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Lecture Outline

» Motivation: Distributed Feature Representations: What/Why?
» Strategies to obtain Feature Representation via Generative Models
- Auto-encoders
- Restricted Boltzmann Machines (RBMs) and Deep variants (DBM)
- Neural Autoregressive Model: NADE, DocNADE, etc.
» Language Modeling for Distributional Semantics:
(Tools: Word2vec, RNN-LM, RecvNN, textTOvec, etc.)
» Metric Learning (e.g. Siamese Networks) for Textual Similarity
» Compositionality: Recurrent vs Recursive (overview) (already covered in lecture 05)

» Multi-task Learning (overview) (already covered in lecture 05)
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?What is Representation Learning ?

? Why do we need Representation Learning ?

? How to form good Representations?

Intern © Siemens AG 2017
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Motivation: Representation Learning

Traditional Machine Learning

your favorite
classifier

VISION

= i : hand-crafted

features "fca , ”
SIFT/HOG
fixed learned
SPEECH
i l ha;ld-trafted favorit
| - ’ at ur favorite i -
" " 1'* Mm“" canres W:Iasslﬂer \d e p\
|¥ [ MFCC
fixed learned
NLP
. hand-crafted
This burrito place ’ features your favorite o . &
is yummy and fun! Bag-of-words classifier +

fixed learned
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Motivation: Representation Learning

Hierarchical Compositionality

Low-Level

Mid-Level High-Level
Feature ’

Feature Feature

Trainable *

Classifier

VISION

pixels §» edge P textongp motif P part P object

SPEECH
sample §» ST]ECt:’I P formant $» motif $» phone $ word
an
NLP

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

character §» word §» NP/VP/..9» clause P sentence P  story

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
Intern © Siemens AG 2017
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Motivation: Representation Learning

Exploiting compositionality gives an exponential gain in
representation power-

Low-Level
Feature

Trainable *

Classifier

Mid-Level ’ High-Level
Feature Feature

(1) Distributed representations / embeddings
- feature learning
(2) Deep architectures

- multiple levels of feature learning

Compositionality to describe the world around us efficiently

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
Intern © Siemens AG 2017
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Food
Hungry

Burger
pizzeria

Intern © Siemens AG 2017
Seite 7 May 2017 Corporate Technology



SIEMENS

Motivation: Representation Learning

Representation Learning (also known as feature learning)
Techniques to automatically discover the representations needed
—> for feature detection that explains the data,

- classification from raw data

Feature

—> measurable property or characteristic of a phenomenon being observed

E.g.,
_ _ woman  queen buy  money
- shape, size, color, etc. of objects
o ) Encodes gender Encodes ge\/fder Encodes yerb form En%ﬂes hyponym
- content, cuisine, color, etc. of food items
man King bought dollar

- syntactic and semantic relationships in words
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Word Analogy in distributional semantic vector space

king k& o

Male-Female

walked
- #.
0 Az swam
walking ,.
o —
swimming
Verb tense

WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG
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Vector composition to determine semantic similarity in texts !

document 1

Obama
speaks
to
the
media
n
I1linois

‘Obama’
| Y °

‘President’

‘oreets’
g.

o«

‘speaks’

‘Chicago’

.’.

Illinois’

‘media’
o<«
‘press’

document 2

The
President
greets
the
press
n
Chicago

word2vec embedding

HTTPS://WWW.SPRINGBOARD.COM/BLOG/INTRODUCTION-WORD-EMBEDDINGS/
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Vector composition to determine semantic similarity in phrases or sentences !!

Place where | was born A man was front of the window
Global warming impact Lion is the king of jungle
o =

HTTPS://WWW.SPRINGBOARD.COM/BLOG/INTRODUCTION-WORD-EMBEDDINGS/

Intern © Siemens AG 2017
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HALWA

Intern © Siemens AG 2017
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| am very hungry, | will eat HALWA

Intern © Siemens AG 2017
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| am very hungry, | will eat HALWA

Intern © Siemens AG 2017
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I

Is It a good idea to eat HALWA after a meal ?

Intern © Siemens AG 2017
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Is It a good idea to eat HALWA after a meal ?

Intern © Siemens AG 2017
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| put a cup of sugar too much in cooking HALWA ?

Intern © Siemens AG 2017
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Training deep networks can be challenging

—->Non-convex loss function

® —> in-appropriate initializers

—> Initialisation is cricitial in Neural network training

—> Using appropriate initializers for better convergence

Loss function surfaces

Intern © Siemens AG 2017
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Transfer knowledge from previous learning:

_ Training deep networks can be challenging
- Representations or features |

- Explanatory factors initialize hidden layers using UNSUPERVISED learning

encode latent structure of input distribution in hidden layer

Previous learning from unlabeled data + labels for other tasks

—> Prior: shared underlying explanatory factors, in particularly between P(x) and P(Y]x)

http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf
Intern © Siemens AG 2017
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transfer knowledge from previous Example: Image recognition model

- Representations ‘ L o
Unsupervised Supervised Learning with
pre-training with unlabeled data available labeled data

to learn the representations of

- Explanatory factors .

———

different levels of abstraction . PR e
;*:_ pe S L Transfer the .

knowledge

http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf
Intern © Siemens AG 2017
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Motivation: Good Representation
» Good features for successful machine learning,
e.g., man €-> human, cat €—-> dog,
buy €<-> bought, buy €-> acquired Islam €-> Christianity, etc

» Knowing features belief about objects in prior,
e.g., features of car - has_wheel, has_glasses, is_automobile, relatedto _manufacturer, etc.

» Handcrafting features vs automatic feature learning

» Representation learning: Estimate features / factors / causes that explains the data - good representation
l.e., good representation captures factors of variation that best explains the data

» Learning representations from representations > Representation learning

e.g., autoencoders, RBMs, RSMs, NADE, DocNADE, iDocNADEe, generative RNNSs,
encoder-decoders, etc.

Seite 24 May 2017 Corporate Technology
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Motivation: Local Representation of Symbols

Consider a sequence s of words: “( a cat catches a mouse )”

A set of symbols is given by, D = {mouse, cat, a, catches, (, ) }

mouse e, = (1 0000 O)T
Given a set of symbols D, ”
_ _ _ cat > e;=(0 1 00 0 0)
a local representation maps the i-th symbol in D to
N o a—e;=(001000)"
the i-th unit vector e, of real values of n dimension, | ' .
where n is the cardinality of D. catches — eq = (0 0 0 1 0°0)
(—e;=(000010)"
T
Hence, the i-th unit vector represents the i-th symbol. ) —e;= (00000 T)

Seite 26 May 2017 Corporate Technology
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Motivation: Local Representation of Symbols

Consider a sequence s of words: “( a cat catches a mouse )” /[] 0000 1 0\
0010000
A set of symbols is given by, D = {mouse, cat, a, catches, (, ) } 0100100
0001000
1000000

a sequence of vectors \0 00000 1)

Local Representations —> a sequence of vectors representing the symbols in the sequence

- used in recurrent neural networks

mouse —+e; = (1 000 0 O)T /l\
} T §
a—e;=(001000)" . i
catches — es = (00 0 1 0 O)T —>a sequence is repr_esented_ with one vector '
o generally obtained with a weighted sum of _

(—e=(000010) vectors representing symbols, i.e., orderless \1)

—000001)" - - -
) = e6 = ) - SVM (used in Information Retrieval task)
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Motivation: Local Representation of Symbols

T : 0000O0T1O0
Limitations of Local Representation /0 01000 0\
10100100
>“looo01000
a sequence of vectors LO0O00O00
\0000001)
Local Representations - Each vector has a one-to-one mapping to a symbol
- Too sparse, extremely inefficient for a large symbol set
a bag-of-symbols / i\
S = 2
- symbolic sequences cannot be fully reconstructed i
but it is possible to know which symbols were in the sequence. \l}

—> does not preserve sequence order

Seite 28 May 2017 Corporate Technology
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(100000) (010000)
mouse cat
;ig s L similarity J

j One-hot vector )
no patiern O O O O _ 00 _
No information about words semantics
| eooo
— 0000
) ooeo
< O000e

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/slides/L1_intro.pdf
Intern © Siemens AG 2017
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Limitations of Local Representation

es&j"' &
N’f

v OO OO
| eooo
— 0@0O0
) ooeo
= 000e

(100000)° (010000
mouse cat
L similarity J
Y
0.0

No information about words semantics

noun animal
N\ 7\

SIZG

04 0.7, 01

mouse

— U

noun animal sjze

7~ N/ \

0.5,0.8/0.9|

— S\

cat

~

similarity

-

(i.e., dense vectors in distributed representations) v

Intern © Siemens AG 2017
Seite 30 May 2017

0.80

Corporate Technology



SIEMENS

Limitations of Local Representation (100000) (010000
mouse cat

iﬁﬁ éﬁ&ﬁif&g L Similarity J

.0
out words semantics

noun anima noun animal sjze

size

I: 7~ N\ /7 "\ 7~ N/ \.
0.4 0.7 0.1 0.5/0.8/0.9)|
~— N U N NN

O O0eO mouse cat

< 0O00e L similarity J

(i.e., dense vectors in distributed representations) v
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Distributed: “information is encoded by a multiplicity of features / factors / causes”

Distributed representations:

—> vectors or tensors in metric spaces

—> transformations of the data that compactly capture many different factors of variations
—> underlying learning models are neural networks

E.g. Distributed word representations:

Each word is represented as a dense and real-valued vector in low dimensional space,
and each latent feature encodes syntactic and semantic relatedness information

—> addresses the Curse of Dimensionality

Intern © Siemens AG 2017
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The need for distributed

-
represen!:ahous _
Multi-
i Sub—partition 3
Clustering  Sub-patitongd  ion 2
* Factor models, PCA, RBMs, TR
Neural Nets, Sparse Coding, c3=0 A
Deep Learning, etc. Sub—partition 1 FAY
;‘ﬁé:: ‘l“ Cim|
e Each parameter influences o
many regions, not just local Soa N
neighbors o oo
J'{ b
° # Of disﬁnguishable regions DISTRIBUTED PARTITION “
grows almost exponentially Non-mutually
c1 €2 c3 exclusive features/

with # of parameters

e GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

attributes create a
combinatorially large
set of distinguiable

configurations

Inspired from Y. Bengio summer school, 2015 input

Intern © Siemens AG 2017
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Motivation: Distributed Representation Learning

—> dense vectors in distributed representations (b) F 8 & 2
F& s
- < & v

—> one concept represented by the dense vector no pattern O O O O

—> one dimension per property

—> enable to share similarity between more than two concepts |:|
noun animal_, noun animal size [~ O . . O

O \

Power of mouse cat

Distributed » L \
similarity

Representations
v

Distributed Representation by Hinton (1984) 0.80

< 00060
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Power of Distributed Representations

A
document | ‘gr.eets’
‘Obama’

Obama H. ./V
speaks President”  SPe2KS’

to resident

the
media ‘Chicago’

in o ‘media’
Ilinois ,c{ o9

Illinois”  Press

document 2

The
President
greets
the
press
n
Chicago

word2vec embedding

Distributed Representation by Hinton (1984)
Intern © Siemens AG 2017
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Representation Learning

components
y V
interpretability compositionality
- Can we interpret each dimension/property? —> Hierarchical composition
—> Lack of interpretability in dense representations - Deep Learning is very good !!!

learned by Deep Learning
- Hard to track down what'’s failing

Intern © Siemens AG 2017
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Representation learning: Attempts to automatically learn good features or representations
Deep Learning: Attempts to learn multiple levels of representations of increasing abstraction

Intern © Siemens AG 2017
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- Key concept in neural networks: Distributed Representation Learning

Distributed Representation Learning in Neural Networks

—->Key questions:

« How can a neural network be so effective representing objects when it has only a
few hidden units (i.e. much fewer units than possible objects)?

 What is each hidden unit actually representing?

 How can a neural network generalize to objects that is has never seen before?

Seite 38 May 2017 Corporate Technology
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Deep Learning = Hierarchical Compositionality

Distributed Representations in Deep Learning

— Cascade of non-linear transformations
Mid-Level

Feature

Low-Level
Feature

High-Level
Feature

Trainable '

Classifier

— Multiple layers of representations

Feature visualization of convolutional net trained on.ImageNet from [Zeiler & Fergus 2013]

Intern © Siemens AG 2017
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Deep Learning = Hierarchical Compositionality

— Cascade of non-linear transformations  Input Layer 1 Layer 2 Deeper layer
Pixels (Detects Edges) (Detects Face parts (Detects Faces)
— Multiple layers of representations Combination of edges)

- No single neuron “encodes” everything

- Groups of neurons work together

Input Pixels

Intern © Siemens AG 2017
Seite 40 May 2017 Corporate Technology
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Supervised Learning

Data: (X, y)

X is data, y is label —>» Cat

Goal: Learn a functionto map x 2 y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Classification

https://www.cc.gatech.edu/classes/AY2019/cs7643 fall/

Intern © Siemens AG 2017
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering, K-means clustering
dimensionality reduction, feature

learning, density estimation, etc.

https://www.cc.gatech.edu/classes/AY2019/cs7643 fall/

Intern © Siemens AG 2017
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Representation Learning: Supervised vs Unsupervised

original data space

Unsupervised Learning

P C A component space
Data: x
Just data, no labels! N oy 2%
O T
i R0
et
Goal: Learn some underlying ~oE—
hidden structure of the data .
Examples: Clustering,
3-d —_—> 2-d

dimensionality reduction, feature

learning, density estimation, etc. o _
Principal Component Analysis
(Dimensionality reduction)

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/
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Representation Learning: Supervised vs Unsupervised

Unsupervised Learning

Data: x
Just data, no labels!

1-d density estimation

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature 1
learning, density estimation, etc.

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/

Seite 44 May 2017 Corporate Technology
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Representation Learning: Supervised vs Unsupervised

Supervised Learning

Data: (X, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/

Seite 45 May 2017

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.
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Generative Classification
- Model p(X, y); estimate p(x|y) and p(y)
- Use Bayes Rule to predict y, e.g. Naive Bayes

Discriminative Classification
« Lecture 04, 05
- Estimate p(y|x) directly, e.g. Logistic Regression, CNN, RNN, etc.

Density Estimation

> Model p(x), e.g. RBMs, VAEs, NADE, RSM, DocNADE, etc

This lecture

Intern © Siemens AG 2017
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Given training data, generate new samples from same distribution

Training data ~ py,i.(X) Generated samples ~ P oqe/(X)

Want to learn p,,qe/(X) Similar to pyaea(X)

Several flavors:
—> Explicit density estimation: explicitly define and solve for p,,,4e1(X)
—>Implicit density estimation: learn model that can sample from p,,q4.(X) W/0 explicitly defining it

Training generative models can enable inference of latent representations, used as general features

Intern © Siemens AG 2017
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Given training data, generate new samples from same distribution

Training data ~ py,i.(X) Generated samples ~ P oqe/(X)

Want to learn p,,qe/(X) Similar to pyaea(X)

Several flavors:
—> Explicit density estimation: explicitly define and solve for p,,,4e1(X)
—>Implicit density estimation: learn model that can sample from p,,q4.(X) W/0 explicitly defining it

Training generative models can enable inference of latent representations, used as general features

Intern © Siemens AG 2017
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Why Latent Factors & Unsupervised
Representation Learning? Because of

Ca u,sal.ifj.

On causal and anticausal learning, (Janzing et al ICML 2012)

» |f Ys of interest are among the causal factors of X, then
P(X|Y)P(Y
pryix) — PEIYIPY)
P(X)
is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X]Y), i.e.

* The best possible model of X (unsupervised learning) MUST
involve Y as a latent factor, implicitly or explicitly.

* Representation learning SEEKS the latent variables H that explain
the variations of X, making it likely to also uncover Y.

http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf
Intern © Siemens AG 2017
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TO DO: Motivation: image manifold

Manifolds

—>probability mass concentrates near regions that have a much smaller
dimensionality than the original space where the data lives

Learning complex and useful data projections

http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf
Intern © Siemens AG 2017
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Reconstruction Objective
—> train a network to learn weights such as the network can reconstruct the input,

given the output (e.g., hidden vector encoding the input)!!!

http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf
Intern © Siemens AG 2017

Seite 51 May 2017 Corporate Technology



SIEMENS

Intern © Siemens AG 2017
Seite 52 May 2017 Corporate Technology



SIEMENS

Intern © Siemens AG 2017
Seite 53 May 2017 Corporate Technology



SIEMENS

Distributed word representation

- represent (embed) words in a continuous vector space where semantically similar words
are mapped to nearby points

—> describe meaning of words and sentences with vectorial representations

Ideal: “you shall judge a word by the company it keeps”

Idea2: Distributional hypothesis: “words have similar meaning if used in similar contexts ”

Intern © Siemens AG 2017
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Why: Distributed Word Representations

—> words sharing similar attributes are similar
E.g., dog is more similar to cat than to car as dog and cat share more attributes than dog and car

- word-to-word matrices obtained by observing n-word windows of target words _
co-occurrence matrix

S1 52 93 a cat dog mouse catches eats
a (22 2 « (01 2 2 2 2
at 1 0 1
s1 a cat catches a mouse ;a 01 1 cat 2.0 0 0 1 0
sy a dog eats a mouse X = @9 110 |7 dog 3 8 8 8 (1) (1)
ss a dog catches a cat rotse mouse
& g catches 1 01 catches | 2 1 1 0 0 0
eats \ 0 1 0 ) eats \1 0 1 0 0 0 )
Small corpus of 3 sentence/documents
Local representation: BoW Distributed representation:

aword-to-word matrix considering

a l-word window of context
WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG
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Why: Distributed Word Representations

—> words sharing similar attributes are similar.
E.g., dog is more similar to cat than to car as dog and cat share more attributes than dog and car.

—> word-to-word matrices obtained by observing n-word windows of target words _
co-occurrence matrix

51 82 83 a cat dog mouse catches eats
a (22 2 ] /o[1]2 2 2 2
at 1 0 1
s1 [a]cat|catches a mouse ;a 01 1 cat 20 0 0 1 0
Sy a dog eats a mouse X = “ 110 |5 dog 3 8 8 8 (1) (1)
ss a dog catches a cat rotse mouse
& g catches 1 01 catches | 2 1 1 0 0 0
cats \O 10/ cats \1O 1 0 0 0
Small corpus of 3 sentence/documents
Local representation: BoW Distributed representation:

aword-to-word matrix considering

a l-word window of context
WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG
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Why: Distributed Word Representations

—> words sharing similar attributes are similar.
E.g., dog is more similar to cat than to car as dog and cat share more attributes than dog and car.

—> word-to-word matrices obtained by observing n-word windows of target words _
co-occurrence matrix

w
-

W
]

V2l
L

a cat dog mouse catches eats

a ? (2) %\ =] (0 1[2] 2 22
s1 | alcat catches a mouse jat 01 1 cat 2.0 0 0 1 0
So | a|dog eats a mouse X = 9 _ dog 20 0 0 1 1
sz |a @ catches a cat mouse 1 10 mouse | 2 0 0 0 0 0
catches 1 01 catches | 2 1 1 0 0 0
cats \O 10/ cats \1O 1 0 0 0
Small corpus of 3 sentence/documents
Local representation: BoW Distributed representation:

aword-to-word matrix considering

a l-word window of context
WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG
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—> words sharing similar attributes are similar.
E.g., dog is more similar to cat than to car as dog and cat share more attributes than dog and car.

—> word-to-word matrices obtained by observing n-word windows of target words _
co-occurrence matrix

a cat dog mouse catches eats

a,(O

\ similar in distributed

cat
s1  a cat [catches|a mouse dog representation space
sy a dog eats a mouse X =

s3 a dog |catches| a cat

catches

O = OI0S|=—-
OO OI0KoIN
O O O
OO OoOI=OIN

/

Distributed representation: a word-to-word matrix
considering a 1-word window of context

eats

—— OO

2
2
mouse 2
2
1
Small corpus of 3 sentence/documents )

WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG

Intern © Siemens AG 2017
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Ed )
E.g However, original co-occurrence matrix is very costly to obtain and store

> =» Need compact distributed vectors

Why: Distributed Word Representations

a cat dog mouse catches eats

a/O

cat 2

)

S1 a cat|catches|a mouse

do 2
So a dog eats a mouse X = g
mouse 2
s3 a dog |catches| a cat
catches | 2

O = OI0NO|I-=
O O OIoIN

o O Ol b
O O OO

— = OO

eats \ 1

/

Distributed representation: a word-to-word matrix
considering a 1-word window of context

Small corpus of 3 sentence/documents

WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG
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Word2vec: Tool to generate Word embeddings (i.e., distributed word representation) using large corpus

—> represent (embed) words in a

. ] f 1) Word2vec: Continuous Bag Of Words (CBOW)
continuous vector space o g
where semantically similar words g g Hidden layer Output layer
. eats \ U)
are mapped to nearby points
| | (0
- uses contextual information to learn {1} 0
Tog _ 0
word vectors vl g S W2gxn 0
0
- neural network predicts a target word - (\ 0\) X
a 1
from the words surrounding it (context) cat | 0 /
ol - wi,
—> no explicitly co-occurrence matrix st g
> no explicit association between word pairs g < h
> distribution of the words learned implicitly 3" 3 a cat CatTC €S a mouse
| mouse | 1
- compact distributed representation M g : Target word | given context

—> dimensions of vectors not interpretable

Intern © Siemens AG 2017
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" - -
. [ ] @ Russia
kin .. Moscow
g i ‘. ulkj_ng ',. Canada Ottawa
queen = ; . Japan

/ - Vietnam Hanoi

swimming China Beijing
Male-Female Verb tense Country-Capital

Word analogy using vector operation: http://bionlp-www.utu.fiwv_demo/  Let's TRY Il

Further reading: doc2vec, LDA, LSA, etc.

Intern © Siemens AG 2017
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Strategies to obtaining Distributed Representations

e.g., e.g.,

- Variational Autoencoders, - NADE, MADE
—->RBMs, DBN, DBM, - DocNADE

- RSM - iDocNADEe

-2 RNN-RSM - PixelRNN/CNN

Intern © Siemens AG 2017
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highlighted ones Strategies to obtaining Distributed Representations

e.g., e.g.,

- Variational Autoencoders, - NADE, MADE
- RBMs, DBN, DBM, - DocNADE

2> RSM - iDocNADEe

-2 RNN-RSM - PixelRNN/CNN

Intern © Siemens AG 2017
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- a feed-forward neural network trained to reproduce its input at the output layer

Auto-encoders (AES)

Encoder: compresses the input into a latent-space representation maps from feature space
back into input space

feature-vector or

representation h(X) — g(WX\—I— b) -
input
Decoder:| reconstruct the iInput from the latent representation

decoding layer

W ' [(tied parameters)

Reconstructed s X = WTh(x) + c h(x) encoding layer

input

Loss function (for real-valued inputs):
(minimizing reconstruction error by SGD) X

P 1 S~
L(x; x) = — ||X — x||2 < measure discrepancy b/w input and its reconstruction
2 over training samples

https://andre-martins.qgithub.io/docs/dsl2018/lecture_06.pdf (LeCun, 1987; Bourlard and Kamp, 1988; Hinton and Zemel, 1994)
Intern © Siemens AG 2017

Input layer
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‘lilll\

Auto-encoders (AES)

—} Encoder —>E—> Decoder —a»

?;;g;nal ?ﬁcﬂgstructed
Compressed P
representation ~

X h X
| trained to copy input to output A

(representation encoding input)

‘ compression

captures useful properties of the data distribution or me represent data or explanatory factors
- dimension(h) < dimension(x) =» undercomplete i.e. learn to capture useful features

—>dimension(h) > dimension(X) =» overcomplete i.e. learn copy input to output
—>Difficult to interpret
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—-> Encoder —>E—> Decoder —>

Original

input ?ﬁcg:structed
Compressed P
representation -
X h X
| trained to copy input to output A

(representation encoding input) |
compression

—>Difficult to interpret

Intern © Siemens AG 2017
Seite 67 May 2017 Corporate Technology



SIEMENS

- a feed-forward neural network trained to reproduce its input at the output layer
Key Facts about AEs:

Benefits of Auto-encoders (AES)

—> unsupervised ML algorithm, similar to PCA

- neural network’s target output is its input

hw p(X)

—> tractable / easier optimization

Layer L,

—> applications in denoising and dimensionality reduction (dense representation)

- powerful non-linear (i.e., non-linear encoding and decoding) generalization of PCA

http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/
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- Need to Conceptualize, not only compress.......

Different variants to rescue.................. I

Intern © Siemens AG 2017
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Autoencoder variants: Offline

Auto-encoders (AES) variants

1. Denoising Autoencoders

2. Sparse Autoencoders Idea: Constraint the reconstruction of an autoencoder
3. Convolutional Autoencoders

4. Variational Autoencoders (VAE)

5. Contractive Autoencoders (CAE)

6. Stacked Autoencoders, etc...

........ details later in the lecture series (Lecture on “Generative Models”)
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» Directed graphical models

» define prior over top-most latent representation

» define conditionals from top latent representation to observation

p(x, h(1) } h(2) : h{3)) — p(x| h(t) )p(h'il} |h(2J )p(h(ﬂ) |h(3) )p(h(3))

» examples: variational autoencoders (VAE), generative adversarial networks (GAN),
sparse coding, helmholtz machines

* Properties

» pros: easy to sample from (ancestral sampling) (details in Lecture on “Generative Models”)

» cons: p(x) is intractable, so hard to train

https://ift6135h18.wordpress.com/author/aaroncourville/page/1/
Intern © Siemens AG 2017
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« Undirected graphical models

» define a joint energy function

E(x, hil), h(2), h{-‘i)) — —xWORDY _ hWRRG) _ h®WBIR®

» exponentiate and normalize |

p(x, h(L), h(z),h(:‘)) — exp (-E(x,hfl), h®. h(SJ)) /Z

» examples: deep Boltzmann machines (DBM), deep energy models

* Properties

» pros: can compute p(x) up to a multiplicative factor (true for RBMs not general BMs)

» cons: hard to sample from (MCMC), p(x) is intractable, so hard to train

https://ift6135h18.wordpress.com/author/aaroncourville/page/1/
Intern © Siemens AG 2017
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* Autoregressive generative models

» choose an ordering of the dimensions in x

» define the conditionals in the product rule expression of p(x) C@:O X

D
p(x) = ] plarlixar)
k=1

» examples: masked autoencoder distribution estimator (MADE), pixelCNN
neural autoregressive distribution estimator |(NADE)| spatial LSTM, pixelRNN

* Properties

»| pros: p(x) is tractable, so easy to train, easy to sample (though slower)

» cons: doesn't have a natural latent representation

https://ift6135h18.wordpress.com/author/aaroncourville/page/1/

Intern © Siemens AG 2017
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Restricted Boltzmann Machines (RBMs)

—> undirected probabilistic graphical model

—> unsupervised stochastic extractor of binary features (h)
—> trained using reconstruction objective

—> transform data into latent feature space and then reconstruct to learn data distribution
- Two layers: observed or visible (v) and latent hidden (h) layer
—> both visible and hidden are binary Binary hidden »
- energy-based models,

Therefore, joint probability distribution is given by its energy function:

1
P(’u, h) = — exp {—E(’Uj h)} . Binary visible »

Z
e [\
partition function energy binary visible binary hidden features

Further reading: https://ift6266h15.files.wordpress.com/2015/03/chapter21.pdf
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Restricted Boltzmann Machines (RBMs)

- Two layers: binary visible (v) and binary hidden (h) layer
- energy-based models,

Therefore, joint probability distribution is given by its energy function:

P(v,h) = 1 exp{—F(v,h)}.

Z
partition function energy binary visible binary hidden features

- energy function that parameterizes the relationship between the visible
and hidden variables

E(v,h)=-b'v—c' h—v'Wh

—> normalizing constant known as the partition function

E.g., adocument of 2000 unique words,

/ = exp{—F(v, h
v
summing over all states = summing exponential number of terms = computationally intractable P(v,h)
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Restricted Boltzmann Machines (RBMs)

- energy-based models,

1
Therefore, joint probability distribution is given by its energy function: P (v, h) = 7 €XP {—FE(v,h)}.

> energy function, E(v,h)=—-b'v—c'h—v' Wh
> partition function 7 = Z Zcxp {—F(v,h)}
v h

- conditional distributions from the joint distribution

Full conditional over the hidden layer as the factorial distribution:

p(h|v) =1I"_ p(h;|v) = IT?_,sigmoid(c; + v W. ;)

Full conditional over the visible layer as the factorial distribution:

p(v|h) = T p(v;|h) = %, sigmoid(b; + W; .h)
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Restricted Boltzmann Machines (RBMs)

- energy-based models,

1
Therefore, joint probability distribution is given by its energy function: P (v, h) = 7 €XP {—FE(v,h)}.

> energy function, E(v,h)=—-b'v—c'h—v' Wh
> partition function 7 = Z Z exp{—FE(v,h)}
v h

- conditional distributions from the joint distribution

Full conditional over the hidden layer as the factorial distribution:
p(hlv) = H?:lp(hﬂv) = H;?:lsigmoid(cj + VTW:,J')

encoding

J =1
P(hj =1|v) = sigmoid (r:j + HTW;J)
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Restricted Boltzmann Machines (RBMs)

- energy-based models,

1
Therefore, joint probability distribution is given by its energy function: P (v, h) = 7 €XP {—FE(v,h)}.

> energy function, E(v,h)=—-b'v—c'h—v' Wh
> partition function 7 = Z Z exp{—FE(v,h)}
v h

- conditional distributions from the joint distribution

Full conditional over the hidden layer as the factorial distribution:
p(hlv) = H?:lp(hﬂv) = H;?:lsigmoid(cj + VTW:,J')

encoding

i=1,..., 4
P(hj =1|v) = sigmoid (r:j + HTW;J)
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1
Therefore, joint probability distribution is given by its energy function: P(wv,h) = — exp{—FE(v,h)}.

A
> energy function, E(v,h)=—-b'v—c'h—v' Wh

Same W matrix in encoding and decoding
> partition function 7 = Z Z exp{—FE(v,h)}
v h

Restricted Boltzmann Machines (RBMs)

- energy-based models,

- conditional distributions from the joint distribution

Full conditional over the hidden layer as the factorial distribution:

p(h|v) = If_,p(h;|v) = IT}_;sigmoid(c; + v W. ;)

encoding
Full conditional over the visible layer as the factorial distribution: i =1

p(vih) = Hlep(vﬂh) — Hlesigmoid(bi + W, .h) p(vi|h) = sigmoid(b; + W;

Decoding/reconstruction

h)

5.
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Indoor-sport sport outdoor-sport
+139 b, bias of hidden

hidden nodes

visible nodes

0 0
p=0.024 p=0.279

N ol

c, bias of visible -0.62 -1.68 -0.63 -0.86 -1.70 -1.16

Chess Squash Hockey Tennis Cricket Football

https://jamesmccaffrey.wordpress.com/2017/06/02/restricted-boltzmann-machines-using-c/
Intern © Siemens AG 2017
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Cost: maximize log-likelihood of the data, v

Let us consider that we have a batch (or minibatch) of n examples taken from an i.i.d
dataset (independently and identically distributed examples) {v(),... v .. o™},
The log likelihood under the RBM with parameters b (visible unit blases), c (}:udden
unit biases) and W (interaction weights) is given by:

n
(W .b,c) = Elog P('v(*)) Trained efficiently using contrastive divergence (CD or PCD)
=1 =
" , Impractical to compute the exact log-likelihood gradient
=D log) P(vf).h) -
t=1 h

partition function (intractable)

2 ogzexp{ ~E(vW, h)})—n]og@

I
/'—__""\/"'—__"‘\

Intern © Siemens AG 2017

https://ift6266h15.files.wordpress.com/2015/03/chapter21.pdf
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Cost: maximize log-likelihood of the data, v
Let us consider that we have a batch (or minibatch) of n examples taken from an i.i.d
dataset (independently and identically distributed examples) {v(),... v .. o™},
The log likelihood under the RBM with parameters b (visible unit blases), c (hldden
unit biases) and W (interaction weights) is given by:

I
7

o

0]
s
=,

Trained efficiently using contrastive divergence (CD or PCD)

=

Impractical to compute the exact log-likelihood gradient

=

partition function (intractable)

~E(vW, h)}) — nloglZ

(W, b, c)

L https://ift6266h15.files.wordpress.com/2015/03/chapter21.pdf
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Py(v) = ‘Z(;) - 319 Y exp [vTW1h1+h‘Tw2h?+hﬂTw3h3] .
(6) (9) yaons et Higher-level features:

Combination of edges

Deep Boltzmann Machine 0= {W!' W? W?} model parameters

* Dependencies between hidden variables.

« All connections are undirected.

: ) Low-level features:

+ Bottom-up and Top-down: Edges

02 = 1 b%) = o (Wit + W)
k m \

Top-down Bottom-up

Input: Pixels

intractable

Input

Detailed lecture: https://www.youtube.com/watch?v=MnGXXDjGNdO
Intern © Siemens AG 2017
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Applications of RBMs

—> Unsupervised pre-training and transfer learning
- Once trained, can use W and biases as initial values for a neural net!

- W can be used to initialize neural networks
- latent vector as features into neural network

Training examples

Intern © Siemens AG 2017
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- Unsupervised pre-training and transfer learning
- Once trained, can use W and biases as initial values for a neural net!

Deep Boltzmann Machine Neural Network

h
w3
h?( B
W‘E
h!'C D
w]
A"

Input

- W can be used to initialize neural networks
- latent vector as features into neural network

Intern © Siemens AG 2017
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- RBM and DBM model binary input or real-valued input using Gaussian-RBMs

How to model count data?
e Example: Text document i.e., word counts.

a
@cat catches(a)mouse” S = @

1

0/

Intern © Siemens AG 2017
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RBM variants: Overview of Replicated Softmax (RSM)

» Generative Model of Word Counts F: #hidden units, | LatentTopies | LatentTopies
_ _ _ K: vocabulary size Y h ./)
» Family of different-sized RBMs N .
Wl WE

» Energy based undirected static topic model

F
E(V.,h) = ‘TYF‘”L"* 5 ZZ?J"P}* ) hja;

i=1 j=1 k=1 i=1 k=1 j=1
partition function (intractable)
k=11 0 1 2

P(V) = Zzﬂp (—=E(V.,h)) @ ZZE‘hp (—=E(V.h)) 2]

| Multinomial Visible |

Observed Softmax Visibles

exp (bf + Z;—l hJH k] kK| 0 0 0 0
Zf_l exp (:’J + Z;—l hiWi) A A Wy i
“a11 “Cat’ “a”

plh, =1V) = o|a;+ -L-*fl«’[-"f- : F K K F
= (ij ; ; J) E(V.h) = =Y Y Wfhjt* =) "8* = D> hja;

j=1 k=1 k=1 j=1

p(vi = 1|h)

<>

Gupta et al. 2018, Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time.
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Latent Topics

RBM variants: Overview of Replicated Softmax (RSM)

Latent Topics

F: #hidden units,
K: vocabulary size

» Family of different-sized RBMs .
,'EW\‘

» Energy based undirected static topic model ,

» Generative Model of Word Counts

X S YA
E(V,h) = _TYYH Eh vk ZZ?J‘“E}* Zh a; @ @ @v.
i=1 j=1 k=1 i=1 k=1 j=1 Observed Softmax Visibles
partition function (intractable) o1l 1 ) !
P(V) = = Zap —E(V.h)) @ Zzap (—E(V.h)) e
In RBM and RSM, p(v) is intractable !l [«<kL0 0 0
Wy Wy W3

“a,, ucatn ua

D K
plh; =1V) = o|a;+ -L-*E“'I-’E-"i-‘l’."'- ._ F K
’ ! Z Z ! E(V h) = - Z Z H';"hj ;:]}‘: —_

i=1 k=1
j=1 k=1

Gupta et al. 2018, Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time.

Seite 90 May 2017
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/ W2

| Multinomial Visible |

K

k=1

<>

F
Y *b* = DY hja,

j=1
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ldea: Tractable log-likelihood, p(v)

Intern © Siemens AG 2017
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Neural Autoregressive Distribution Estimator (NADE)

» NADE: Neural Autoregressive Distributional Estimator

» Inspired from R

BM,

» Generative model over binary observations v

» sampling each dimension one after another

Lo OO -
Some A~ ) (

| OS {0 O -
ordering O<§\:O o -

of v O :
; OO -
Or—w OO -
. O 500 units

blnary 784 units

Uria, Benigno, et al. "Neural Autoregressive Distribution Estimation®

Seite 92 May 2017
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784 units

SIEMENS

given previous variables

in the ordering

()]_]-
()_):1
o3 = 1

P (47Ef')rs:a = 1] il’»'o{-m;;)

P (I'Om =

] ‘ Lo7g L)

NADE is for binary data
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Neural Autoregressive Distribution Estimator (NADE)

» NADE: Neural Autoregressive Distributional Estimator
» Inspired from RBM Family therefore, energy based

» sampling each dimension one after another

p(v) = Hi , P(vi|v<;) and computes all p(v;|v~;) using the feed-forward architecture

h;(v;) =sigm (¢ + W, ;v;)
NADE is for binary data, p(v; = 1|v<;) =sigm(b; + V;_ .h;(v<;)) g
hip1(Veir1) =sigm(c+ Y Wiy, ) =sigm(W.,, +c+ > W.,,) binary () (9 ()
k<itl k<i

fori € {1,..., D}, where sigm(z) = 1/(1 + exp(—z)), W € RF*P and V € RP*H are con- NADE

nection parameter matrices, b € RP and ¢ € R¥ are bias parameter vectors, v.; 1s the subvector
[v1,...,v;_1]" and W. _; is a matrix made of the i — 1 first columns of W,

corresponds to a neural network with several parallel h;(v_.;) hidden layers

Advantages: Tractable p(v) = easier to train
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Neural Autoregressive Distribution Estimator (NADE)

» NADE: Neural Autoregressive Distributional Estimator
» Inspired from RBM Family therefore, energy based V

» sampling each dimension one after another

p(v) = Hi , P(vi|v<;) and computes all p(v;|v~;) using the feed-forward architecture

/7

h;(v.;) =sigm (¢ + W, .;v;)
NADE is for binary data, p(v; = 1|v.;) = sigm (b; + V; .h;(v<;)) [

hiy1(Veit1) = sigm(c + Z W. ) = sigm(W.,, + ¢+ th“k) binary @ @ @
k<i+1 k<1

fori € {1,...,D}, where sigm(z) = 1/(1 + exp(—x)), W € RF*P and V € RP*H are co NADE

nection parameter matrices, b € RP and ¢ € R¥ are bias parameter vectors, v.; 1s the subvector
[v1,...,v;_1]" and W. _; is a matrix made of the i — 1 first columns of W,

corresponds to a neural network with several parallel h;(v_.;) hidden layers

Advantages: Tractable p(v) = easier to train
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» NADE: Neural Autoregressive Distributional Estimator S @ @ @ @

Neural Autoregressive Distribution Estimator (NADE)

» Inspired from RBM Family therefore, energy based

» sampling each dimension one after another

p(v) = Hi , P(vi|v<;) and computes all p(v;|v~;) using the feed-forward architecture

h;(v.;) =sigm (¢ + W, .;v;)
NADE is for binary data, |p(v; = 1|v<;) = sigm (b; + V;.h;(v<;)) 25
hiy1(Veit1) = sigm(c + Z W. ) = sigm(W.,, + ¢+ th“k) binary @ @ @
k<i+1 k<1

fori € {1,...,D}, where sigm(z) = 1/(1 + exp(—x)), W € RF*P and V € RP*H are co NADE

nection parameter matrices, b € RP and ¢ € R¥ are bias parameter vectors, v.; 1s the subvector
[v1,...,v;_1]" and W. _; is a matrix made of the i — 1 first columns of W,

corresponds to a neural network with several parallel h;(v_.;) hidden layers

Advantages: Tractable p(v) = easier to train
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Training NADE plv; = 1lve;) = sigm (b; + V; h;(v.;))
- Ground truth values of the pixels are used for conditioning

Neural Autoregressive Distribution Estimator (NADE)

when predicting subsequent values
—> cost: maximize log-likelihood (logL)

—> optimize to maximize the logL by stochastic gradient descent (SGD)

D
ﬁ!.}m‘f\’f’nf)f‘;(v) — Z ]{]g I?('f’f‘v{i)

where, D is the number of words in document, v and

autoregressive conditional is given by:

p(v; = 1|v;) = sigm (b; + V; . h;(v;)) where, h;(v.;) =sigm(c+ W. ;v;)
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Training NADE p(v; = 1|ve;) = sigm (b; + V; ;h;(ve,))

Neural Autoregressive Distribution Estimator (NADE)

- Ground truth values of the pixels are used for conditioning

NADE: Alternative to RBMs with tractable p(v)

—> optimize to maximize the logL by stochastic gradient descent (SGD)

D
LPONADE (yy — Z log p(v;|v<i)

where, D is the number of words in document, v and

an autoregressive conditional is given by:

p(v; = 1|v;) = sigm (b; + V; . h;(v;)) where, h;(v.;) =sigm(c+ W. ;v;)
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Neural Autoregressive Distribution Estimator (NADE)

e | y
[
A

(Left): samples from NADE trained on a binary version of MNIST (Middle): probabilities from which pixel
was samples (Right): Visualization of some of the rows

https://ift6135n18.files.wordpress.com/2018/04/autoregressive_gen.pdf
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Neural Autoregressive Distribution Estimator (NADE)

(Left): samples from NADE trained on a binary version of MNIST (Middle): probabilities from which pixel
was samples (Right): Visualization of some of the rows

https://ift6135n18.files.wordpress.com/2018/04/autoregressive_gen.pdf
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NADE models binary input or real-valued input using reaINADE

How to model count data in NADE architecture?
e Example: Text document i.e., word counts.

a
@cat catches(a)mouse” S = @
o)

Intern © Siemens AG 2017
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- NADE model binary input or real-valued input using realNADE

How to model count data in NADE architecture?
e Example: Text document i.e., word counts.

1)
@cat catches(a)mouse” S = @
o e o i S

Intern © Siemens AG 2017
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Neural Autoregressive Topic Model (DocNADE)

Probabilistic graphical model that learns topics over sequences of words

» learn topic-word distribution based on word co-occurrences A AN AN AN
) &) &)

> learn distributed word representations — N\ f g /_l\ |

» compute joint distribution via autoregressive conditionals e —~

hp
» compute joint distribution or log-likelinood for a document, v )

in language modeling fashion

» interpreted as a neural network with several parallel hidden layers

» predict the word v;, given the sequence of preceding words v

CRCROXC
Modeling documents in NADE . DocNAD'E

Corporate Technology
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Neural Autoregressive Topic Model (DocNADE)

Probabilistic graphical model that learns topics over sequences of words
» learn topic-word distribution based on word co-occurrences

» learn distributed word representations

» compute joint distribution via autoregressive conditionals
» compute joint distribution or log-likelinood for a document, v
in language modeling fashion
» Iinterpreted as a neural network with several parallel hidden layers

» predict the word v,, given the sequence of preceding words v

Limitations: @ @
&\

» does not take into account the following words v, in the sequence - -
DocNADE

» poor in modeling short-text documents

(i.e., does not use pre-trained word embeddings)
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Neural Autoregressive Topic Model (DocNADE)

Probabilistic graphical model that learns topics over sequences of words
» learn topic-word distribution based on word co-occurrences

» learn distributed word representations

» compute joint distribution via autoregressive conditionals
» compute joint distribution or log-likelinood for a document, v
in language modeling fashion
» interpreted as a neural network with several parallel hidden layers
» predict the word v,, given the sequence of preceding words v

Limitations:

» does not take into account the following words v, in the sequence

DocNADE
» poor in modeling short-text documents due to limited context i.e., co-occurrences
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DocNADE Formulation autoregressive conditional, p(vi—3 | V<3)

» inspired by RBM, RSM and NADE models

Neural Autoregressive Topic Model (DocNADE)

» models the joint distribution of all words v,
V; € {1. cens K}

l.e., the index of the ith word in the dictionary of vocabulary size K

» a document v of size D is represented as, V = [1}1, ...,_‘UD]

» joint distribution p(v) computed via each autoregressive conditionals,

p(v) = [ 1.2, p(vilv<i)

// =\ ) .//’—\\“ '(V

I Vz

\1/} N4 \kg /

DocNADE
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DocNADE Formulation
» inspired by RBM, RSM and NADE models

» models the joint distribution of all words v,
V; € {1, ,K}

l.e., the index of the ith word in the dictionary of vocabulary size K

> a document v of size D is represented as, v. = [v1,...,vp]|

» joint distribution p(v) computed via each autoregressive conditionals,

—_
. D . N — D exp(bw+Uw,: hz-_(‘-;c:z))
p(V) Hi=1_10(_’uz |Vl<z) Hz:l S exp(by+ Uy . h (V=)

via a feed-forward neural network, where V«; € {’Ul, cens fUa-_l}

DocNADE

Intern © Siemens AG 2017
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DocNADE Formulation autoregressive Conditional P(Vi=3 | V<a)

» inspired by RBM, RSM and NADE models ~.

T

Neural Autoregressive Topic Model (DocNADE)

» models the joint distribution of all words v,
V; € {1 K}

l.e., the index of the ith word in the dictionary of vocabulary size K

» a document v of size D is represented as, V = [ful, ‘UD]

» joint distribution p(v) computed via each autoregressive conditionals,

D D exp(bw+Uw,: l’l1 Vi
p(v) = [T, p(vilv=i) =12, 2 =

=1 2o €XP(byr +U w t("c:t)) "
@ @ C

via a feed-forward neural network, where V«; € {U1¢ 1—1} @
DocNADE
or)

Tl}i(v<:i) = g(c+ Zk{i W

Topic matrix < : : -
P ME RE*K and U e RE*H
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S1: Deal with stock index fall
S2: Brace for market share drop

deal
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S1: Deal with stock index fall
S2: Brace for market share drop

deal
with
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index

fall
brace

for

market
share
drop
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deal | with stock index fall
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p(deal)p(with|deal) S1: Deal with stock index fall

© @ . @ . S2: Brace for market share drop

AN U/

~
~
-
~
-

deal
with
stock

index

fall
brace

for

market
share
drop

Tl)i(vi"i) — g(c + Zk{i VSYI:,’U;;)

Embedding aggregation

IRRRRRERCE

IRRRRRRCEN

_ RERRRRREM

deal |with |stock index fall
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p(deal)p(with|deal)

@ @ @ @
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S1: Deal with stock index fall
S2: Brace for market share drop

Tl)i(vi"i) — g(c + Zk{i VS(:,’U;:)

Embedding aggregation
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p(stock|deal, wi
p(deal)p(with|deal) D S1: Deal with stock index fall

- -- y ; y S2: Brace for market share drop
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=
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Coarse Granuality: Global View Fine Granuality: Local View
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~~ [li .
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= & © . ; 0.77
EEEN YOI |opesh o bl

---- Topic due to Word distributions across documents Nearest Neighbors of fall
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DocNADE Formulation

Properties of weight matrix, W @ _

/N U ¢ /N
Coarse Granuality: Global View Fine Granuality: Local View — —-
> each column-vector W. ., === fling hy | | n
WV i -y fall e i O
% 047‘ -

-> a vector for the word v; - o 075 fall 0
| @9{:@\%«%@&&3@5&@ drop <561 o5~ tumble

Topic due to Word distributions across documents Nearest Neighbors of fall

> each row-vector Wj :

—> a distribution over vocabulary of size K,

representing the jth topic I DOCN AIDE
» exploit column-vector property and introduce
additional matrix E, to incorporate pre-trained word embeddings

or distributional word representations
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DocNADE Formulation autoregressive Conditional P(Vi=3 | V<a)

> inspired by RBM, RSM and NADE models @ @ @

» models the joint distribution of all words v,
V; € {1 K}

l.e., the index of the ith word in the dictionary of vocabulary size K

Neural Autoregressive Topic Model (DocNADE)

» a document v of size D is represented as, V = [ful, ‘UD]
» joint distribution p(v) computed via each autoregressive conditionals,

D D eXp(bw‘l‘Uw hz(v-::*z,))
V) = - VilVei ) =
p(v) Hf;:l p( | <i) 1_[?,_ S exp(by +U ,.hz(vq))

' AN AR AN 7N
| | | || | !
via a feed-forward neural network, where V<; € {v1,...,0;_1} \.\( _/) § :_/}; S :_/J '\0.___/'_

g DocNADE
h;(vei) =g(c+ 2., W) :

Topic matrix < S ) S DOES NOT take into account the
where, e R“** and U € R*~* following words v.,

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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Document Representation in iDocNADE variants

book jesus windows gun Tasks: _ _
s —>Information retrieval

neighbors s; s, |neighbors s; s, |neighbors s; s, |neighbors s; s,
books .61 .84| christ .86 .83| dos .74 34| guns .72 .79 > document representation
reference .52 .51| god .78 .63| files .63 .36| firearms .63 .63 — word representation
published .46 .74|christians .74 49| version .59 43| criminal .63 .33 > text classification
reading .45 54| faith .71 .51 file 59 36| crime .62 .42 —> text clustering, etc.
author .44 77| bible .71 .51 unix D2 47| police .61 .43

Table 6: 20NS dataset: The five nearest neighbors by 1Doc-
NADE. s;: Cosine similarity between the word vectors from
1IDocNADE, for instance vectors of jesus and god. s,: Co-
sine similarity in embedding vectors from glove.

Visualizing or interpreting filters i.e., W matrix. (column vectors >word embeddings)

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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Document Representation in iDocNADE variants

Checkout the backup slides!!!

DocNADE | CiDocNADE >| DocNADEe Tasks:
— . . . . T - Information retrieval
beliefs, muslims, |scripture, atheists, | atheists, christianity, .

) , o o —> document representation
| forward, alt, s1p, .rel%glons, be!1eT, eternal: > word representation
islam, towards, christianity, lord, | atheism, catholic, > text classification

atheism, christianity, bible, msg, bible, arguments, - text clustering, etc.
hands, opinions heaven, jesus islam, religions
0.44 0.46 0.52

Topics (top 10 words) of 20NS with coherence

Visualizing or interpreting filtersi.e., W matrix. (row vectors -> topic information)

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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Document Representation in iDocNADE variants

Limitations:
Tasks:
— Bag-of-word models - Information retrieval
- missing word ordering - document representation

- word representation
—> text classification
—> text clustering, etc.

- missing local dynamics of the sequence

Extension(s):

- Joint neural autoregressive topic (e.g., DOCNADE) and
neural language models (e.g., RNN or LSTM)

- Introduce language concepts (e.g., word ordering, latent
syntactic and semantic information) into DocNADE

Further reading: https://arxiv.org/abs/1810.03947
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Compositional models in Neural Networks: RNN-LM or Recursive Neural Network or seg2seq (Lecture-05)

a cat catches a mouse

cat catches a

a
I A N
O W', | O W', | O W, O lw captures semantic
O O < O information, good for
O - WSD, etc.,
kS S i
O W, O W, O W, O W, captures syntactic P
O N[® S0 >0 information, good for
i g \ POS tagging, etc.,
o T & cal CGINONOING
<bos> a cat catches 1 3 1 5 1 3
The cat sat on the mat.

Generative Recurrent Neural Network (RNN) Recursive Neural Network

Ly = —log P(x¢|xt—q,Xt—2,..%1)

Intern © Siemens AG 2017
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Compositional Distributional Semantics

Compositional models in Neural Networks: RNN-LM or Recursive Neural Network or seg2seq (Lecture-05)

RNN-LM captures /ocal dynamics of the sequence, i.e., word ordering, syntactic and
semantic information from word co-occurrences in collocation/nearby patterns

—->RNN-LMs (or LSTM-LM) lack in capturing global semantics, i.e. long-term dependencies
- DocNADEs capture global semanticsin form of topics

U Whh U Whh U Whh U Whé U .Cap[uresf Syrtactc L") l;J NP
O 5 O S O N O O information, good for
‘ POS tagging, etc., /\
ﬁr T T [9 ] 5 7 8 9 4
<bos> a cat catches a 1 3 1 5 1 3
—> The cat sat on the mat.
time .
Generative Recurrent Neural Network (RNN) Recursive Neural Network
Ly = —log P(x¢|x;—1,X¢—2,--%1)

Intern © Siemens AG 2017
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Combine or Joint training of DocNADE and LSTM-LM: textTOvec

Coarse Granuality: Global View
Word occurrences across document

Fine Granuality: Local View

LR RERRE
A A -]
O © Q)

Embedding layer

A

DocNADE
Further reading. Gupta et al, 2018. text TOvec: https://arxiv.org/abs/1810.03947

Intern © Siemens AG 2017
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i i+1| occurences

; in collocation
% /. \x” patterns

or
=W+E

C] = x1, xz,...,xH
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Metric Learning for Similarity (overview)

Learn Text-Pair Representations
in a Highly Structured Space

semantic relatedness

score e.g., [1-5] (¥ ) gold predicted

o _ Sentence pair (G) (M)
Similarity metric _||ple) _ pb) A little girl is looking at a woman in costume.
exp (IR ~ 1|l ATile girl s Tookin |
young girl 1s looking at a woman in
costume. 477 438
A person is performing tricks on a motorcycle.
The performer is tricking a person on a
motorcycle. 26 29
Someone is pouring ingredients into a pot.
A man is removing vegetables from a pot. 24 25
Nobody is pouring ingredients into a pot.

Someone is pouring ingredients into a pot. 3.5 3.7

Word Embedding layer, i.e., distributional Word vectors

Aditya Thyagarajan and Jonas Mueller. 2016. Siamese Recurrent Architectures for Learning Sentence Similarity
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-> unsupervised learning for distributed representations in neural networks

Key Take Aways

—> pre-train and transfer learning to initialize neural networks for better convergence

-> distributed word representations encode syntactic, semantic information into vectors

—> metric learning to compute similarity over representations learned
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LMU

References, Resources and Further Reading

= https://www.cc.gatech.edu/classes/AY2019/cs7643 fall/slides/L1 intro.pdf
= https://www.cc.gatech.edu/classes/AY2019/cs7643 fall/

= Generative models: https://ift6135h18.wordpress.com/author/aaroncourville/page/1/

= Boltzmann Machines: http://www.iro.umontreal.ca/~bengioy/ift6266/H12/html/contents.html#contents-en

= Boltzmann Machines: https://ift6266h15.wordpress.com/cateqory/lectures/page/1/

= http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf
= https://ift6266h16.wordpress.com/2016/03/14/lecture-19-march-17th-2016-representation-learning/
= Generative models: https://ift6266h15.files.wordpress.com/2015/03/chapter21.pdf

= http://cse.litkgp.ac.in/~sudeshna/courses/DL17/Autoencoder-15-Mar-17.pdf

= https://www.cl.cam.ac.uk/~pv273/slides/UCLSIlides.pdf

» Autoregressive networks: https://ift6135h18.files.wordpress.com/2018/04/autoregressive _gen.pdf

= https://blog.acolyer.orq/2016/04/21/the-amazing-power-of-word-vectors/

» Plotting Samples and Filters: http://deeplearning.net/tutorial/utilities.html#how-to-plot

» iDocNADEe: Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
» ctx-DocANDEe (textTOvec): Gupta et al, 2018. textTOvec: https://arxiv.org/abs/1810.03947

» Siamese LSTM: Gupta et al, 2018. Replicated Siamese LSTM in Ticketing System for Similarity Learning and Retrieval in Asymmetric Texts
Intern © Siemens AG 2017
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Write me, If interested in ....

firstname.lasthame@siemens.com

@Linkedin: https.//www.linkedin.com/in/pankaj-gupta-6b95bb17/

About my research contributions:

https://scholar.google.com/citations?user=_Y|IJFOAAAAJ&hl=en
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Informed Document Autoregressive Topic Model with Word Embeddings

SIEMENS
Motivationl: Contextual Information

Source Text Sense/Topic
In biological brains, we study noisy neurons at cellular level -  “biological neural network”

‘ Like biological brains, study of noisy neurons in artificial neural networks - *“artificial neural network”

Training Contexts (Preceding + Following) Sense/Topic of “neurons”

Like biological brains, study of noisy - “biological neural network”

Like biological brains, study of noisy + in artificial neural networks —->  *“artificial neural network”

Context information around words helps in determining their actual meaning !!!

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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Informed Document Autoregressive Topic Model with Word Embeddings
Motivation2: Distributional Semantics for Lack of Context

» “Lack of Context” in short-text documents, e.g., headlines, tweets, etc.

» “Lack of Context” in a corpus of few documents
Difficult to learn good representation due to: Incoherent Topics, e.g., incoHerent

> small number of word co-occurrences Topicl: price, wall, china, fall, shares «
Topic2: shares, price, profits, rises, earnings «

‘ coherent

TO RESCUE: Use External/additional information, e.g., word embeddings
(encodes semantic and syntactic relatedness in words)

» significant word non-overlap

Deal with stock index falls |5 {rading

N g | A T Same
o word over ap< 047  0.36 5a l0.64 v0.61 > topic

(e.g., I-hot-encoding) | Brace for market share drops | > trading class

Cosine similarity in Word Embedding space
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@

@

@

@
Crlp@®
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@

L
O
Ot
(O
OF
Latent Topics
OFE:

| ﬁucNADE
» incorporating full contextual information around words in a document (preceding and following words)

iDocNADE

» boost the likelihood of each word and subsequently the document

» improved representation learning

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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@

Binary

LS

O
O
Ot
(Ot
Ost
Latent Topics

= “i""'f 7 Twr:;d
e
) @ @ ©) ©
cNADE |DocMA[iE ,

D logp(v) - = Z IOgP(Uilv-—;i) +10gp(’vg; |V>?3)
LPoeNAPE(v) = Z log p(vi|v<i) =) forward J t backward J

— = Tl)i(v<z') =g(C + W. o)

" h %'(V'ii) — g(c + Zk{i Wi,vk) - ’ f;@x |
WL (va) =g(T+ > W)
k>i

Intern © Siemens AG 2017
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+10 VilV=i
Incomplete Context Complete Context logp(vi|v=i)

around wordsin around wordsin backward
DocNADE iDocNADE ok )

Intern © Siemens AG 2017 fe>1i
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D
EDGCNADE(V) - Z log p(U¢'|V<t‘)

i=1

] Tl)z’(‘*'{i) = g(c + Zk{i Wi:’Uk)

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
Intern © Siemens AG 2017
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» introduce weighted word

embedding aggregation at
each autoregressive step k

» E as fixed prior

» topics with word embeddings

» generate a complementary

textual representation (duality)

D
EDGCNADE(V) — Z log p(U¢|V<i)

i=1

] Tl)z’("{i) = g(c + Zk{i Wiavk)

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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D
EDGCNADE(V) — Z log p(U¢'|V<::¢')

i=1

] Tl)z’("{i) = g(c + Zk{i Wiavk)

» introduce weighted word
embedding aggregation at
each autoregressive step k

» E as fixed prior

» topics with word embeddings

» generate a complementary

textual representation (duality)

'DocNADEe

B D<) =9(@+ YW 1A Eu)
k< k<i

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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» Deep, multiple hidden layer architectures

» Adding new hidden layers as in a regular deep feed-forward neural network

—>(d) —)-(d 1)

(Vi) = 9(?((1) W h (Vi)

introduce embedding prior E in the first hidden layer, ie.,
h—:e (1) (?(1) Z W(}U)k + A Z E:?'vk)

DeepVairantl DeepVairant2 DeepVairant3 DeepVairant4

DeepDNE iDeepDNE DeepDNEe iDeepDNEe

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
Intern © Siemens AG 2017
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Document Representation in iDocNADE variants

With the trained iDocNADEe (or DocNADE variants), the

representation (W e R) for a new document v* of size D*
1s extracted by summing the hidden representations from the
forward and backward networks to account for the context
information around each word in the words’ sequence, as

W) =g(@+ 3, Woa+X ) E_g)

k< D#* L< D% *
(v =g+ Y W AN E
1 (V ) T Q(C + Z :.'L-‘f‘: + Z :.'L-‘f‘:)
k=1 | k=1 |

‘ Therefore; <[]—C> — E‘?(V-I*) 4 fl_’(v*)

SIEMENS

Tasks:

—> Information retrieval

—> document representation
- word representation

—> text classification

—> text clustering, etc.

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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