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Today’s lecture: NNs as generative
models

* Generative models — What and why
* Autoregressive models

* Variational autoencoders

* GANSs



Unsupervised learning and
generative models

e Just data, no labels

— PCA, k-meanes,...
 Learn latent structure of data
* Density estimation

— Training data from distribution p_data
— Learn a distribution p_model that is similar to p_data

Figure: Goodfellow 2017 arXiv:1701.00160



Density modelling

* Simples approach: learn everything about the data

— Define explicit model and maximise overall likelihood

* Better: focus on what is useful!
— pixel value Vs image content, n-gram Vs semantics
Ill

 ,not all bits are created equa

— Curse of dimenstionality

e How can models be used for future taks?
— Access representations?
— Get generative model for free



But why?

Latent variables capturing data manifold as general
feature

Anomaly detection
Domain transfer: Art, super-resolution, colorisation
Simulation and planning (RL)

Creating means understanding
— What kind of patterns has the model learnt?

Summer o Winter

Monet = Photos

Figure: Zhu et al. arXiv preprint, 2017.



Types of generative models

Generative Models

Explicit density Implicit density

Tractable Intractable
density density

Fully visible belief Variational
nets autoencoder
NADE Restricted
DocNADE Boltzman
PixelRNN machine

Figure adapted from Goodfellow 2017, arxiv
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Types of generative models

Generative Models

Explicit density Implicit density

Tractable Intractable
density density

Fully visible belief Variational Further reading
nets autoencoder  GSN paper

NADE Restricted  Belief nets
DocNADE Boltzman

machine

PixelRNN /

Today's lecture

Figure adapted from Goodfellow 2017, arXiv:1701.00160



Autoregressive models

e Explicit density model
* Spilt high-dimensional input data into into sequence

— predict small piece of system (current state previous states)
— no more curse of dimensionality



PixelRNN algorithm

Use neural net to model distribution
over pixel values

Optimise weights by maximising
likelihood of all images

Need to choose order! |
— Start at a corner rod |
— Sequentially generate pixel values

Use LSTM to model dependency on
previous pixels

van den Oord et al. Advances in Neural Information Processing Systems. 2016.



PixelCNN

* Same as before, but use CNN to model dependency on
previous pixels

— Masked convolutions

* Training more efficient thanks to possible parallelisations

— Context for convs is known!
 Prediction is still slow

Further Reading
* Mulsti-scale RNN
« Conditonal Image

. generation
Jloae c + PixelCNN++
e ’. e O . Gated PixelCNN

> 000 C_'} '13' CJ 0 QO 0
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PixelCNN Row LSTM

van den Oord et al. Advances in Neural Information Processing Systems. 2016.



Some results
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Pros and Cons

* Pros
— Simple: just pick an order, no need to define prob distribution
— easy to generate samples, like dreaming

* Cons
— very expensive
* as many predictions as pieces of data
 parallelise during training but not testing
— order dependance
* where to start in an image?
* how to deal with missing data?
— Teacher forcing
 difficult to generate long sequences

» ,blind representation”: not large structure of data that is actually
interesting



Recap: Auto-encoders (AEs)

- a feed-forward neural network trained to reproduce its
input at the output layer

Key Facts about AEs:

—> unsupervised ML algorithm, similar to PCA
-> neural network’s target output is its input
—> learn latent features/encoding of input (no manual fe °
engineering)

- represent both linear and non-linear transformation
—>layered to form deep learning network, i.e., distribute:
representations

—> tractable / easier optimization

Layer L,

-> applications in denoising and dimensionality reduction (dense
representation)

—> powerful non-linear (i.e., non-linear encoding and decoding)
generalization of PCA

http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/

Slide from last week's lecture



Variational autoencoders

* Probabilistic version of autoencoder
— Place prior on latent space
— Sample from prior and use decoder to generate new samples
— AE as generative model

prior

p(z) = N0

pe(x|z) = N(u,0%)
u — fo(z) = multilayer neural net

likelihood



Inference

* With flexible neural net f_06(z), the data distribution
p_0B(x) can be almost arbitrarily complicated / multi-
modal distribution

* Butintractable posterior distribution p(z|x)
* Need approximate inference for learning

posterior p9(2|$) — Do ($|Z)p9 (z)/pg (:L‘)

Data likelihood po(z) :ﬂpg(z)pg(ﬂz)dz




Variational inference with neural
networks

* Posterior p(z|x) is not tractable
* |Introduce parametric model g_¢(z|x) of true posterior

e ¢: variational parameters
* parameterised by neural networks

al7h) ~ Niuo)
[, o*] = £"M(x,p) = multilayer neural net

-



Encoder and decoder

* 2 NNs, encoder network q_phi(z|x) and decoder network
p_theta(x|z)

N(-u’ﬂ:cuzzm) N(:U‘:r:l:z:: E:ﬂ]z)

‘- ‘-

Enoder network q_Phi Decoder network p_theta




Recap: Variational inference

* Approximate posterior p with g-distribution
* Minimize KL divergence between g and p

— Equivalent: maximise Evidence Lower Bound (ELBO) of data D

T

’ N P(8ID)
VmELBO(D) = wa Qm(g) logP(D\B) 0 Qw(g) IOg pr((gg)) 10

6
— @N@JogP(dIB) — 10gQP“E(9))

If we could move the derivative into the Expectation, we could approximate it by sampling!



Variational inference with neural

networks

E. {logpg( }\z)} — Dk 1(qs(z | 2" )HPH@’))

L

E(:B(’i), 0, ¢)

g*.0" —(ugnmeE () 9. ¢)

Training: MaX|mlze Iower bound

e Jointly optimize w.r.t.  and 6

* Simple SGD:
e Sampling small minibatches of data
e Sampling from approx. posterior

d-- -}

* Use reparametrisation trick to approximate gradient of ELBO



Recap: reparameterisation trick

VmEp(zlm) [f(2)] =7V, f p(zlw)f(z) dz

Find a way to reparametrize p(z|w) such that z~g (s, w) and we just sample ¢

7. [ PGl @) dz =7, [ p(e)f(9(e,w)) de S
dominated
We move the derivative inside the integral: convergence

theorem

= f p(e)V,f(g(e, ) de = Ep(o) [V, f(g (e, @))]

Example:
z~N(u,0) - z~u+og;e~N(0,1)

M ¢ is now independent of u, o and backpropagation works!

Slide from lecture 7



Stochastic Gradient VB

L0, d;x) = /qu(z) log pe(x,2) — log q¢(z)| dz
| L

=55 (log po(x,2") — log qqa(z(”))
=l

where €V ~ p(e) (samples from noise variable)

2 = g(e), 9)
(such that 2z ~ 4p(2))



Stochastic VB in practice

Draw mini-batch

Sample from p(eps)

Compute gradients using backprop
Update theta and phi



Some results
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(b) Learned MNIST manifold

Diagonal prior leads to independant z_i s

Components are interpretable
Representation is accesible (via q(z|x))

(a) Learned Frey Face manifold



Some improvements

* Improve encoder/decoder

— Use convolutions
— Conditional VAE
* Replace all P(X]|z) with P(X]z)Y)
* Replace all Q(z|X) with Q(z|X,Y)
— Hierarchical VAE
* |mprove prior
— Problem: mis-match prior and aggregate posterior

* Bad samples for high density in prior and low density in posterior
(hasn’t seen samples!)

* Bad reconstruction error

i) Owriginal {bh} Agioencoder el A-VAE dy AV-VAE, F=10.1



Results
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Yan et al., European Conference on Computer Vision. Springer, Cham, 2016.



More improvements
 Beta-VAE

— Encourage disentangled factors

* introduce an adjustable hyperparameter that balances
independence constraints with reconstruction accuracy

F(0,9,8;x,2) = L(0,0;X,2,8) = By, (5x) [log po(x|2)] — 8 Dk r.(gs(z|x)||p(2))
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Beta-VAE and S-VAE
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Higgins et al., ICLR 2017



Some current research directions
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Pros and Cons of VAEs

* Pros
— Accesible representation
— Robust and straight-forward to train

e Cons

— Generated images blurrier than SOTA



GANs

 We would like to sample from a complex, high-
dimensional distribution
— Problem: No direct way for this
— Solution: Sample random noise and pass it through NN



A two-player game

Set up a game between two players

Generator G: generate samples that are intended to
come from the same distribution as the training data

Discriminator D: determines whether a determine
whether a sampel is real or fake

— use traditional supervised learning techniques

Generator is trained to fool discriminator

lan Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



D tries to make
D(G(z)) near 0,
D(x) tries to be (7 tries to make
near 1 D(G’(z}) near 1
Dlﬁerentlahle
function D
T sa,mpled from T sampled from
data model
Differentiable
function G

Input noise z )

lan Goodfellow arxiv 2016




Learning the parameters of G and
D

* Cost functions of generator and discriminator (J_D and
J_G) depend on both sets of parameters (theta D and
theta_G)

— But: Each network has only access to it‘s own parameters

— Not optimisation, but game!

e Solution to game

— Nash equilibrium: Tuple (theta_G, theta D) that is a local
optimum of J_D wrt theta_D and a local optimum of J_G wrt

theta_ G



Cost function of D

* Minimize cross-entropy

— Train on 2 mini-batches
* one coming from the dataset, where the label is 1 for all examples

* one coming from the generator, where the label is O for all
examples

* Co-operative view

— Discriminator more like a teacher instructing the generator
in how to improve



/ero-sum game

 Sum of all players' costs is always zero
~JG=-JD
— Also referred to as minmax

— minimization in outer loop and maximization in inner loop

)+ : . PN £
0'¢)* — arg min max V (9” ). 9\¢ })
gic) el

/

Value function

v (Q[D}_ 9.:.:':}) — _j(D) (9{1))_‘ H(G})



Heuristic non-saturating game

e Cost from zero-sum game does not perform well in
practice

* D minimizes a cross-entropy but G maximises same cross-entropy

* When D rejects sampels with high confidence, gradient of G
vanishes

e Solution: flip target of cross-entropy for cost for G

— Maximise log-prob of D being mistaken
JG) = —%Ez log D(G(2))

— Each player has strong gradient when he loses the game



Maximum likelihood game

Minimizing the KL divergence between the data and the
model

— Equivalent (if D is optimal)

1 i
JG) — —aEL{"&Lp (671 (D(G(2))))

5 ¥ | | |

[l
il i f— Minimax

15 — Non-saturating heuristic
_15 U 2

—  Maximum likelihood cost
90 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

D(G(=))



Putting it together

for number of training iterations do

for k steps do
e Sample minibatch of m noise samples {2(1), ..., 2(™} from noise prior p,(2).
e Sample minibatch of m examples {:1:{1], iy a':{”‘}} from data generating distribution
Pdata ().
e Update the discriminator by ascending its stochastic gradient:

1 Fri . ;
Vo, = Z [lcg Dy, (z*) + log(1 — ng(Gag(z(*})j)}

1=

end for
e Sample minibatch of m noise samples {z(%), ..., z("™} from noise prior p,(2).
e Update the generator by ascending its stochastic gradient (improved objective):

Tri

Vo, 3 log(Du, (Go, (=")))

i=1

end for

Goodfellow 2014



Samples from generator




DGAN

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

Use ReLLU activation in generator for all layers except for the output, which uses Tanh.
e Use LeakyReLU activation in the discriminator for all layers.

1024

L,

Code Project and
reshape

Deconv 4

Image

Goodfellow 2016, Radford 2015




Sample again

Goodfellow 2016, Radford 2015



GAN maths

Goodfellow 2016, Radford 2015



Mode collapse

* Most severe problem in terms of non-convergence

* |ssue: maximin solution to the GAN game is different from the
minimax solution

— Generator asked to map every z value to the single x coordinate that
discriminator believes is most likely to be real

— Simultaneous gradient descent doesn‘t favour one over the other

( B . r :' ( "IP
0'%)* = arg min max V (H”‘ ) g€ J)
g.G) e L)
e

Target

Step O Step Sk Step 10k Step 15k Step 20k Step 25k

Metz et al., 2016



Solutions

 Minibatch features
— Compare one example to batches of real/fake examples
— D can detect if sample is unusually similar to other samples

 Unrolled GAN

— back-propagate through the maximization operation



Unrolled GAN

* Consider several updates of the generator when updating
the discriminator and vice versa
— k steps in the discriminator

— backpropagate all steps when computing the gradient on the
generator

== Forward Pass

A /"\ : BD Gradients
8, 8,2 0, Gradients
‘ TP 0.) SGD = 4096 =~ f,(84.65) Unrolling
- SGD

Gradients
EJG E:G BG

Metz et al., 2016




Better generators: LSGAN,

* Least squares GAN

— X. Mao, Q. Li, H. Xie, R. Lau, Z. Wang, “Least squares
generative adversarial networks” 2016

— Still use a classifier but replace cross-entropy loss with
Euclidean loss

Discriminator

GAN min E,.,, [—log D(z)| + F

; —log(1 — D(G(2)))]

:~pz|

LSGAN 11}%11 Eimpy [(D(x) —1)?] + E,np, [D(G(2))?]

Generator

GAN min . ., [—log D(G(2))]

.
LSGAN 1.1;11.1 E..,,[(D(G(2)) — 1)

4







Wasserstein GAN

* M. Arjovsky, S. Chintala, L. Bottou “Wasserstein GAN”
2016
e Use critic instead of discriminator

— Discriminator can output real number (same as before w/o
sigmoid)

Discriminator

GAN max Errpxlog D(2)] 4 E.rpy[log(l — D(G(2))]

WGAN mﬂx Eirpy | D(2)] = Eynp, [D(G(2))]

Generator

Gan max F log D(G(2))]

zenz |
( Pzl







WGAN-GP

* |. Gulrajani, F. Ahmed, M. Arjovsky, V. Domoulin, A.
Courville “Improved Training of Wasserstein GANs” 2017

Hgﬂ mgx Errpx [D(7)] — Ernpy [D(G(Z))] + ABympy [(||[ Vo D(W)]]2 — 1)2]
y=uz + (1 —u)G(2) * y:imaginary samples

Optimal critic has unit gradient norm almost everywhere

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)
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BEGAN and DRAGAN

* DRAGAN: Add gradient norm to standard GAN and
evaluate around the data manifold

* BEGAN: use autoencoder as discriminator and optimize
lower bound of the Wasserstein distance between auto-
encoder loss distributions on real and fake data.

DRAGAN ~ LOMGAN — £OMN 4 AR, av0.0) [(IIVD(&)]]2 — 1)?] LA — Bz, [log(1 — D(#))]

BEGAN L™ = Exnpylllz — AE(2)||1] — kiEzrupy [||2 — AE(£)|]1] L™ = Ezrup, [||& — AE(2)|41]




Total number of papers

The GAN zoo

Cumulative number of named GAN papers by month

2015 2016 2017 2018
Year

https://github.com/hindupuravinash/the-gan-zoo



So....which one is best?

Are GANs Created Equal? A Large-Scale Study

Mario Lucic* Karol Kurach®* Marcin Michalski  Olivier Bousquet  Sylvain Gelly
Google Brain

than others. We conduct a neutral, multi-faceted large-scale empirical study on
state-of-the art models and evaluation measures. We find that most models can
reach similar scores with enough hyperparameter optimization and random restarts.
This suggests that improvements can arise from a higher computational budget and
tuning more than fundamental algorithmic changes. To overcome some limitations

NeurlPS 2018



Evaluating GANs

* Challenging to define appropriate metric
— Maximum likelihood and other classical metrics not applicable

— Subjective comparisons (visual quality) may be misleading

* Inception score: disciminator has low entropy, while producing
samples from all classes when passed through a classifier

exp(Eenaldrr(p(y | 2), p(y)])

* Fréchet Inception Distance: difference in embedding of true and
fake data (assuming MVN in embedded space)

— Strong negative correlation between visual quality and FID

FID(.9) = llnz = prollf + TH(Zx + By = 2AT:Eg)H),

— Precision/recall



Metrics

Precision measures fraction of relevant retrieved
instances among the retrieved instances

Recall measures fraction of retrieved instances among
relevant instances

F1 score is harmonic average of precision and recall.

IS captures precision: no penalization for not producing
all modes of the data distribution

— Only for not producing all classes

FID captures both precision and recall



Precision-Recall for GANs
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Fair assessment

 Compare state-of-the-art approaches

GAN DISCRIMINATOR LOSS GENERATOR LOSS

MMGAN L&Y = —Egwp,[log(D(2))] — Eznp, [log(l — D(2))] LN = Ezrup, [log(1 — D(2))]
NS GAN LY = _E,.p, [log(D(z))] — Esmp, [log(l — D())] LEAN = _Ez..p, [log(D(2))]
WOAN LY = —E,py[D(2)] + Esnpy [D()] LEMN = By, [D(@)]
WGANGP LY = LN 4 AE; po [(|[VD(az + (1 — ad)||2 — 1)?]  LE*N = —Egnp, [D(2)]
LSGAN L™ = —Eonp, [(D(2) — 1)°] 4+ Esnpg [D(2)°] LM = —Eznp, [(D(2 —1))7]
DRAGAN ~ LDRAGAN — £OAN 4 AR, 4 n(0.0 [([IVD(@)]]2 — 1)7] LA — By, [log(1l — D(&))]
BEGAN LM = Eprnpylllz — AE(2)| 1] — kiEspy[||2 — AE(2)|]1] LG = Esrupy [||2 — AE(2)][41]




Fair comparisons

e Use same architecture

* Optimize hyperparameters on each dataset OR on one
dataset only (infer for new datasets)

 Computational budget
— Dependence on number of optimised hyperparameters



FID Score

Are GANs created equal?

* Asterisk
— Default hyperparameters
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Large-scale hyperparmeter
optimisation

* No model strictly dominates the others

— Strong dependence on dataset

e But: performance not SOTA
— Larger networks would perform better
— Authors report best FID (random seed optimisation!)

MNIST FASHION CIFAR CELEBA
MM GAN 98+09 29611.6 2.7 136 65.6 £ 4.2
NS GAN 6.8 1 0.5 26.5 £ 1.6 BE.5. 110 SN e e
LSGAN 7.8 + 0.6* 30.7 2.2 87.1 + 47.5 53.9 1 2.8%
WGAN 6.71+04 21.511.6 55.2 1+ 2.3 41.3 £ 2.0
WGAN GP 20.3 £ 5.0 2451+ 2.1 55.8 + 0.9 30.0 + 1.0
DRAGAN TH184 2771712 69.8 +£ 2.0 42.3 £3.0
BEGAN 1314+10 229109 71.4+ 1.6 38.94+0.9
VAE 23.8 1+ 0.6 58.7 1+ 1.2 155.7 & 11.6 85.7 - 3.8
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Combinging VAEs and GANs

VEEGAN

— Combine likelihood-based and likelihood-free models
— variational inference with synthetic likelihoods

IntroVAE

— minimize the divergence of the approximate posterior with the prior
for real data while maximizing it for the generated samples

— generator model attempts to mislead the inference model by
minimizing the divergence of the generated samples

Adversarial Autoencoder
Adversarial Variational Bayes
ALI/BiGAN

AlphaGAN

Rosca et al 2017; Huang et al 2018



Unpaired Image-to-Image Translation
with CycleGAN

* Unpaired data is cheap

 How to use unpaired data for paired image-to-image
translation?

* |dea:

— Capture special characteristics of one image collection and
translate into another image collection

— Cycle consistency

* Define additional mapping from generated space to data space
— Translator G : X = Y and translator F: Y = X
— F and G inveseres of each other

Zhu et al. arXiv preprint, 2017.



CycleGAN
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Style transfer

CycleGAN

oty 12

Photo — Van Gogh

Photo — U]sio

Figure: Zhu et al. arXiv preprint, 2017.



More aplications

Gatys et al. (image I) Gatys et al. (image IT) Gatys et al. (collection) CycleGAN
Ly ' ' r

horse — zebra

Monet — photo

Figure: Zhu et al. arXiv preprint, 2017.



Failures

Input Cutput Iuput Cutput

apple — orange

|
ENE A

photo — Ukiyo-e photo — Van Go gh iPhone photo — DSLR photo IgeNet “wild horse™ g images

Figure: Zhu et al. arXiv preprint, 2017.



CycleGAN

* Excellent qualitative results on several tasks where paired
training data does not exist, including collection style
transfer, object transfiguration, season transfer, photo

enhancement, etc.

Zebras ¢ . Horses

Monet s Photos

Figure: Zhu et al. arXiv preprint, 2017.



Conclusion

e \arious types of models

— Autoregressive models,

* Explicit density model, opimizes exact likelihood, good samples.
Slow

— VAEs

* Optimises lower bound on likelihood. Useful representation and
inference queries. Blurry samples.

— GANs

* Game-theoretic approach, best samples. Tricky and unstable to
train

e Large variation between datasets, no one-size-fits-all
model

* Lots of open research question and ongoing research



