure5 Figure 6

A refined solution was proposed by Greene and Yao [GrY 86]. Theideaisto definefor asegment san
envelope E(s) roughly as the collection of grid points that are immediately above, below, or on's. An
intersection of swith some other segment may lead to arequirement that s should pass through some
point P on its envelope (the grid point closest to the true intersection point). This requirement is then
fulfilled by redrawing s by some polygonal line within the envel ope rather than by simply connecting
P with the start and end points of s. Figure 7 shows a segment s (drawn fat) together with the grid
points of its envelope. Slightly above s aredrawing of sthrough P is shown.

Intuitively, the process of redrawing can be understood as follows: Think of segment s as a rubber
band and the points of the envelope as nails on a board. Now grip s at the true intersection point and
pull it around P. The resulting polygonal path is the redrawing. The number of segments of this path
isin the worst case logarithmic in the size of the grid, but it seems that in most cases only very few
segments are created. This approach guarantees that the polygonal line describing a segment always
remai nswithin the envel ope of the original segment. We adopt the technique for realms. It then means

S -

Figure 7: Redrawing of a segment s through an envelope point P

that by redrawing a segment can never drift to the other side of a realm point. It might still happen,
though, that after aredrawing arealm point isfound to lie on a segment which it did not originally.

The formal definition of realm-based SDTs is organized as a series of layers. Each layer defines its
own structures and primitives, using the notions of the layers below. These layers are described
bottom-up in the companion paper [GUS93] and in the rest of this paper. Let us briefly provide an
overview of this development.

The lowest layer introduces robust geometric primitives. It defines a discrete space N x N where N =
{0, ..., n—1} isasubset of the natural numbers. The objectsin this space are points and line segments
with coordinates in N, called N-points and N-segments. A number of operations (predicates) such as
whether an N-point lies on an N-segment or whether two N-segments inter sect, and which N-point is
the result of intersecting two N-segments, are defined. The crucial point is that these definitions are
given in terms of error-free integer arithmetic, hence they are directly implementable.

Next, geometric realms are defined as described above; elements are called R-points and R-segments.
Basic operations on realms are insertion and deletion of N-points and N-segments which may trigger
the redrawing of segments as described above. Realms offer an interface to cooperate with a database
system. For example, the operation of inserting an N-segment returns besides a modified realm a
redrawing of the inserted segment and a set of redrawings of segmentsin the database that need to be
modified together with logical pointers to database representations of these segments.

The second layer defines certain structures present in a realm that serve as a basis for the definition
of SDTs. A realm can be viewed as a planar graph; an R-cycleisacycle of thisgraph. An R-faceisan
R-cycle possibly enclosing some other disjoint R-cycles corresponding to aregion with holes. An R-
unitisaminimal R-face. These three notions support the definition of aregions datatype. An R-block
is aconnected component of the realm graph; it supports the definition of alines datatype. For al of
these structures there are also predicates defined to describe their possible relationships.

This completes the scope of [GUS93]. The definitions of the first two layers needed in this paper are
reviewed in Section 3.

The third layer (Section 4) introduces spatial data types points, lines, and regions and defines the
structure of corresponding values. A pointsvalueisaset of R-points. There are two aternative views
of lines and regions. Thefirst isthat alines value is a set of R-segments and aregions value a set of
R-units. The other view is equivalent but “semantically richer”: A lines value is a set of digoint R-
blocks and aregions value a set of (edge-) digoint R-faces. There are also spatial algebra primitives
defined on values of these types.

The following two sections prepare the definition of the fourth and final layer. In Section 5 aflexible
type systemisintroduced that allows oneto precisely describe polymorphic operationsthat are central
to the ROSE algebra. In thistype systemiit is aso possible to cleanly model partitions of the plane so
that operations can be constrained to be applicable to partitions or regions of partitions. A partitionis
essentially a set of objects whose regions attribute values are digoint.

In Section 6 the object model interface (OMI) is defined. We identify a number of concepts that need
to be present inthe DBM S data (or object) model to allow it to cooperate with our spatial algebra. The
OMI hastwo parts. Thefirst part is needed to define the semantics of operations of the ROSE algebra,
in particular for complex operations that manipulate sets of objects. The second part is needed to
embed the ROSE algebrainto a query language; it consists of a number of facilities within the query
language that are required to make a full use of the ROSE algebra possible. The corresponding idea
a the system level is that any extensible database system offering an OMI implementation can
cooperate with a spatial type extension package (STEP) realizing the spatial algebra.

Then as atop layer the ROSE algebra is described in Section 7; the semantics of all operations are
formally defined. There are four classes of operations:

» gpatial predicates expressing topological relationships (e.g. inside, adjacent)

» operations returning atomic spatial values (e.g. inter section, contour)

e operations returning numbers (e.g. length, dist)

» operations on sets of objects (e.g. overlay, fusion)
Thelast group of operations manipulates not only SDT values but also the objects they are associated
with.

In Section 8 we show how the ROSE algebra can be integrated with a given DBM S data model and
query language, choosing O, as an example. This illustrates the object model interface. Example
queriesin O,SQL/ROSE are al so shown to demonstrate the “ expressive power” of thisspatial algebra.

3 Review: Robust Geometric Primitives, Realms, and Realm-Based Structures

In this section we review the concepts and formal definitions from [GUS93] needed as a basis for
defining the ROSE algebra. We have already mentioned that there are severa layers of definitions
each of which introduces its own structures and operations and uses the notions of the layers below.
To be able to distinguish operations of the various layers we use the following typographical
convention:

o Layer 1 - robust geometric primitives. underscore (e.g. intersect)

* Layer 2 - reams and realm-based primitives: underscore italic (e.g. area-digoint)

» Layer 3- gpatial algebra primitives: bold italic (e.g. area-digoint)

* Layer 4 - ROSE operations: bold (e.g. inside)
A summary of the various layers with their objects and operationsis given in the Appendix.

3.1 Robust Geometric Primitives

The lowest layer introduces afinite discrete space N x N with N={0, ..., n— 1} < N, points and line
segments over this space, and some simple predicates and operations on them. All definitions are

based on error-free integer arithmetic which enables direct and robust implementation. An N-point is
apair (x,y) € NxN. An N-segment isapair of distinct N-points (p, q); the segments (p, g) and (q, p)
are defined to be equal. Py denotes the set of all N-points and S the set of all N-segments. Formal
definitions of robust geometric primitives defined on N-points and N-segments are given in [GUS93].
We explain the primitives informally here: Two N-segments meet if they have exactly one end point
in common. They overlap if they are collinear and share a (partial) N-segment. If they have exactly
one common point but do not meet, they intersect. They are digoint if they are neither equal nor meet
nor overlap nor intersect. The on primitive tests whether an N-point lies on an N-segment; the in
primitive does nearly the same but the N-point must not coincide with one of the end points of the
N-segment. The intersection primitive cal cul ates the intersection point of two N-segments and rounds
it to the nearest N-point.

3.2 Realms

Realms serve asabasisfor SDTs and essentially represent afinite, user-defined set of points and non-
intersecting line segments over adiscrete domain. Given N, arealmover N, or N-realmfor short, isa
set R= P u Ssuch that

(i) PcPnScSy

(i) VseS:s=(p,g)=>peParqeP

(iii) Vpe PVse S:—=(piny9)

(iv) Vs te Ss#t:—(sandtintersect) A — (sandt overlap)
The elements of P and Sare called R-points and R-segments. There is an obvious interpretation of a
realm as a spatially embedded planar graph with set of nodes P and set of edges S

3.3 Realm-Based Structuresand Primitives

Thislayer defines certain structures and rel ationshi ps between these structures that can be discovered
within arealm and that are useful for the definition of SDTs. A realm can be viewed as a planar graph;
informally, an R-cycleisacycle of this graph. An R-face is an R-cycle possibly enclosing some other
digoint R-cycles corresponding to a region with holes. An R-unit is aminimal R-face. These three
notions support the definition of a regions data type. An R-block is a connected component of the
realm graph; it supports the definition of a lines data type. For al of these realm-based structures
predicates (primitives) are defined to describe their possible relationships. We now review the most
important formal definitions.

An R-cycle c isjust a cycle in the graph interpretation of a ream, defined by a set of R-segments
Sc) ={sg s Smy-1}» Such that

(i) Vie{0 ..,ml}:smeetss;+) modm
(i) No other pairs of segmentsin Sc) meet.

Obviousdly the following relationships may exist between an N-point p and an R-cycle c:

(i) ponc & dse YJc):pons

% :

3o

Figure 8: Possible relationships between two R-cycles

For p=(x,y) let s, = ((X, y), (x, n— 1)) (that is, a vertical segment extending from p upwards to the
edge of the grid). Let S(c) be the set of segmentsin §c) whose right end point, but not the left one,
ison s, (theleft end point is the smaller one of the two end pointsin the (x, y)-lexicographical order).
Let §(c) be the segmentsin S(c) that intersect s, Then

(i) pinc & —=ponca|S(c)+[S(c)|isodd

(iii) poutc = —(poncvpinc)

Hence c partitions the set Py into three subsets P;,(C), Pgn(C), and Py (c). Let P(C) := Pyn(C) U Pjp(C).
Cycles areinteresting because they are the basic entitiesfor the definition of regionsover realms. The

relationships shown in Figure 8 may be distinguished between two R-cycles ¢, and c,. The following
terminology isintroduced for these configurations:

CyiS c,and c, are
* (area-)inside (i, ii, iii) o area-digoint (iv, v, vi)
» edge-inside (ii, iii * edge-digoint (v, vi)
» vertex-inside (iii) » (vertex-)digoint (vi)
Cq.

The meaning is that (i) ¢, is (w.r.t. area) inside c,, (ii) additionally has no common edges with c;,
(iii) has not even common vertices with c,. Similarly (iv) c, is digoint w.rt. area with cq,
(v) additionally has no common edges with ¢4, (vi) additionally has not even common vertices with
c;. area-inside is the standard interpretation of the term inside, vertex-disoint the standard
interpretation of the term digoint. Furthermore there are two positive notions: ¢, and ¢, are adjacent
if they are area-digoint and have common edges, they meet if they are edge-digjoint and have common
vertices. The predicates are formally defined as follows:

P(c1) c P(cy)

C, area-inside ¢, A §(¢) N §¢y) = I

1 edge-inside ¢, A Pyp(€q) N Pgp(Cy) = 9

Pin(c)) N P(co) = D A Pj(cy) N P(cy) =<

¢, and ¢, are area-digoint A §c;) N §cy) =D

¢, and ¢, are edge-digoint A Py,(Cq1) N Pgp(Cy) =D
c; and ¢, are area-disoint A §¢c;) N §cy) # D

¢, (area-)inside c;

C, edge-inside ¢,

C, vertex-inside c,

c, and ¢, are area-digoint

¢, and ¢, are edge-digoint

¢y and ¢, are (vertex-)disjoint

i

(A R A O

¢, and ¢, are adjacent

- 10 -

¢y and ¢, meet ‘= ¢q and ¢, are edge-disoint A Pyy(C1) N Pgp(Co) # D
One can observe similar ways how an R-segment s can lie within an R-cyclec:
» s(area-)insidec (i, ii, iii)

» sedge-insidec (ii, iii
* svertex-inside c (iii)

Figure 9: Possible relationships of an R-segment lying within an R-cycle

For an R-point p and an R-cycle ¢ we have two possibilities:
Q)
* p(area-)insdec (i, ii)
e pvertex-insidec (ii)

Figure 10: Possible relationships of an R-point lying within an R-cycle

Formal definitions are | ft to the reader. Based on the concept of R-cycles, for the definition of aSDT
for regions the notions R-face and R-unit are introduced which describe regions from two different
perspectives and which are used equivalently. Both of them essentially define polygonal regions with
holes. An R-unit isa“minimal” R-face in the sense that any R-face within the R-unit is equal to the
R-unit. Hence R-units are the smallest region entities that exist over a realm. In the next section a
region (datatype) will be defined that can either be viewed as a set of R-faces or, equivalently, as a set
of R-units. The first view emphasizes a minimal representation of the boundary of aregion whereas
the latter view supports the definition of set operations for regions.

An R-face f isa pair (c, H) where cisan R-cycleand H = {hy, ..., hy} isa(possibly empty) set of
R-cycles such that the following conditions hold (let S(f) denote the set of segments of all cycles of f):

(i) Vie{l, .. m:h edgeinsidec

(i) Vi,je{l .., m}i=]j:h andh areedge-digoint

(iii) Eachcyclein §f) iseither equal to c or to one of the cyclesin H (no other cycle can be formed
from the segments of f)

Thefirst two conditions allow ahole within aface to touch in avertex the boundary cycle c or another
hole. Thisis necessary in order to achieve closure under operations (e.g. subtracting face g from face
f may lead to a hole in f). On the other hand, to allow two holes to be area-digoint makes no sense,
since then adjacent holes could be merged by eliminating common boundary segments (similarly for
adjacency of a hole with the boundary). The last condition ensures uniqueness of representation, that
is, there are no two different interpretations of a set of segments as sets of faces. Note that in a given
set of facesit is entirely possible for a hole of one face to contain some other faces (“islands’).

The grid points belonging to an R-face f are defined as P(f) := P(c) \ Lm) P, (h).
i=1

— 11 —

The possible relationships between an R-point p or an R-segment s and an R-face f = (c, H) are:

(i) p(area)insdef & parea-insdecA Y he H:—pvertex-insideh

(i) s(area-)insidef :& sarea-insddecAV he H:—sedgeinsideh

The various notions of inside and digoint can be extended for the comparison of two R-faces
f=(fo, F) and g = (go, G), for example:

f (arear)insideg & fyarea-insidegoA V g e G : g area-digointfyv3fe F:garea-insidef
This definition isillustrated in Figure 11.

Figure 11: Example of the relationship f area-inside g

farea-digointg & fyarea-disointgyv3ge G :fyarea-insdegv3Ife F:gparea-insidef
f edge-digointg < fyedge-disointgyv3ge G :fyedge-insideg v f e F :gpedge-inside f

The meaning of the remaining predicates edge-inside, vertex-inside, vertex-digoint, adjacent, meet
should be clear; definitions are omitted for brevity. We add a primitive encloses:

f encloses g = dfe F:gparea-insidef

An R-unit as aminimal R-face is defined as follows. Let F(R) denote the set of all possible R-faces.
Let f be an R-face.

fisanR-unit = Vge F(R):garea-insdef = g=f

We denote by U(R) the set of al R-units. Figure 12 shows an example of arealm with all its R-units
u; and an emphasized R-face which is not an R-unit.

In [GUS93] the equivalence of two representations of aregion over aream is formally established,
namely, as a set of (pairwise) edge-digoint R-faces, and as a set of area-digoint R-units. Operations
called faces and units are defined to convert between the two formal representations. Hence the
equivalence can be expressed as. V F ¢ F(R): faces(units(F)) = F. The operation units is defined as
units(F) :={ue U(R) |3 fe F: uarea-insidef}. The operation faces basically works asfollows. From
agiven set of area-digoint R-units, its multiset of boundary segmentsisformed. Then, all segments
occurring twice are removed. The remaining set of segments defines uniquely a set of edge-digjoint
R-faces. - As aresult, we can now freely convert between the two formal representations and use in
the definition of operations aways the more convenient one.

Figure 12: Example of an R-face which is not an R-unit

Let T be aset of R-segments, that is, T < S Then cycles(T) denotes the set of all cycles (in the graph
interpretation of realm R) that can be formed from segmentsin T. Furthermore, we say that aset T of
R-segments describes a set of pairwise edge-disoint R-faces :< there exists a set of edge-digoint R-
faces F suchthat T = S(F). If T describes a set of edge-digoint R-faces, then afunction regions(T) is
defined to return this set of faces.

For the definition of an SDT for lines the notion of an R-block isintroduced. A set T of R-segmentsis
caled connected (= Vr,te T3s),..,Sye T:r=s,t=s,andVie {1,.., m-1} : 5 and 544
meet. An R-block b is a connected subgraph in the graph interpretation of arealm, defined by its set
of R-segments §(b). Two R-blocks b, and b, aredigoint ;< V s, € Sby) Vs,e §b,) : s, and s, are
digoint. For an R-point p we consider the angularly sorted cyclic list L, of R-segmentsse Sb,) U
S(by) that meet in p. pis called ameeting point if L, is the concatenation of two sublistsLy, 1 and L,
so that all R-segments of L, ; are elements of by) and all R-segments of L, > are elements of by),

or vice versa (see Figure 13).
Let by and b, be two R-blocks.

b, and b, meet ‘= dse Yby) Ite Yb,): sandt meet in ameeting point A
Vse b)) Vte Sby) :s#ta
(sandt meet in p = p isameeting point)

b, and by intersect (< Vse §by) Vte Jby):s#tadse Jby) Ite Yb,): sandt meet
inp A pisnot ameeting point

Again, we have two equivalent representations of alines value, namely, as a set of segments, or asa
set of digoint R-blocks. For a set of segments T < S, blocks(T) denotes its partition into maximal
connected components. Then S(blocks(T)) = T.

Some primitives relate an R-block b and an R-facef.

b (area-)insidef <& Vse §b):sarea-insidef
b and f meet & Vse §b):—-sarea-insdef A3 se Sb)dte Jf): sandt meet

Figure 13: pisameeting point, p’ is not a meeting point.

b and f intersect & dse Yb):sarea-insdef

Embedding N-points in the Euclidean plane, we can define the distance dist(p, q) between two
N-points, the length length(s) of an N-segment, and the area area(c) inside an R-cycle in the well-
known way. The areainside an R-face f = (c, H) is defined as area(f) := area(c) — 2 area(h).

he H

4 Realm-Based Spatial Data Types

The realm-based structures reviewed in the previous section form the basis for a definition of spatial
datatypes. The basic typesintroduced are called points, lines, and regions* and will be part of aspatial
algebra defined in Section 7. Thereisa“flat” and a “ structured” view of values of these types. The
“flat” view isthe following:

For a given realm R, a value of type pointsis a set of R-points, a value of type linesis a set of
R-segments, and a value of type regionsis a set of R-units.

The “structured” view, that we shall assume as the formal definition, is as follows:

For a given realm R, a value of type pointsis a set of R-points, a value of type linesis a set of
pairwise digoint R-blocks, and a regions value is a set of pairwise edge-digoint R-faces.

We have shown in [GUS93] that the two views are equivalent. The first view is conceptually very
simple and supportsadirect understanding of set operations. The second view is*“semantically richer”
and shows lines and regions values as consisting of a number of components (blocks or faces).
Moreover, it allows one to express relationships between these components and also emphasi zes the
representation of the boundary in case of regions. Note that aregions value may have holes. Holesare
important because (i) they alow for an adequate modelling of area features, and (ii) they make it
possible to obtain closure under point set operations. Figure 14 illustrates the data types.

It should be obvious that these data types have very nice closure properties. They are closed under the
geometric operations union, intersection, and difference with regard to the same realm. That is, the
result of such an operation is a realm-based value as well and corresponds to the definitions of the
spatial data types given above. The geometric operations can be reduced to the corresponding set-
theoretic ones and are defined asfollows. Let P4, P, betwo points values, L4, L, two lines values, and
Ry, Ry two regions values. Then

4 Unfortunately, thereis acollision between the typographical conventions for realm-based primitives and for data types
(both underscoreitalic). It cannot be avoided in order to remain consistent with [GUS93] and [GU93] (the latter will be
used below as aframework for defining signatures).

apoints value alinesvaue aregionsvalue

Figure 14: Examples of spatial values
union (Pl, Pz) = Pl U P2

union (L4, Ly) := blocks(S(L;) U SL,))
union (Ry, Ry) := faces(units(R;) L units(R,))

For intersection and difference the definitions are analogous. Due to the underlying realms, these
operations both in theory and in practice obey the usual algebraic laws (commutativity, associativity,
distributivity, ...).

The realm-based primitives reviewed in the previous section offer aformal basis for the definition of
gpatial algebra primitives of which union, intersection, and difference have just been introduced.
The following further primitives are needed. Let F and G be two regions values.

Fand G arearea-disoint & Vfe FVge G:fandgarearea-digoint

F and G are adjacent < Fand Garearea-disointAdfe Fige G:fandgare
adjacent
The meaning of the remaining predicates (area-)inside, edge-inside, vertex-inside, edge-digoint,
(vertex-)digoint, meet should be clear; definitions are omitted for brevity. We define two further
predicates intersect and encloses:

F and G intersect < (units(F) N units(G) # Q)

F encloses G = Vge Gdfe F:fenclosesg
Let P and Q be two points values.

P and Q are disjoint = PNnQ=Y

Let K and L be two lines values.

Kand L aredigoint & Vke KVIlelL:kandl aredigoint
K and L meet & (Vke KVIe L:kandl aredigoint v kand | meet) A

(Gke K3le L:kand| mest)

K and L intersect & (Vke KVIle L:kandl aredigoint v kand | intersect) A
(ke K3l e L: kandl intersect)

Let P beapointsvalue, L alinesvalue, F aregions value, and v, w lines or regions values.

P (area-)inside F & Vpe P3dfe F:parea-insidef

- 15 -

Ve L3fe F: Il area-insidef

VieLVfe F:—lareainsidef A
dle L3dfe F:landf meet

dle L3fe F:landfintersect
VpeP3s=(qq)e SV):pP=q1vP=0p
vborder_in_commonw & dse §v)dte Sw):s=t

L (area-)inside F
L and F meet

i

.

L and F intersect

.

P on_border_of v

i

5 TheType System

The ROSE algebrathat we are going to defineisasystem of spatial datatypestogether with operations
between these types. Many of the operations are applicable to several types. Hence we need a
framework and notations to describe polymorphic operations. We would also like to express certain
constraints for the applicability of some operations. For example, an adjacency test operation for
regions should only be alowed if the two operands are known to come from a set of digjoint regions
(that is, apartition of the plane). Similarly, an overlay operation should be constrained to two partition
operands and not be applicableto arbitrary collections of objects with region attributes. In this section
we briefly review a type system powerful enough to express polymorphic operations and the
mentioned constraints in a precise manner.

51 Second-Order Signature

A system of several sets and functions between these sets is called a many-sorted algebra. A many-
sorted signature describes the syntactic aspect of a many-sorted algebra. It consists of two sets of
symbols called sorts and operators; operators are annotated with strings of sorts. Each sort isthe name
of a set of the algebra and each operator the name of a function. For example, the symbols lines,
regions, and bool may be sorts and inter sect§jines regions bool @ OPerator. The annotation with sorts
defines the functionality of the operator. A signature defines a set of terms.

Second-order signature, introduced in [GU93], is a system of two coupled many-sorted signatures
where the top-level signature offers kinds (sets of types) as sorts and type constructors as operators.
The terms of this signature define a collection of types, that is, a type system. A simple example is
shown below. Each line describes a group of operators (type constructorsin this case) with the same
functionality.

kinds DATA, GEO, SET

type constructors
— DATA int, real, bool
— GEO points, lines, regions
GEO — SET set

Here int, set, etc. are type constructors which generally have one or more argument kinds and one
result kind. A type constructor with zero argument kinds is called a constant type. In the example all
constructors except for set are constant types. The terms of this signature, and therefore the available

- 16 -

types of thistype system, can be classified by result kinds. For example, there are exactly three types
of kind GEO. The types of kind SET are set(points), set(lines), and sef(regions). In this example the
set of typesisfinite, but thisis generally not the case.

A second, bottom-level, signature uses the types defined by the top-level signature as sorts. Usually
one does not write the bottom-level signature directly but rather a signature specification which
allows one to quantify over kinds and so to define polymorphic operations. For example, we can
define:

Y datain DATA. data x data —boo =<5 >
V geoin GEO. geoxregions —bool inside

Here data and geo are type variables ranging over the kinds DATA and GEO, respectively. The
semantics of such a signature specification is a many-sorted signature which is obtained by
substituting for each type variable all types in the respective kind. Hence the first specification says
that the comparison operators are defined for two integers, two reals, or two boolean values. The
second specification defines an inside operator with functionalities points x regions — bool, lines x
regions — bool, and regions x regions — boal.

Thiscompletes already the description of the basic scheme of second-order signature. Of course, there
are also other ways of specifying polymorphic operations; for adiscussion and references see [GU93].

The basic scheme has been extended in [GU93] to support the definition of flexible database query
languages. Some of these techniques are needed in this paper:

Extensions of the concept of signature. The purpose isto include for agiven collection of types (sorts,
to be precise) “automatically” product types, union types, list types, and function types. If s, s, ..., S,
and t are sorts then

(S1 X ... X'sy) isasort (the product sort, denoting tuples of instances of the s))

(51 U ...uUs, isasort (the union sort, denoting instances in any of the s))

s" isasort (the sort denoting non-empty lists of instances of s)

(S1 X ... x5y > t) isasort (denoting functionsfrom s; X ... X S, into t).

With these extensions one can, for example, define the following operations:

Y geoin GEO.
(set(ge0))” — set(geo) union
set(geo) x (geo — booal) —> set(geo) select

Here the union operator takes one or more operands that are all sets of geometric values of the same
type and returns a set (the union) of this type. The select operator takes an operand of type set(geo)
and a predicate on type geo and returns a subset of the operand set fulfilling the predicate.

Soecification techniques. Two additional specification techniques are illustrated by the following
example:
V geo, inGEO. (set(geo))* — data: DATA weight

The notation geo; is related to operators with a variable number of operands and means that for each
substitution of the variable geo; an instance of the kind GEO is selected independently. Hence one

— 17 —

possible operand combination for weight would be set(points) x set(lines) x set(lines). With the
quantification “V geo in GEO” all operands would have to be of the same type (e.g. set(points)).

The notation “data: DATA” isto beread as “some type datain DATA” and means that thereis atype
mapping associ ated with the weight operator. Intuitively theideaisthat the operator determinesitself
the result type within the kind DATA, depending on the given operand types. Thisis sometimes useful
when it is not possible or desirable to describe the result type precisely in the signature. To define the
semantics of such an operator one needsto supply atype mapping function (asapart of asecond-order
algebra, see [GU93] for details). In this example, the weight operator might return a value of type int
if all operands are sets of points (and return the total number of points), and a value of type real
otherwise (say, the total area or length). Some examples of meaningful operators with type mappings
occur in the ROSE algebra defined below.

Dynamic kinds. (This extension has not yet been covered in [GU93]). Sometimes it is necessary to
modify dynamically the set of instances of a kind, that is, to create new types. For a kind K, the
notation new(K) creates a new (anonymous) type in K; the value of new(K) is atype that can be used
in type expressions.

52 TheTypeof aPartition

The term partition is used to refer to a digoint subdivision of the plane into regions with associated
(non-spatial) attributes. For partitions, one would like to define specia operations like testing for
adjacency (of two regions of a partition) or overlay (of two partitions, resulting in a new partition).
The question is how partitions can be described in a type system so that the operations can be
constrained to partition operands.

We fedl that a partition should be modeled as a set of objects with associated regions attribute values
and an additional constraint that for any pair of objectsin one particular partition, their regions values
aredigoint. To say thisin amore general way, we would like to model and manipulate sets of values
such that for any two distinct values in such a set a certain condition holds. To consider an example
different from partitions, let us assume we would like to model sets of integers with the property that
there are no two consecutive integers in the set.

The idea to make this possible in the type system is to introduce restriction types and to collect them
within a special kind. Let d be a data type and p be a binary predicate on d. Then d P denotes akind;
each type d’ in dP describes a set of values of type d such that for any two distinct elements of d’ the
predicate p holds. Furthermore, any such type d' is defined to be a subtype of d which meansthat all
operations defined for type d are also applicable to instances of type d'.

For the “non-consecutive integer” example, we could introduce a predicate “two-apart” on integers,
being true if the difference of the two operandsis at least two. Then int™°-#3* denotes a kind whose
element types have carrier sets® with the desired property. Hence the set { 3, 5, 10} would have atype
within this kind whereas for the set { 1, 2, 3} there would not exist atype within kind int™"Vo-#®at The
types themselves are anonymous (i.e. no explicit names for them need to be introduced).

5 For atype, its set of instances s called the carrier.

- 18 -

We use this as follows: The kind regions 2€diS0nt contains all types whose carriers are sets of
regions values such that any two distinct values of thetype are area-disjoint. A quantification Y area
in regions &€-diS0INt Kings the area type variable to any such type. Hence an adjacency test can be
defined as:

V areain regions @€ A0t 5re3 % area — bool adjacent

Here the quantification selects first one particular partition of the plane as a type area. Hence it is
guaranteed that any two argumentsfor the operator adjacent are from the same partition and are either
area-digoint or equal. Note that when a new partition is created in query processing, we can obtain a
corresponding new anonymous type for it with the notation new(regions & €-disointy,

On the side of the database system this should be supported by making it possible to define restriction
types and to use them as attribute domains. For example, assume an operation area disjoint
applicable to values of type regions has been made known to the DBMS. One might write:

type mycountries = restrict (regions, area_disjoint);

class states (name: string; region: mycountries; pop: integer)

Aninsertion of anew object into classstates should then at | east conceptually be viewed as preceded
by an insertion of anew regions valueinto the extension of typemycountries. It should be checked
that the new valueisarea_disjoint with all values already present.

6 TheObject Model Interface

Spatial datatypes as such are rather useless; they need to be integrated into a DBM S data model and
guery language. On the other hand, the definition of SDTs should be valid regardless of any particular
data model and therefore not depend on it. Consequently, SDTs should not be firmly embedded into
aparticular DBMS data model. Instead, the SDT definition should be based on an abstract interface
to the DBMS data model which we call the object model interface (OMI). Different DBMS data
models can then use the spatial algebra as a provided resource for dealing with geometry. In this
section we define an object model interface for the ROSE algebra. In fact, there are two aspects of the
interface: (1) There are basic concepts and operations in the object model that are needed to define the
ROSE agebra, and (2) there are constructs and notations needed to embed the ROSE algebrainto the
guery language, that is, to use the ROSE algebra.

6.1 Object Model Interface Conceptsfor Defining the ROSE Algebra

The concepts that are needed to define the ROSE algebra are the following:

* Object types/classes

» collections of objects

» functions for accessing (attribute) values from objects
* datatypesint, real, bool

» apool of names (for new objects/functions)

» an object aggregation function

* an object extension function

- 19 -

Object types/classes. We assume that each DBM S data model has some notion of one or more object
types or classes. For example, in arelational system, this would be relations; in an object-oriented
system we may have object class hierarchies, and objects may have a complex structure. In terms of
our type system we model this by akind OBJ; each DBMS object classis represented asatype obj in
OBJ.

Collections of objects. The structures manipulated in (and obtained as aresult of) queries may be sets
of tuples, nested relations, sequences of object identifiers, graphs, etc. The most simple, universally
valid and data model-independent abstraction isthat of aset of objects. If aset of objectsisnot directly
available, the DBM S datamodel must provide functionsto transform its structures containing objects
into a set of objects, and vice versa. In the type system we have a type constructor set applicable to
object types.

Functionsfor accessing attribute values. The OM|I views an object as an abstract entity whoseinternal
structure is hidden. It is assumed that objects may have associated values of standard or spatial data
types and that these values can be accessed by means of attribute functions of type obj — data, for
any type obj in OBJ and data type data.

Data typesint, real, bool. We assume that standard data types for integers, real numbers, and boolean
values exist. Some ROSE operations yield results of these types.

A pool of names. Some operations require (new) names as parameters, in particular for introducing
derived attributes (attribute functions). We introduce this pool of names as a type ident in a kind
IDENT.

Object aggregation function. Some spatial operations construct new objects as “ aggregation objects’.
For that purpose the DBM S data model hasto providea*“®” (product) function which for two objects
04 of type obj; and o, of type obj, forms an aggregation object 0, ® 0,. The same symbol is used to
denote a corresponding type mapping operation; hence there is aso a product type obj; ® obj, and
object 0; ® 0, isof type obj; ® obj,. On the product type all attribute functions defined on either obj,
or obj, are valid; this should be expressed by the type mapping (defined within the object model). In
arelational setting, this corresponds to concatenating two tuples when forming ajoin; the result tuple
has the attributes of both operand tuples.

Object extension function. Sometimes it is necessary to add an attribute to objects of a given object
type. For that purpose the DBM S data model must offer an extension function denoted by “®”. At the
instance level, this operation adds a data type value to an object, hence o @ v is an object o extended
by a value v. At the type level, the given object type obj is extended by a attribute function attr
mapping objects into values of some data type data. Hence obj @ (attr, data) denotes such an
extension type of which o @ visan instance if o has type obj and v has type data.

6.2 Conceptsfor Embedding the ROSE Algebrainto a DBMS Query Language

This part of the object model interface contains requirements about certain notations and constructs
needed in the DBMS query language to allow an embedding and a full use of the ROSE algebra
Facilities are needed to

* denote a (spatial) datatype value

» denote acollection of objects together with an attribute (attribute function)
» extend objects by derived (attribute) values

» alow naming of an SDT value or a new attribute

 offer agrouping operation.

To motivate why these facilities are needed we give a brief preview of some operations of the ROSE
algebra:

V obj in OBJ. V geo, geo,, geo, in GEO.

geo X regions — bool inside
lines x lines — points inter section
set(obyj) x (obj — geoq) x geo, — set(obyj) closest
set(obj) x (obj — geo) x ident — set(o: OBJ) decompose

The meaning of the first two operations should be obvious. The closest operator takes a collection of
objects together with a spatial attribute function and a further SDT value v and returns those objects
whose attribute value is closest to v (usually one object). The decompose operator also takes a
collection of objects with a spatial attribute. It produces a new collection of objects as follows:. For
each object in the operand set its attribute value is decomposed into its components (a component is
apoint, ablock, or aface). If there are n components, then n copies of the original object are produced
each of which has one component as the value of a new attribute. The name of the new attribute is
supplied as the third parameter of type ident.

We now discuss each of the mentioned facilities in turn and illustrate them in the context of the
relational model by (a) showing corresponding notations from geo-relational algebra [Gi88] and (b)
by extensions that might be used for SQL. In examples, relations

cities (cname: string; center: points; pop: int)

states (sname: string; territory: regions; language: string)
are used.

Denote a data type value. Thisis needed to supply operandsto operationslike inside or inter section.
There are two cases: (i) within the scope of an “object set iteration”, and (ii) without object set
iteration. In the first case, each object in a set is considered in turn and it suffices to write down the
name of an attribute to denote a single data type value.

Q1. Caculate the population (in thousands) of al citiesin Germany.

(@) cities select[center inside Germany] extend[pop/1000 { thousands} |
(b) select cname, thousands. pop/1000

from cities

wher e center inside Germany

Here within the scope of a select or extend operator of geo-relational algebra or within the where-
clause or select-clause of SQL we have an “object set iteration” and an attribute name denotes a data
type value.

In the second case (without object set iteration), one would like to refer to asingle datatype value, in
particular, to the attribute value of some specific object. A notation is needed to identify asingle object

- 21 -

and to access one of its attributes. In the geo-relational algebrathisisdone by an extract operator. An
error message should appear if none or more than one object isidentified by the condition.

Q2: Provide the geometry of the city Hagen (assuming there is only one “Hagen” in the cities
relation).
(a) cities extract[cname =“Hagen”; center] { Hagen}
(b) let Hagen
extract center
from cities
wher e cname = “Hagen”

Here we have extracted a single points value from the cities relation. We have aso assigned a name
(Hagen) to this value so that it can be used in later queries.

Denote a collection of objectstogether with an attribute. Thisis needed for operations like closest or
decompose. Recall the signature for closest:

set(obj) x (obj — geoq) X geo, — set(oby) closest
We need a notation to supply the two related operands “set(obj)” and “(obj — geo;)”.

Q3: Determine the city or cities closest to Hagen.

(a) cities select[cname# “Hagen”’] Hagen closest[center]
(b) closest Hagen

column center

from cities

wher e cname # “Hagen”

In this example, “cities’ corresponds to the “set(obj)” and “center” to the “(obj — geo;)” operand. In
geo-relational algebrafirst the set of objectsiswritten and then the points value (the “ geo,” operand);
the attribute is given separately in brackets. For an extended SQL we suggest to introduce a“column
o from " construct to denote a set of objects 3 with an attribute o.. This construct should be viewed
asreturning the two operands separately asthey are needed by the ROSE algebra. In contrast, writing
“select o from B” would yield a set (or multiset) of attribute values, that is, an operand of type
set(geo,). Thisisnot what the operator needs; in fact, aset of valuesisnot even availablein the ROSE
type system given below.

Extend objects by derived (attribute) values. This is needed to make the results of spatial operations
available. In geo-relational algebrathisis provided by the extend operator, in SQL by expressionsin
the select-clause, asin query Q1.

Allow naming of an SDT value or a new attribute. We have already seen two instances of this. In query
Q2 a name (Hagen) was assigned to an SDT value. An attribute name must also be provided for
derived attributes, asin query Q1. Finally, new attribute names are needed by operationsthat construct
new objects such as decompose.

- 22 -

Q4. Decompose al statesinto their basic areas.
(@) states decompose|territory {basic_area} |
(b) decomposeinto column basic_area

column territory
from states

Here (@) shows the style for naming the new attribute that would be used in geo-relationa algebra
(although there was no decompose operator). For the extended SQL we have invented an “into
column o construct for the same purpose.

Offer a grouping operation. Thisis needed to support a“fusion” operation (which essentially groups
acollection of objects and forms the union of the areas in each group).

Q5: Determine al regions of the states speaking the same language.
(a) states fusion[language; territory]
(b) fusion territory
from states
group by language
These applications of the fusion operator are really abbreviations of the use of grouping:

(a) states group_by[language; group sum[territory]]
(b) select sum(territory)
from states

group by language

In geo-relational algebraand in SQL such agrouping operation is available; it is used together with a
sum aggregate function of the ROSE algebra. There may be severa attributes for grouping and
several aggregate expressions.

7 TheROSE Algebra

We are now ready to define the ROSE algebra itself (ROSE stands for RObust Spatial Extension). It
isarealm-based algebra, since data types are defined on realms and since operations operate on and
produce realm-based spatial values. All values occurring as operands are assumed to be defined over
the same realm.

Defining the ROSE algebra means that we will give a second-order signature with the types points,
lines, and regions as well as types of the object model interface. The agebra then consists of carrier
sets for the types and functions for the operations. The carrier sets for the three spatia types have
already been defined in Section 4. In this section we formally define the functions for all operations.

The type system of the ROSE algebra, as discussed in Sections 5 and 6, is summarized in the
following specification:

- 23 _

kinds IDENT, DATA, EXT, GEO, OBJ, SET

type constructors
— IDENT ident
— DATA int, real, boal, ...
— EXT lines, regions
— GEO points, lines, regions
OBJ — SET set

Kind DATA describes the (standard) datatypes of the object model interface; there will be other types
in addition to the three that are required. Thereisakind EXT just containing types lines and regions
which supports the definition of operations not suitable for points.

The operations of the ROSE algebra are divided into four groups. For each group we give an informal
introduction, show the signature, and then define the semantics of the operations.

7.1 Spatial Predicates

These operations compare two spatial values with respect to their topological relationships and return
aboolean value. The predicates’ names are self-explanatory.

V geoin GEO. V ext, ext;, ext, in EXT. V areain regions 2 e&-disoint

geo X geo — bool =, #, digoint
geo X regions — bool inside
regions x regions — bool area_digoint, edge digoint,

edge inside, vertex_inside

exty x ext, — bool inter sects, meets
area x area — bool adjacent, encloses
points x ext — bool on_border_of

exty x ext, — bool border_in_common

For each operator op of the ROSE algebra we define a function fg, which gives the operator’s
semantics and which has domains and codomain according to the operator’s signature entry. An
underlying reAlm R is assumed in all definitions. Of course, we rely on the primitives introduced in
Sections 3 and 4.

Let vy, v, be two values of the same typein GEO. Then
fo(vy, Vo) 1= (v = V)

f(V1, Vo) 1= (V1 # Vo)
faigioint(V1, V2) 1= (v4 and v, are digoint)

Let v beavaue of atypein GEO and F be avalue of type regions.
finside(V’ F) = (V inside F)

Let vq, v, be each either alines or aregions value.

fintersects(V1, Vo) = (v1 and v; intersect)
fmeets(V1, V2) 1= (v1 and v, meet)

Let F and G be two regions values of a subtype area in regions 2 €-disoint

fadjacent(F; G) := (F and G are adjacent)
fencloses(F: G) := (F encloses G)

The remaining definitions are omitted; they all just lift spatial algebra primitivesto the ROSE level.

7.2 OperatorsReturning Spatial Data Type Values

The second group of operations consists of operators returning atomic spatial values as results. The
operators intersection, plus, and minus realize the closure properties of the ROSE algebra with
respect to intersection, union, and difference of two atomic spatial values. The common_bor der
operator finds the common boundary line(s) of two regions or lines values. The vertices operator
returnsthe vertex (corner) points of alines or regions value and produces a points value. The contour
operator calculates alines value from aregions value's boundary. Theinterior operator isapplied to
alinesvalue and yieldsaregionsvaluewhichiscomposed of all regionsthat are enclosed by segments
of thelinesvalue. If Fisaregionsvalue, interior (contour (F)) can be used to remove all holes of F;
both operators are not inverse to each other.

V geoin GEO. V ext, ext;, ext, in EXT.

points x points — points inter section
lines x lines — points inter section
regions x regions — regions inter section
regions x lines — lines inter section
geo X geo — geo plus, minus
ext, x ext, — lines common_bor der
ext — points vertices
regions — lines contour

lines — regions interior

Note that the inter section operator applied to two lines values does not yield a lines value as the set-
theoretic intersection of the underlying segment sets (see operator common_border) but a points
value.

Let P and Q be two points values, K and L be two lines values, and F and G be two regions values.
fintersection(P, Q) = intersection(P, Q)
fintersection(K, L) :={pe R|dse §K)Ite YL): sandt meetinp A pisnot ameeting point}
fintersection(F» G) := intersection(F, G)
fintersection(F> L) := blocks({se SL) |3 fe F:sinsidef})

- 25 _

Let v4 and v, be both either two points values, two lines values, or two regions values.

folus(Va, Vo) i= union(vy, Vo)
fminus(Ve, Vo) := difference(vy, vo)

Let K and L be two lines values and F and G be two regions values.
feommon_border (K, L) := intersection(K, L)
feommon_border (F, L) := feommon_border (L, F) = blocks(S(F) n §L))
feommon_border (F, G) := blocks(S(F) N §(G))

Let v be alinesor regions vaue.

fvertices(V) :={p € R[Ise Jv) :s=(p, q)}
Let F={fq, ..., f,} ={(cq, Hy), ..., (¢, H)} bearegionsvalue.
n
feontour (F) 1= bl OCkS(_Ul S(c))
| =
Let L bealinesvalue.
finterior (L) := regions(W) S(c) -{se L) |3 ce cycles(5L)) : sedge-inside c})
ce cycles(S(L))
Forming theinterior of alinesvalue L is a somewhat more complex operation. First, the union of all
segments is computed that occur in any cyclesthat can be formed from the segments of L. From this
set of segments al segments are removed that lie properly within (edge-inside) some cycle. Hence

only segments of “ outer cycles’ remain. Since these segments describe a set of edge-disjoint R-faces,
the regions function can be applied to return a corresponding regions value.

7.3 Spatial Operators Returning Numbers

Thethird group of operations contains spatial operatorsreturning numbers. Theno_of _components
operator yieldsthe number of components (R-points, R-blocks, or R-faces) of aspatial value. Thedist

operator calculates the minimal distance between any two spatial values. The diameter of a spatial

valueisdefined asthe largest distance between any of its components. Thelength operator calculates
the length of all segments of alines value. The area operator computes the sum of the areas of all

faces of aregions value. The perimeter operator calculates the sum of the length of al cycles of a
regions value. If we intend to compute only the sum of the length of the outer cycles and not of the
holes of aregions value, we can use the contour operator to eliminate holesfirst.

V geo, geoy, geo, in GEO.

geo — int no_of _components
geo; X geo, — real dist

geo — real diameter

lines — real length

regions — real area, perimeter

- 26 -

Let vand w be values of typesin GEO. Let L be alines value and F be aregions value.
fro_of_components(V) := card(v)
foiameter (V) = max{dist(p, @) | P, G € fyertices(V)}
fiengtn(L) == . length(s)

se S(L)
fweaP) = 3 area)
feF
foerimeter (F) == Z length(s)
se S(F)

Note that the four operators diameter, length, area, and perimeter are not invariant against
redrawing, i.e., each of these four operations applied before and after a necessary redrawing of one or
more segments of a lines or regions value will yield dlightly different results. We want to define the
dist operator in away that isinvariant against redrawing, since it has besides a numerical aspect also
atopological one. Consider aset of spatial objectswith aspatial attribute and aspatial reference value
for which the nearest spatial object has to be computed. If the distance calculations between spatial
reference value and spatial attribute value vary depending on possible redrawings, the answer
regarding the nearest spatial object may vary, too, and lead to topological inconsistency. Note the
relationship to the closest operator discussed below. Therefore we define the distance function as
follows. GP will denote the set of grid points associated with a spatial value.

For apointsvalue v let GP(v) := v, for alinesvalue v let GP(v) := E(§V)) (the union of the envelope
points of all segments of v), and for aregions value v let GP(v) := E(S(v)) L Pj,(Vv). Then

0, if GP(V) N GP(w) # &

faig(v, W) :=
digt(Vs W) { min{dist(p, g) | p € GP(v), ge GP(w)} otherwise

Although the sets of grid points used in the definition may be very large, this operation can be
efficiently implemented, since it can be reduced to distance computations between a point p and a
segment s. There it is only necessary to consider those envelope points that are neighbours of the
intersection point of swith a perpendicular line going through p.

7.4 Spatial Operatorson Setsof Objects

Operators of the last group take sets of objects as operands; some of them create new sets of objects
asaresult. The sum operator aggregates over the values of some spatial attribute of an object set and
computes the geometric union of all these values. The closest operator yields that object of an object
set whose spatial value is nearest to a spatial reference value. The decompose operator was already
explained in Section 6.2; it multiplies each object of an object set according to the number of
components of its spatial attribute value and adds this component as a new attribute. The overlay
operator alows to superimpose one partition of the plane on another one and to combine them into
area-digoint regions. As described in Section 5.2, partitions are given as sets of objects with an
attribute of atypein regions @919t The resulting set of objects contains one object for each new
region obtained astheintersection of aregion of thefirst partition with aregion of the second partition.

overlay
—»

Figure 15: Overlaying two partitions of the plane

Note that it is not required that the plane is covered completely by the regions of a partition. Thus it
is possible that a region of the first partition does not intersect any region of the second partition. In
this case it will not be part of any new object® (Figure 15).

The fusion operator merges the values of a specified (set of) spatia attribute(s) on the basis of the
equality of the values of another (set of) non-spatial attribute(s). For each group of equal non-spatial
attribute values a (set of) new spatial value(s) is created as the geometric union of a set of spatial
values of the group’. In Figure 16, a partition of districts with their land use is given. The task is to
compute the regions with the same land use. Neighbour districts with the same land use are replaced
by asingleregion, that is, their common boundary lineis erased. Each of the hatched areas on the left
Is part of an object describing a district. On the right after the application of the fusion operator all
areas belonging to the same group g; form a single regions value and are hatched in the same way.

The signature for these operations is as follows:

W obj, objy, obj, in OBJ. V geo, geoy, geo, in GEO. V area,, area, in regions & e-disoint
V data in DATA. V' geo, in GEO.

set(obj) x (obj — geo) — geo sum
set(obj) x (obj — geoq) x geo, — set(obj) closest
set(obj) x (obj — geo) x ident — set(o: OBJ) decompose

set(obj;) x (obj; — area,) x set(obj,) x (obj, — areay) x ident
— set(o: OBJ) overlay
set(obj) x (obj — datay)” x (obj — geg)” — set(o: OBJ) fusion

Since the operations of this group deal with sets of objects, for their semantics definition the concepts
of the object model interface are needed.

6 This correspondsto the standard join operation. If regions of one partition not intersecting aregion of the other partition
were in the result, it would be similar to an outer join.

” Thefusion operator could be extended to alow grouping also by spatial attributes. For efficient implementation this
requires a capability of sorting by spatial data type values, which means the ROSE algebra would have to provide a
“less-than” operator for each of the three SDTsimposing alinear order.

fusion

wheat [] oats R barley [] rve

Figure 16: Merging a partition of districts concerning the same land use

For the definition of the sum operator let O = {04, ..., Oy}, for n > 0, be the operand set of objects and
attr the attribute function yielding an SDT value for each object.

{ union(...(union(attr(oy), attr(o,)), -..), attr(o,)) if 0%
foum(O, attr) =

otherwise

For the definition of the closest operator let O be the set of objects, attr the attribute function, and rv
the reference value for which the nearest spatial value has to be calculated. Then

foosest(O, attr, rv) :={oe O|V 0" € O: fyig(rv, attr(0)) < fgi(rv, attr(0’))}

The decompose operator has an unspecified result type in OBJ; hence in addition to its semantics
function fgecompose it Needs atype mapping Tgecompose: 8 described in Section 5.1. When an operator
alpha with atype mapping is used in aquery and applied to some operands (say alpha(a, b, c)), then
thiswill lead to a call of its semantics function f3pna(2, b, €) during query execution. Additionally it
will lead to acall of the type mapping function t, ,n, during query parsing; the type mapping function
is called not with the actual operands (i.e., a, b,) but instead with the actual types of these operands.
These types can vary because of the polymorphic specification of operators which is the reason why
type mappings are needed at all. The only exception to this rule are operands of type ident; for them
not the type ident but the actual identifier is passed to the type mapping function. Thisis because the
main purpose of such operands isthe use in type mappings.

fdecompose(O; attr, name) :={o @ v|oe O, v e attr(0)}
Tdecompose(SEt(0b)), (obj — geo), name) := obj @ (name, geo)

Hence each object is extended by one of the components of its spatia attribute; the new object type
is an extension of the operand object type by a new attribute name of type geo. For example, the call
in query Q4 (Section 6.2) “decompose(states, territory, basic_area)” would lead to the following calls

of semantics function and type mapping:

fdecompose(States, territory, basic_area)
Tdecompose(SEL(State), (state — regions), basic_area)

The overlay operator also needs a type mapping:
foverlay(O1, attrq, Oy, attr,, name)
={(01®0y)®Vv|T 01 OjF 0, O5:
fintersects(@ttr1(04), attr,(05)) = true A V = fijter section(@ttr1(04), attr,(0,))}
Toverlay(Set(0bj1), (0bj; — areay), set(obj,), (obj; — areay), name)
:= (obj; ® obj,) ® (name, new(regions ¥ e-disointyy

Here the resulting object type is the product of the two operand types extended by a new attribute
name of anew type in the kind regions & €-disoint

The fusion operator is not formally defined since it is only an abbreviation of a corresponding
grouping operation, as described in Section 6. The semantics definition would rely on aformalization
of the semantics of the grouping operation.

8 Integration with a DBM S Query Language: O,SQL/ROSE

The purpose of this section is two-fold: (i) We show the integration of the ROSE algebra with one
particular data model and query language, which further illustrates the concepts and requirements of
the object model interface. (ii) We demonstrate the “expressive power” of the ROSE algebra (within
the context of a query language) by showing some example queries.

For the integration example we select O, as one of the state-of-the-art object-oriented database
systems with O,SQL as its current and future standard query language [Ba39, BaCD89, BaDK 92,
0,93]. O,SQL isafunctional language that deals with and allows to construct atomic values, tuples,
sets and lists, provides operations on these structures, and alows one to define methods on classes.
Flat as well as nested structures can be constructed, and all levels of a structure can be accessed.
Elements of setsand lists and components of tuples may be of any type or class. The syntax of O,SQL
has an SQL-like style through a select-from-where construct corresponding to the three algebraic
operations projection, cartesian product, and selection, extended by object-oriented features.

In the sequel we demonstrate the integration of our ROSE algebrawith O,SQL by presenting example
gueries. The notations regarding class definitions and queries comply with the notationsin [BaDK 92,
0,93]. A few notational extensions are necessary. Examples are based on the following simple
database which models spatial aspects of Germany. The keyword public means that components of a
tuple structure are “visible” and can be accessed.

class State
public type tuple (name: string, territory : regions)
end,;

class City
public type tuple (name: string,
Zipcode : integer,
statistical_data : tuple (foundation_date : integer,
population : integer,
unemployment_rate : real),
municipal_area: regions)

end;
class Highway

public type tuple (number : string, way : lines)
end,
class River

public typetuple (name: string, route : lines)
end;
class District

public type tuple (name: string, region : regions, land_use: string)
end;

A classisadescription of agroup of objects but not a persistent repository for them in adatabase. In
O, only objects associated with names are persistent. We therefore introduce for each class a named
collection of objects:

name Cities : set(City); name States : set(State); name Highways : set(Highway);
name Rivers : set(River); name Districts : set(District);

Spatial attributes are defined in the same way as attributes of standard data types, using the SDTs of
the ROSE agebra. Note however, that we have compromised on the typing of regions attributes. In
the example database, each of these attributes should really have its own type areg; within the kind
regions?€diS0iNt iy order to be able to model partitions of the plane. Such a sophisticated typing is
not available in O,. We will therefore assume that for the O, integration the definition of the ROSE
agebrais dightly changed so that all operators defined on areg; types are defined on regions instead.
This does not change the definition of syntax or semantics of these operators because any value of
sometypearea; in regions? #4909t jsin fact aregionsvalue; it just meansthat type checking cannot
ensure any more that they are applied to partitions.

The syntax of the spatial operations of the ROSE algebrain aquery language is not prescribed by the
signature of the operations but is part of the process of embedding the operations into the desired
query language, i.e., dependent on the extended query language. Here, we select infix syntax for
gpatial predicates and the two operations plus and minus and a functional syntax for all other
operations.

Q1. List the names and the land use of districts which are neighbors with the same land use.

select tuple (dnamel: d1.name, dname2: d2.name, land_use: d1.land_use)
from dlin Disgtricts,

d2in Districts
where dl.region adjacent d2.region and dl.land use = d2.land _use

- 31 -

All spatial predicates of the ROSE algebra (first group of spatial operations) can be used as selection
criteriain the where clause, just like conventional predicates. The result of thisquery isaset of tuples
each formed by the tuple constructor tuple. Components of tuples are accessed by the field extraction
operator denoted by a dot. Hence here we have the facility of the OMI: Denote a data type value
(within an object set iteration).

Q2: Which states are enclosed by which other states?

select tuple (statel: sl, state?: s2)
from slin States,

s2 in States
where sl.territory encloses s2.territory

The result of the query is a set of tuples, each tuple being a pair of State objects.

Q3: Determine which highways cross which rivers and list their names, their geometries and their
Crossings.

select tuple (name: r.name, route: r.route, number: h.number, way: h.way,
crossing: inter section (r.route, h.way))
from rinRivers,
hin Highways

where r.routeinter sects h.way
Each tuple of the query result contains an attribute ‘ crossing’ whose value isthe intersection of ariver
and a highway value. (OMI: Extend objects by derived attribute values, allow naming of a new
attribute.)

Q4: Associate with each state those cities lying inside that state.
select tuple (state: s, cities in_state: select ¢
from cin Cities
where c.municipal_areainside s.territory)
from sin States

The result is a set of tuples, each tuple being a pair of a Sate object and a set of City objects whose
geometry lies inside the geometry of the State object.
Q5: Whichriversform partialy the boundary line of which states? In which parts do they agree?

select tuple (rname: r.name, sname: s.name, border: common_border (s.territory, r.route))
from sin States,

rin Rivers
where sterritory border_in_common r.route

Q6: Compute the length of the river and highway network.

length (sum (select attribute way from hin Highways)
plus sum (select attribute route from r in Rivers))

Here we have introduced a first extension to O,SQL to fulfill the requirement of the OMI: Denote a
collection of objects together with an attribute. The notation is “select attribute attr from sin S’

- 32 -

where attr is the name of the attribute and Sthe set of objects.2 Thisis analogous to the “column o
from 3” construct discussed in Section 6.2.

It isinteresting to observethat in thisquery first asingle linesvalueisformed to which then the length
function is applied. Using the sum aggregate function of O, applicable to sets of reals, one might
formul ate the query as follows:

sum (select length(h.way) from h in Highways) +
sum (select length(r.route) from r in Rivers)

Actually the result will only be the same if no two highways use the same piece of the highway
network. But amore important issue to be discussed hereisthe view of aggregate functions. The sum
aggregate function of O, used in this last example is applied to a set of values. In contrast, the only
aggregate function of the ROSE algebra (sum) is applied to a set of objects with a spatial attribute.
Therational e behind thisisto keep the type system of the object model interface assimple as possible.
For example, inthe relational model sets of values are not available. The ROSE agebraonly assumes
that collections of objects and atomic values exist.

Q7. Cadculate the perimeter of Bavaria (class Sate is assumed to describe states within Germany).

perimeter (element (select s.territory from sin States where s.name = “Bavaria’))

The O,SQL element operator extracts the unique element of asingleton set. Thisis exactly thefacility
“denote a data type value (without object set iteration)” of the OMI. The expression “element ...”
denotes the territory of Bavaria.

Q8. Calculate the region outside Bavaria where wheat is cultivated.

sum (select attributeregion
from din Districts
where d.land_use = “wheat”)
minus
element (select s.territory
from sin States
where s.name = “Bavarid’)

This query yields an atomic spatial value.

Q9: Determineal citiesthat are located in areas which are completely enclosed by highways.

select ¢
from cin Cities
where c.municipal_areainsideinterior (sum (select attribute way from hin Highways))

This query yields a set of City objects fulfilling the where condition.

Q10: Check if the highways form a connected network.

no_of _components (sum (select attribute way from hin Highways)) = 1

8 For the SQL embedding in Section 6.2 we have used a keyword “column”. This seemed to fit with SQL which also
speaks of “tables’ rather than relations. For O, which uses terms like “tuple”, akeyword “ attribute” appears adequate.
Of course, thisisjust a matter of taste.

- 33 -

Q11: List the name(s) of the highway(s) being closest to Munich.

define Munich as
element (select c.municipal_areafrom cin Cities where c.name = “Munich”);

select h.number
from hin closest (select attribute way from h in Highways, Munich)

In the first step a named query of O, defines Munich as aregions value. This is the facility “allow
naming of an SDT value” of the OMI. The closest operator takes as operands a class or any other
homogeneous set of objects together with a spatial attribute defined on that object type, and a spatial
reference value (in this case Munich). It returns a set of objects which can be used in a query at all
those positions where a set expression is allowed.

Q12: Determine the component regions of the state Schleswig-Holstein (which consists of a main
land area as well as several islandsin the North Sea).

select s.component
from sin
decompose into component
select attributeterritory
from sin States
where s.name = “ Schleswig-Holstein”

The decompose operator has three arguments: a class or any other homogeneous set of objects, an
SDT attribute to be decomposed, and a name for the new attribute resulting from decomposition. The
query yields a set of regions values. Here we have introduced a second extension to O,SQL to offer
thefacility “allow naming of a new attribute”’ of the OMI, using aphrase“into attr”, asin Section 6.2.

Q13: Partition the state Bavaria with respect to the districts of land use.

overlay into districts within_Bavaria
(select attribute territory from sin States where s.name = “Bavaria’,
select attribute region from din Districts)

The result is a set of objects with a new attribute “districts within_Bavaria’. Each partition for the
overlay is given as a set of objects with aregions attribute.
Q14: Compute the regions of the same land use.

fusion (Districts; land_use; region)

The fusion operator requires three arguments which are syntactically separated by semicolons: a set
of objects, alist of non-spatia attributes used for grouping, and a list of spatial attributes used for
geometric union. In the query above the District objects are grouped according to equal land use and
for each group the geometric union of the regions values of the “region” attribute is formed.

O,SQL offers a grouping operator group so that the query can be formulated without an explicit
fusion operator:

- 34 -

group din Districtsby (land_use: d.land_use)
with (region: sum (select attribute p.region from p in partition))

Here the group operator is applied to a set of District objects. It groups District objects by values of
their “land_use” attribute and produces for each group one result tuple with two attributes. The first
attribute “land_use” receives the value of the “land_use” attribute of the group; the second attribute
“region” is determined in the with-clause by an expression which computes for each group the
geometric union of the “region” attribute values. One can refer to the current group by a keyword
partition.

9 Conclusions

In this paper and the companion paper [GUS93] we have defined the ROSE a gebra, asystem of realm-
based spatial datatypes. After the geo-relational algebra[Gii88a] which wasimplemented in the Gral
s.ystem9 [GU89, BeG92] thisis a second attempt to define a spatial algebra for database systems and
in some sense it represents what we have learned in the meantime. In closing, let us summarize the
highlights of the ROSE algebra. It may a so be interesting to compare to the geo-relational algebra(in
the sequel geo-algebrafor short).

General types and operations. The ROSE algebra has very general data types to represent points,
lines, and regions in the plane. For example, it is now possible to represent the whole area of a state
including islands or separate land areas in a single regions value, or a complete highway network in
a single lines value. On the one hand, this generality makes the spatial objects and operations
conceptually more difficult, requires a quite elaborate system of definitions, and also needs more
effort in the implementation. This is why in the geo-algebra a decision was made to deal only with
simple polygons and single-component objects. On the other hand, the generality is needed in
applications (with Gra this became obvious when the German state of Niedersachsen had to be
represented which encloses - as a hole - the state of Bremen). We feel that through the several layers
of definitions of the ROSE algebrawe have managed the complexity. Apart from the better capability
to model spatial objects, an important benefit is that the types are now closed under set operations of
the underlying point sets- for any type one can form union, difference (plus, minus) or aggregate over
its values (sum) which makes the rather complex fusion operation [ScV89, GaNT91] a simple by-
product of grouping. Also, al operations are now defined in the most general way (e.g. the closest
operationisavailable for al spatial types). In contrast, in the geo-algebrait was not possible to define
adifference operator on regions since it would have led to holes, and intersection had to be defined as
arelation operation because aresulting set of intersection values could not be represented asasingle
SDT value.

Rigorous definition. The carrier sets of the types and the semantics of all operations have been defined
completely, down to the level of simple arithmetic primitives on integers. As a result, there is no
ambiguity for a programmer about the precise meaning of operations or about allowed structures. We
feel thisisvery important because when dealing with complex spatial structuresinvariably questions
about special casescome up like“Isit allowed that the boundary of aholein aregion touchesthe outer

9 The second author took part in thisimplementation effort.

- 35 -

boundary?’ or “Qualify two adjacent regions as intersecting?’ The ROSE algebra definition gives
precise answers to all such questions to an implementor and, if not to end users, at least to people
writing manuals for end users.

Numerical robustness, finite resolution. The underlying realm provides the ROSE algebra with a
discrete basis and shields it from all problems of nhumerical robustness. Integer coordinates can be
used for the representation of SDT values; critical operations like testing whether points lie on the
border of regions become feasible. In contrast, in the geo-algebra operations like meets or
common_border were omitted, because - with real numbers representing coordinates of SDT values
- it was not clear how these operations could be implemented in a numerically robust way. The
discrete basis also greatly simplifies the implementation of geometric algorithms for the operations.
For example, to implement common_border one can keep for each lines or regions valueits defining
segmentsin (X, y)-lexicographic order and then smply scan the two listsin parallel. Many operations
can be implemented by plane-sweep agorithms [NiP82, BeO79] which are simplified here because
no intersection points need to be computed; all sweep stations are known beforehand and one does not
need a dynamic structure to maintain the ordered list of sweep stations.

Data model independence, clean object model interface. The ROSE algebra is not tied to any
particular datamodel but can cooperate with many models and query languages. This might have been
achieved in atrivial way by omitting all operations manipulating objects (like closest, overlay) and
not caring how the results of geometric operations can be used in the DBMS. Instead, we have defined
an object model interface and investigated quite carefully the issues arising with the integration of the
ROSE algebra into a query language. Section 8 has demonstrated that a nice integration with, for
example, an object-oriented model and query language can be achieved. To our knowledge, thisisthe
first time that the problem of interfacing a general purpose query language with a complex
application-specific sublanguage has been examined in some detail. Such interfaceswill be important
for cooperative database systems using external computation services [ScW91].

Open Problems and Future Work

Implementation of the ROSE algebra. Data structures for the three SDTs and procedures for al
operations except for dist and the set-manipulating operations of the last group (Section 7.4) have
been realized [Ri94] and are available as amodule library written in Modula-2. The implementation
of operations makes heavy use of the following three techniques: (i) scan or parallel scan of the
halfsegment sequence!® of one or two objects, (ii) plane-sweep, and (iii) graph algorithms [Ri94].
Algorithms and practical aspects of the implementation will be described in a forthcoming paper
[GURS95]. As a next step, we plan to encapsul ate this implementation within a “ data type extension
package’ and then to connect it to the Gral system as well as to another query processor called
SECONDO.

A component that allows to represent a realm and which offers realm operations (updates with
redrawing, described in [GUS93)]) isamost finished. The points and segments of arealm are stored in
an LSD-tree [HeESW89]. For the problems of interfacing realms and database systems see [GUS93].

10 For alines or regions value, its halfsegment sequence contains each segment of the object twice, once for the left and
once for the right end point, called the dominating point for this segment. The halfsegment sequence is ordered xy-
lexicographically by dominating points.

- 36 -

Some problems remain with the realm-based approach and need to be further investigated:

Invariance under redrawing. We are not satisfied with the fact that some of the numeric ROSE
operations (length, area, etc.) yield slightly different results before and after a redrawing due to an
update of the realm. Whereas we fedl that dight numerical errors are tolerable in contrast to
topological errors, this may also lead to “discrete errors’. For example, when a collection of objects
is sorted by area of its regions, the order may change through a realm update. Perhaps a definition of
these operations can be found that is sufficiently consistent with the geometry of the objects, but
invariant under redrawing.

Objects and operations violating realm closure. One is till interested in spatial objects that are not
part of the given realm. For example, it should be possible to draw interactively aregion and then to
useitinaguery. The new region cannot directly be compared with realm-based objects. One possible
strategy might beto insert thisregion temporarily into the realm and to removeit again when the query
has been processed. There may be other solutions. We have so far restricted attention to operations
that are closed with respect to the underlying realm, but there are al so interesting operationsthat leave
the given ream, for example, construction of a Voronoi diagram, a convex hull, or of a buffer zone
around a spatial object. One should study how these can be accommodated. One strategy might be to
create a new realm for the new spatial values, select a set of SDT values in the database that might
interact with the new geometries and create another “small” realm for them, and then use a “merge”
operation on realms to compute all intersections.

Acknowledgments

The authors thank the referees who read the manuscript very carefully and provided a large number
of detailed questions and suggestions that helped to improve the presentation. Thanks also to Andrew
Frank, Michel Scholl, and Agnés Voisard for their comments.

References

[Bag9] Bancilhon F., Query Languages for Object-Oriented Database Systems: Analysis and a Proposal. Proc.
BTW (Datenbanksysteme in Biro, Technik und Wissenschaft, Zirich 1989), Springer, Informatik-
Fachberichte 204, 1-18.

[BaCD89] Bancilhon ., S. Cluet, and C. Delobel, A Query Language for the O, Object-Oriented Database System.
Proc. of the 2nd Workshop on Database Programming Languages (Salishan, Oregon), 1989.

[BaDK92] Bancilhon, F., C. Delobel, and P. Kanellakis, The O,Book. Morgan-Kaufmann, San Mateo, CA, 1992.

[BeG92] Becker, L., and R.H. Giting, Rule-Based Optimization and Query Processing in an Extensible
Geometric Database System. ACM Transactions on Database Systems 17 (1992), 247-303.

[BeO79] Bentley, J.L., and T. Ottmann, Algorithms for Reporting and Counting Geometric Intersections. |IEEE
Trans. on Computers C-28 (1979), 643-647.

[EgFJ89] Egenhofer, M.J., A. Frank, and J.P. Jackson, A Topological DataModel for Spatial Databases. Proc. SSD
89 (Santa Barbara, Cdlifornia), 1989, 271-286.

[Frk8e6] Frank A., and W. Kuhn, Cell Graphs: A Provable Correct Method for the Storage of Geometry. Proc. of
the 3rd Int. Symposium on Spatial Data Handling, 1986, 411-436.

[GaNT9]] Gargano, M., E. Nardelli, and M. Talamo, Abstract Data Types for the Logical Modeling of Complex
Data. Information Systems 16, 5 (1991), 565-584.

[GrY86] Greene, D., and F. Yao, Finite-Resolution Computational Geometry. Proc. 27th IEEE Symp. on

Foundations of Computer Science, 1986, 143-152.

[Giig8a]
[Giig8h]
[Giig9]
[Gii93]
[GURS95]
[GiiS93]

[HeSW89]

[JoCss]
[LeR89]
[LiN87]
[NiP82]
[OrM8s]

[0,93]
[Ri94]

[ROFSS8]

[Scwo1]

[Scv8g]
[SvHO1]

[To90]
[V092]

- 37 -

Guting, R.H., Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems.
Proc. of the Intl. Conf. on Extending Database Technology (Venice, Italy), 1988, 506-527.

Giting, R.H., Modeling Non-Standard Database Systems by Many-Sorted Algebras. Fachbereich
Informatik, Universitdt Dortmund, Report 255, 1988.

Glting, R.H., Gral: An Extensible Relational Database System for Geometric Applications. Proc. of the
15th Intl. Conf. on Very Large Databases (Amsterdam, The Netherlands), 1989, 33-44.

Giting, R.H., Second-Order Signature: A Tool for Specifying Data Models, Query Processing, and
Optimization. Proc. ACM SIGMOD Conf. (Washington, USA), 1993, 277-286.

Giting, R.H., T. de Ridder, and M. Schneider, Implementation of the ROSE Algebra. Manuscript in
Preparation, 1995.

Giting, R.H., and M. Schneider, Realms. A Foundation for Spatial Data Types in Database Systems.
Proc. of the 3rd Intl. Symposium on Large Spatial Databases (Singapore), 1993, 14-35.

Henrich, A., H.-W. Six, and P. Widmayer, The LSD Tree: Spatial Accessto Multidimensional Point- and
Non-Point-Objects. Proc. of the 15th Intl. Conf. on Very Large Data Bases (Amsterdam, The
Netherlands), 45-53.

Joseph, T., and A. Cardenas, PICQUERY: A High Level Query Language for Pictorial Database
Management. |EEE Trans. on Software Engineering 14 (1988), 630-638.

Lécluse, C., and P. Richard, The O, Database Programming Language. Proc. 15th Intl. Conf. on Very
Large Data Bases (Amsterdam, The Netherlands), 1989, 411-422.

Lipeck, U., and K. Neumann, Modelling and Manipulating Objectsin Geoscientific Databases. Proc. 5th
Intl. Conf on the Entity-Relationship Approach (Dijon, France, 1986), 1987, 67-86.

Nievergelt, J., and F.P. Preparata, Plane-Sweep Algorithms for Intersecting Geometric Figures.
Communications of the ACM 25 (1982), 739-747.

Orengtein, J., and F. Manola, PROBE Spatial Data Modeling and Query Processing in an Image
Database Application. IEEE Trans. on Software Engineering 14 (1988), 611-629.

The O, User’s Manud, Version 4.1. O, Technology, 1993.

de Ridder, T., Die ROSE-Algebra: Implementierung geometrischer Datentypen und Operationen fir
erweiterbare Datenbanksysteme (The ROSE Algebra: Implementation of Geometric Data Types and
Operations for Extensible Database Systems). Fernuniversitdt Hagen, Fachbereich Informatik,
Diplomarbeit (Master Thesis), 1994.

Rossopoulos, N., C. Faloutsos, and T. Sellis, An Efficient Pictorial Database System for PSQL. |IEEE
Trans. on Software Engineering 14 (1988), 639-650.

Schek, H.J., and G. Weikum, Erweiterbarkeit, Kooperation, Foderation von Datenbanksystemen
(Extensibility, Cooperation, Federation of Database Systems). Proc. Datenbanksysteme in Biro,
Tecnnik und Wissenschaft, Kaiserslautern,1991, Springer, Informatik-Fachberichte 270, 38-71.

Scholl, M., and A. Voisard, Thematic Map Modeling. Proc. SSD 89, (Santa Barbara, California), 1989,
167-190.

Svensson, P, and Z. Huang, Geo-SAL: A Query Language for Spatial Data Analysis. Proc. SSD 91
(Zurich, Switzerland), 1991, 119-140.

Tomlin, C.D., Geographic Information Systems and Cartographic Modeling. Prentice Hall, 1990.

Voisard, A., Bases de données géographiques. du modéle de données a I'interface utilisateur. Ph.D.
Thesis, University of Paris-Sud (Centre d’ Orsay), 1992.

- 38 -

Appendix: Definition Layers For Realm-Based Spatial Data Types

ROSE Algebra
Operations

Objects:
Operations. =, #, inside, edge inside, vertex_inside, area digoint,
edge digoint, digoint, intersects, meets, adjacent, encloses, on_-
border_of, border_in_common, intersection, plus, minus, com-
mon_border, vertices, contour, interior, count, dist, diameter,
length, area, perimeter, sum, closest, decompose, overlay, fusion

points, lines, regions

Spatial Data Types
and Spatia Algebra
Primitives

Objects:

Operations. union, intersection, difference, (area-)inside, edge-inside,
vertex-inside, area-digoint, edge-digoint, (vertex-)digoint, adja-
cent, meet, intersect, encloses, on_border_of, border_in_common

points, lines, regions

Realms, Realm-Based
Structures and Realm-
Based Primitives

Objects:

Operations. on, in, out, (area-)inside, edge-inside, vertex-inside, area-
digoint, edge-disjoint, (vertex-)digoint, adjacent, meet, encloses, in-
tersect, digt, area

R-point, R-segment; R-cycle, R-face, R-unit, R-block

, Objects: N-point, N-segment
Robust Geometric o) . o .
Primitives Operations: = meet, overlap, intersect, digoint, on, in, intersection, par-
alel, aligned
Integer Arithmetic Objects: integersin the range [-2n3, 2n3] (n integer grid size)

(see [GUiS93])

Operations. +, -, *, div, mod, =, #, <, <, 2, >

