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Lecture Outline

 Motivation: Distributed Feature Representations: What/Why?

 Strategies to obtain Feature Representation via Generative Models

- Auto-encoders

- Restricted Boltzmann Machines (RBMs) and Deep variants (DBM)

- Neural Autoregressive Model: NADE, DocNADE, etc. 

 Language Modeling for Distributional Semantics: 

(Tools: Word2vec, RNN-LM, RecvNN, textTOvec, etc.)

 Metric Learning (e.g. Siamese Networks) for Textual Similarity

 Compositionality: Recurrent vs Recursive (overview) (already covered in lecture 05)

 Multi-task Learning (overview) (already covered in lecture 05)
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Motivation: Representation Learning 

What is Representation Learning ? 

Why do we need Representation Learning ? 

How to form good Representations? 
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Motivation: Representation Learning 

Traditional Machine Learning
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Motivation: Representation Learning 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
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Motivation: Representation Learning 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Exploiting  compositionality gives an exponential gain in 
representation power-

(1) Distributed representations / embeddings

 feature learning

(2) Deep architectures

 multiple levels of feature learning

Compositionality to describe the world around us efficiently
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Motivation: Representation Learning 

Feature Learning

Representat ion 
Learning

cuisine_italian

content_cheese

content_tomato

content_pepper

content_wheat

Learning 
Algorithm

(e.g., metric 
learning)

Food

Hungry
Burger

pizzeria
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Motivation: Representation Learning 

Representation Learning (also known as feature learning)

Techniques to automatically discover the representations needed 

 for feature detection that explains the data,

 classification from raw data

Feature

 measurable property or characteristic of a phenomenon being observed

E.g., 

- shape, size, color, etc. of objects

- content, cuisine, color, etc. of food items

- syntactic and semantic relationships in words man

woman

king

queen buy

bought

money

dollar

Encodes gender Encodes gender Encodes verb form Encodes hyponym
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Motivation: Representation Learning 

RAW DATA

e.g., images, 
vedios, text , etc.

Representat ion 
Learning:

Feature 
Disentangling

Learning 
algorithm:

Performing 
tasks/act ions
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Why: Representation Learning 

Collect ion of  similar objects, based 
on shared [latent ] features
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Why: Representation Learning  

WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG

Word Analogy in distributional semantic vector space
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Why: Representation Learning 

HTTPS://WWW.SPRINGBOARD.COM/BLOG/INTRODUCTION-WORD-EMBEDDINGS/

Vector composition to determine semantic similarity in texts !!
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Why: Representation Learning 

HTTPS://WWW.SPRINGBOARD.COM/BLOG/INTRODUCTION-WORD-EMBEDDINGS/

A woman is behind the door

Place where I was born

Lion is the king of jungle

Country of my birth

A man was front of the window

Global warming impact

Vector composition to determine semantic similarity in phrases or sentences !!
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Motivation: Representation Learning 

How about CONTEXT in feature representat ion learning?

Food
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Motivation: Representation Learning 

How about CONTEXT in feature representat ion learning?

HALWA   

meaning
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Motivation: Representation Learning 

How about CONTEXT in feature representat ion learning?

I am very hungry, I will eat HALWA    
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Motivation: Representation Learning 

How about CONTEXT in feature representat ion learning?

I am very hungry, I will eat HALWA   

food
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Motivation: Representation Learning 

How about CONTEXT in feature representat ion learning?

Is it a good idea to eat HALWA after a meal ?
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Motivation: Representation Learning 

How about CONTEXT in feature representat ion learning?

Is it a good idea to eat HALWA after a meal ?

desert
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Motivation: Representation Learning 

How about CONTEXT in feature representat ion learning?

I put a cup of sugar too much in cooking HALWA ?

desert
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Why: Representation Learning? 

Unsupervised pre-training and Transfer learning

Training deep networks can be challenging

Loss function surfaces

Non-convex loss function

 in-appropriate initializers

 Initialisation is cricitial in Neural network training

 Using appropriate initializers for better convergence
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Why: Representation Learning? 

Transfer knowledge from previous learning: 

 Representations or features

 Explanatory factors

Previous learning from unlabeled data + labels for other tasks 

 Prior: shared underlying explanatory factors, in particularly between P(x) and P(Y|x)

http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf

Unsupervised pre-training and Transfer learning

Training deep networks can be challenging

initialize hidden layers using UNSUPERVISED learning

encode latent structure of input distribution in hidden layer
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Why: Representation Learning? 

transfer knowledge from previous learning: 

 Representations

 Explanatory factors

http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf

Unsupervised pre-training and Transfer learning
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Motivation: Good Representation

 Good features for successful machine learning, 
e.g., man human,      cat dog, 

buy bought, buy acquired Islam Christianity, etc

 Knowing features belief about objects in prior, 
e.g., features of car  has_wheel, has_glasses, is_automobile, relatedto_manufacturer, etc. 

 Handcrafting features vs automatic feature learning

 Representation learning:  Estimate features / factors / causes that explains the data  good representation 
i.e., good representation captures factors of variation that best explains the data  

 Learning representations from representations  Representation learning 
e.g., autoencoders, RBMs, RSMs, NADE, DocNADE, iDocNADEe, generative RNNs, 

encoder-decoders, etc. 
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Motivation: Distributed Representation Learning 

Local  Representat ions  vs  Distr ibuted Representat ions?
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Motivation: Local Representation of Symbols 

Consider a sequence s of words: “( a cat catches a mouse )”

A set of symbols is given by, D = {mouse, cat, a, catches, (, ) }

Given a set of symbols D, 

a local representation maps the i-th symbol in D to 

the i-th unit vector ei of real values of n dimension,

where n is the cardinality of D. 

Hence, the i-th unit vector represents the i-th symbol.
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Motivation: Local Representation of Symbols 

Consider a sequence s of words: “( a cat catches a mouse )”

A set of symbols is given by, D = {mouse, cat, a, catches, (, ) }

Local Representat ions

a sequence of  vectors

a bag-of-symbols

 a sequence of vectors representing the symbols in the sequence

 used in recurrent neural networks

a sequence is represented with one vector 
generally obtained with a weighted sum of 
vectors representing symbols, i.e., orderless

 SVM (used in Information Retrieval task)
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Motivation: Local Representation of Symbols 

Limitat ions of  Local Representat ion

 symbolic sequences cannot be fully reconstructed  

but it is possible to know which symbols were in the sequence.

 does not preserve sequence order

Local Representat ions

a sequence of  vectors

a bag-of-symbols

 Each vector has a one-to-one mapping to a symbol 

 Too sparse, extremely inefficient for a large symbol set
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Motivation: Local Representation of Symbols 

Limitat ions of  Local Representat ion

No information about words semantics

.

mouse cat

similarity

0.0

(1 0 0 0 0 0) (0 1 0 0 0 0)

One-hot vector

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/slides/L1_intro.pdf
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Motivation: Local Representation of Symbols 

Limitat ions of  Local Representat ion

No information about words semantics

.

mouse cat

similarity

0.0

mouse cat

similarity

0.80

0.4 0.7 0.1 0.5 0.8 0.9

(1 0 0 0 0 0) (0 1 0 0 0 0)

animalnoun

(i.e., dense vectors in distributed representations)

animalnounsize size
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Motivation: Local Representation of Symbols 

Limitat ions of  Local Representat ion

No information about words semantics

.

mouse cat

similarity

0.0

mouse cat

similarity

0.80

0.4 0.7 0.1 0.5 0.8 0.9

(1 0 0 0 0 0) (0 1 0 0 0 0)

animalnoun

(i.e., dense vectors in distributed representations)

animalnounsize size

How to obtain the distr ibuted representat ion?
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Motivation: Distributed Representation Learning 

What is Distr ibuted Representat ion Learning?

Distributed: “information is encoded by a multiplicity of features / factors / causes” 

Distributed representations: 

 vectors or tensors in metric spaces

 transformations of the data that compactly capture many different factors of variations

 underlying learning models are neural networks

E.g. Distributed word representations: 

Each word is represented as a dense and real-valued vector in low dimensional space,  

and each latent feature encodes syntactic and semantic relatedness information 

 addresses the Curse of Dimensionality
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Need for Distributed Representation Learning 

Inspired from Y. Bengio summer school, 2015
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Motivation: Distributed Representation Learning 

 dense vectors in distributed representations

 one concept represented by the dense vector
 one dimension per property

 enable to share similarity between more than two concepts

Distributed Representation by Hinton (1984)

mouse cat

similarity

0.80

0.4 0.7 0.1 0.5 0.8 0.9

animalnoun animalnounsize size

Power of 
Distributed 

Representations
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Motivation: Distributed Representation Learning 

Distributed Representation by Hinton (1984)

mouse cat

similarity

0.80

0.4 0.7 0.1 0.5 0.8 0.9

animalnoun animalnounsize size

Power of Distributed Representations
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Representations Learning

 Can we interpret each dimension/property?
 Lack of interpretability in dense representations 
learned by Deep Learning
 Hard to track down what’s failing 

Representat ion Learning

interpretabil i ty composit ionality

components

 Hierarchical composition
 Deep Learning is very good !!!
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Distributed Representation Learning in Deep Networks

Distributed Representations in Deep Leaning !!! 
Yes it works, but how?

Representation learning: Attempts to automatically learn good features or representations 
Deep Learning: Attempts to learn multiple levels of representations of increasing abstraction  
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Distributed Representation Learning in Neural Networks 

 Key concept in neural networks: Distributed Representation Learning   

Key questions: 

• How can a neural network be so effective representing objects when it has only a 
few hidden units (i.e. much fewer units than possible objects)? 

• What is each hidden unit actually representing? 

• How can a neural network generalize to objects that is has never seen before?
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Distributed Representations in Deep Learning

Deep Learning = Hierarchical Compositionality
– Cascade of non-linear transformations 

– Multiple layers of representations
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Distributed Representations in Deep Learning

Deep Learning = Hierarchical Compositionality
– Cascade of non-linear transformations 

– Multiple layers of representations

 No single neuron “encodes” everything

 Groups of neurons work together
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Representation Learning: Supervised vs Unsupervised

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x  y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/
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Representation Learning: Supervised vs Unsupervised

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

K-means clustering
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Representation Learning: Supervised vs Unsupervised

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Principal Component Analysis 
(Dimensionality reduction)

3-d 2-d
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Representation Learning: Supervised vs Unsupervised

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

1-d density estimation
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Representation Learning: Supervised vs Unsupervised

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.
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Generative Models for Representation Learning

Generative Classification

 Model p(x, y); estimate p(x|y) and p(y)

 Use Bayes Rule to predict y, e.g. Naïve Bayes

Discriminative Classification

 Estimate p(y|x) directly, e.g. Logistic Regression, CNN, RNN, etc. 

Density Estimation

 Model p(x), e.g. RBMs, VAEs, NADE, RSM, DocNADE, etc.

Lecture 04, 05

This lecture
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[Deep] Generative Models for Representation Learning 

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Several flavors:
 Explicit density estimation: explicitly define and solve for pmodel(x) 
Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

Training generative models can enable inference of  latent representations, used as general features

Density estimation: a core problem in unsupervised learning
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[Deep] Generative Models for Representation Learning 

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Several flavors:
 Explicit density estimation: explicitly define and solve for pmodel(x) 
Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

Training generative models can enable inference of  latent representations, used as general features

Density estimation: a core problem in unsupervised learning

Unsupervised Representation Learning to 
exploits tons to unlabeled data
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[Deep] Generative Models for Representation Learning 

http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf
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[Deep] Generative Models for Representation Learning: Purpose 

http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf

TO DO: Motivation: image manifoldManifolds 

probability mass concentrates near regions that have a much smaller 
dimensionality than the original space where the data lives

Manifold Learning via Generative Models

Learning complex and useful data projections
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Reconstruction Objective

http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf

Reconstruction Objective

 train a network to learn weights such as the network can reconstruct the input, 

given the output (e.g., hidden vector encoding the input)!!! 
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BREAK
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Learning Distr ibuted Word Representat ions 
(i .e., word embeddings) 
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Distributional Language Semantics: Tools for Language Modeling

Distributed word representation

 represent (embed) words in a continuous vector space where semantically similar words 

are mapped to nearby points

 describe meaning of words and sentences with vectorial representations 

Idea1: “you shall judge a word by the company it keeps”

Idea2:  Distributional hypothesis: “words have similar meaning if used in similar contexts ”
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Why: Distributed Word Representations

WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG

 words sharing similar attributes are similar

E.g., dog is more similar to cat than to car as dog and cat share more attributes than dog and car

 word-to-word matrices obtained by observing n-word windows of target words

Small corpus of 3 sentence/documents

Local representation: BoW Distributed representation: 
a word-to-word matrix considering 
a 1-word window of context

co-occurrence matrix 
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Why: Distributed Word Representations

WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG

 words sharing similar attributes are similar. 

E.g., dog is more similar to cat than to car as dog and cat share more attributes than dog and car.

 word-to-word matrices obtained by observing n-word windows of target words

Small corpus of 3 sentence/documents

Local representation: BoW Distributed representation: 
a word-to-word matrix considering 
a 1-word window of context

co-occurrence matrix 
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Why: Distributed Word Representations

WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG

 words sharing similar attributes are similar. 

E.g., dog is more similar to cat than to car as dog and cat share more attributes than dog and car.

 word-to-word matrices obtained by observing n-word windows of target words

Small corpus of 3 sentence/documents

Local representation: BoW Distributed representation: 
a word-to-word matrix considering 
a 1-word window of context

co-occurrence matrix 
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Why: Distributed Word Representations

WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG

 words sharing similar attributes are similar. 

E.g., dog is more similar to cat than to car as dog and cat share more attributes than dog and car.

 word-to-word matrices obtained by observing n-word windows of target words

Small corpus of 3 sentence/documents
Distributed representation:  a word-to-word matrix 
considering  a 1-word window of context

co-occurrence matrix 

similar in distributed
representation space
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Why: Distributed Word Representations

WWW.TENSORFLOW.ORG/IMAGES/LINEAR-RELATIONSHIPS.PNG

 words sharing similar attributes are similar. 

E.g., dog is more similar to cat than to car as dog and cat share more attributes than dog and car.

 word-to-word matrices obtained by observing n-word windows of target words

Small corpus of 3 sentence/documents
Distributed representation:  a word-to-word matrix 
considering  a 1-word window of context

However, original co-occurrence matrix is very costly to obtain and store

 Need compact distributed vectors
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Learning Compact Distributed Word Representations

Word2vec: Tool to generate Word embeddings (i.e., distributed word representation) using large corpus
 represent (embed) words in a 

continuous vector space 

where semantically similar words 

are mapped to nearby points

 uses contextual information to learn 

word vectors 

 neural network predicts a target word 

from the words surrounding it (context) 

 no explicitly co-occurrence matrix

 no explicit association between word pairs

 distribution of the words learned implicitly

 compact distributed representation

a cat catches a mouse

Target word | given context

Word2vec: Continuous Bag Of Words (CBOW)

 dimensions of vectors not interpretable
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Why: Power of Distributed Word Representation

Word analogy using vector operation: http://bionlp-www.utu.fi/wv_demo/ Let‘s TRY !!

Further reading: doc2vec, LDA, LSA, etc.

http://bionlp-www.utu.fi/wv_demo/
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[Deep] Generative Models for Representation Learning 

Family of Generative Models 

Approximate Density Tractable Density

e.g., 
 NADE, MADE 
 DocNADE
 iDocNADEe
 PixelRNN/CNN

e.g., 
 Variational Autoencoders,
RBMs, DBN, DBM,
 RSM
 RNN-RSM

Strategies to obtaining Distributed Representations
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[Deep] Generative Models for Representation Learning 

Approximate Density Tractable Density

e.g., 
 NADE, MADE
 DocNADE
 iDocNADEe
 PixelRNN/CNN

e.g., 
 Variational Autoencoders,
 RBMs, DBN, DBM,
 RSM
 RNN-RSM

we will discuss the 
highlighted ones Strategies to obtaining Distributed Representations

Family of Generative Models 
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Auto-encoders (AEs) 

 a feed-forward neural network trained to reproduce its input at the output layer

https://andre-martins.github.io/docs/dsl2018/lecture_06.pdf (LeCun, 1987; Bourlard and Kamp, 1988; Hinton and Zemel, 1994)

input

Reconstructed 
input

feature-vector or
representation

maps from feature space 
back into input space

measure discrepancy b/w input and its reconstruction 
over training samples 

(minimizing reconstruction error by SGD) Input layer

encoding layer

decoding layer

compresses the input into a latent-space representation

reconstruct the input from the latent representation

https://andre-martins.github.io/docs/dsl2018/lecture_06.pdf
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Auto-encoders (AEs) 

x h 
(representation encoding input)

captures useful properties of the data distribution or means to represent data or explanatory factors
 dimension(h) < dimension(x)   undercomplete i.e. learn to capture useful features
dimension(h) > dimension(X)   overcomplete i.e. learn copy input to output
Difficult to interpret

compression

trained to copy input to output
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Auto-encoders (AEs) 

x h 
(representation encoding input)

captures useful properties of the data distribution or means to represent data or explanatory factors
 dimension(h) < dimension(x)   undercomplete i.e. learn to capture useful features
dimension(h) > dimension(X)   overcomplete i.e. learn copy input to output
Difficult to interpret

compression

trained to copy input to output

Undercomplete AE  capture useful info about data
Overcomplete AE    still captures interesting features, but apply constraints on X or h 
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Benefits of Auto-encoders (AEs) 

 a feed-forward neural network trained to reproduce its input at the output layer
Key Facts about AEs:

 unsupervised ML algorithm, similar to PCA 

 neural network’s target output is its input

 learn latent features/encoding of input (no manual feature engineering)

 represent both linear and non-linear transformation in encoding

layered to form deep learning network, i.e., distributed representations

 tractable / easier optimization

 applications in denoising and dimensionality reduction (dense representation) 

 powerful non-linear (i.e., non-linear encoding and decoding) generalization of PCA

http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/
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Auto-encoders (AEs) 

Limitations of (regular) Autoencoders

 Need to Conceptualize, not only compress…….

Different variants to rescue………………!!!
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Auto-encoders (AEs) variants 

Autoencoder variants:

1. Denoising Autoencoders

2. Sparse Autoencoders

3. Convolutional Autoencoders

4. Variational Autoencoders (VAE)

5. Contractive Autoencoders (CAE)

6. Stacked Autoencoders, etc…

……..details later in the lecture series (Lecture on “Generative Models”)

Off l ine

Idea: Constraint the reconstruction of an autoencoder
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Family of Neural Generative Models
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Family of Generative Models 

https://ift6135h18.wordpress.com/author/aaroncourville/page/1/

(details in Lecture on “Generative Models”)
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Family of Generative Models 

https://ift6135h18.wordpress.com/author/aaroncourville/page/1/
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Family of Generative Models 

https://ift6135h18.wordpress.com/author/aaroncourville/page/1/
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Undirected (Generative) Probabilistic Graphical Models
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Restricted Boltzmann Machines (RBMs)

Further reading: https://ift6266h15.files.wordpress.com/2015/03/chapter21.pdf

 undirected probabilistic graphical model

 unsupervised stochastic extractor of binary features (h)

 trained using reconstruction objective

 transform data into latent feature space and then reconstruct to learn data distribution 

 Two layers: observed or visible (v) and latent hidden (h) layer

 both visible and hidden are binary

 energy-based models,

Therefore, joint probability distribution is given by its energy function: 

Binary hidden

Binary visible

energy binary visible binary hidden featurespartition function

W

https://ift6266h15.files.wordpress.com/2015/03/chapter21.pdf
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Restricted Boltzmann Machines (RBMs)

 Two layers:  binary visible (v) and binary hidden (h) layer

 energy-based models,

Therefore, joint probability distribution is given by its energy function: 

energy binary visible binary hidden featurespartition function W
 energy function that parameterizes the relationship between the visible 
and hidden variables

 normalizing constant known as the partition function

summing over all states  summing exponential number of terms  computationally intractable P(v,h)

2dim(v) 2dim(h)  22000 250  intractable

E.g.,  a document of 2000 unique words,
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Restricted Boltzmann Machines (RBMs)

 energy-based models,

Therefore, joint probability distribution is given by its energy function: 

W

 energy function, 

 partition function

 conditional distributions from the joint distribution

Full conditional over the hidden layer as the factorial distribution:

Full conditional over the visible layer as the factorial distribution:
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Restricted Boltzmann Machines (RBMs)

 energy-based models,

Therefore, joint probability distribution is given by its energy function: 

W

 energy function, 

 partition function

 conditional distributions from the joint distribution

Full conditional over the hidden layer as the factorial distribution:

j =1
encoding
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Restricted Boltzmann Machines (RBMs)

 energy-based models,

Therefore, joint probability distribution is given by its energy function: 

W

 energy function, 

 partition function

 conditional distributions from the joint distribution

Full conditional over the hidden layer as the factorial distribution:

j =1,…, 4
encoding
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Restricted Boltzmann Machines (RBMs)

 energy-based models,

Therefore, joint probability distribution is given by its energy function: 

 energy function, 

 partition function

 conditional distributions from the joint distribution

Full conditional over the hidden layer as the factorial distribution:

Full conditional over the visible layer as the factorial distribution:

Decoding/reconstruction

W

encoding
i =1

Same W matrix in encoding and decoding

W
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Restricted Boltzmann Machines (RBMs): Illustration

W

c, bias of visible

b, bias of hidden

FootballCricketHockey TennisChess Squash

Indoor-sport outdoor-sportsport

https://jamesmccaffrey.wordpress.com/2017/06/02/restricted-boltzmann-machines-using-c/
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Training RBMs

Cost: maximize log-likelihood of the data, v

partition function (intractable)

https://ift6266h15.files.wordpress.com/2015/03/chapter21.pdf

Impractical to compute the exact log-likelihood gradient

Trained efficiently using contrastive divergence (CD or PCD)
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Training RBMs

Cost: maximize log-likelihood of the data, v

partition function (intractable)

https://ift6266h15.files.wordpress.com/2015/03/chapter21.pdf

Impractical to compute the exact log-likelihood gradient

Trained efficiently using contrastive divergence (CD or PCD)
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Stacked RBMs: Deep Boltzmann Machine (DBM)

Detailed lecture: https://www.youtube.com/watch?v=MnGXXDjGNd0

intractable

https://www.youtube.com/watch?v=MnGXXDjGNd0


Intern © Siemens AG 2017
May 2017Seite 86 Corporate Technology

Applications of RBMs

 Unsupervised pre-training and transfer learning 
 Once trained, can use W and biases as initial values for a neural net!

Filter (W) from 1st layer: “pen-strokes”

W

W can be used to initialize neural networks
 latent vector as features into neural network
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Applications of DBMs

 Unsupervised pre-training and transfer learning 
 Once trained, can use W and biases as initial values for a neural net!

W can be used to initialize neural networks
 latent vector as features into neural network
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RBM variants: How to model Word Counts?

 RBM and DBM model binary input or real-valued input using Gaussian-RBMs

How to model count data? 
Example: Text document i.e., word counts. 

“a cat catches a mouse”
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RBM variants:  Overview of Replicated Softmax (RSM)

 Generative Model of Word Counts

 Family of different-sized RBMs

 Energy based undirected static topic model 

partition function (intractable)

“a” “a”“cat”

F: #hidden units, 
K: vocabulary size

Gupta et al. 2018, Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time.
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RBM variants:  Overview of Replicated Softmax (RSM)

 Generative Model of Word Counts

 Family of different-sized RBMs

 Energy based undirected static topic model 

partition function (intractable)

“a” “a”“cat”

F: #hidden units, 
K: vocabulary size

Gupta et al. 2018, Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time.

In RBM and RSM, p(v) is intractable !!! 
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Neural Autoregressive Distribution Estimator (NADE) models

Idea: Tractable log-likelihood, p(v)
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Neural Autoregressive Distribution Estimator (NADE)

 NADE: Neural Autoregressive Distributional Estimator

 Inspired from RBM, 

 Generative model over binary observations v

 sampling each dimension one after another

W
V

binary

Some 
ordering 
of v

given previous variables 

in the ordering

NADE is for binary data Uria, Benigno, et al. "Neural Autoregressive Distribution Estimation“
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Neural Autoregressive Distribution Estimator (NADE)

 NADE: Neural Autoregressive Distributional Estimator

 Inspired from RBM Family therefore, energy based

 sampling each dimension one after another

W

V

Advantages: Tractable p(v)  easier to train

binary
NADE is for binary data, 
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Neural Autoregressive Distribution Estimator (NADE)

 NADE: Neural Autoregressive Distributional Estimator

 Inspired from RBM Family therefore, energy based

 sampling each dimension one after another

Advantages: Tractable p(v)  easier to train

NADE is for binary data, W

V

binary
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Neural Autoregressive Distribution Estimator (NADE)

 NADE: Neural Autoregressive Distributional Estimator

 Inspired from RBM Family therefore, energy based

 sampling each dimension one after another

Advantages: Tractable p(v)  easier to train

NADE is for binary data, W

V

binary
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Neural Autoregressive Distribution Estimator (NADE)

Training NADE

 Ground truth values of the pixels are used for conditioning

when predicting subsequent values

 cost: maximize log-likelihood (logL)

 optimize to maximize the logL by stochastic gradient descent (SGD)

where, D is the number of words in document, v and 

autoregressive conditional is given by:

where, 
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Neural Autoregressive Distribution Estimator (NADE)

Training NADE

 Ground truth values of the pixels are used for conditioning

when predicting subsequent values

 cost: maximize log-likelihood (logL)

 optimize to maximize the logL by stochastic gradient descent (SGD)

where, D is the number of words in document, v and 

an autoregressive conditional is given by:

where, 

NADE: Alternative to RBMs with tractable p(v) 
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Neural Autoregressive Distribution Estimator (NADE)

https://ift6135h18.files.wordpress.com/2018/04/autoregressive_gen.pdf

(Left): samples from NADE trained on a binary version of MNIST  (Middle): probabilities from which pixel 
was samples  (Right): Visualization of some of the rows
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Neural Autoregressive Distribution Estimator (NADE)

https://ift6135h18.files.wordpress.com/2018/04/autoregressive_gen.pdf

(Left): samples from NADE trained on a binary version of MNIST  (Middle): probabilities from which pixel 
was samples  (Right): Visualization of some of the rows

NADE/RBMs latent features on interpretable !!!
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Modeling documents in NADE

NADE models binary input or real-valued input using realNADE

How to model count data in NADE architecture? 
Example: Text document i.e., word counts. 

“a cat catches a mouse”

DocNADE
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BREAK
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Modeling documents in NADE

 NADE model binary input or real-valued input using realNADE

How to model count data in NADE architecture? 
Example: Text document i.e., word counts. 

“a cat catches a mouse”

DocNADE
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Neural Autoregressive Topic Model (DocNADE)

Probabilistic graphical model that learns topics over sequences of words 

 learn topic-word distribution based on word co-occurrences 

 learn distributed word representations 

 compute joint distribution via autoregressive conditionals

 compute joint distribution or log-likelihood for a document, v

in language modeling fashion 

 interpreted as a neural network with several parallel hidden layers

 predict the word vi, given the sequence of preceding words v<i

Modeling documents in NADE
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Neural Autoregressive Topic Model (DocNADE)

Probabilistic graphical model that learns topics over sequences of words 

 learn topic-word distribution based on word co-occurrences 

 learn distributed word representations 

 compute joint distribution via autoregressive conditionals

 compute joint distribution or log-likelihood for a document, v

in language modeling fashion 

 interpreted as a neural network with several parallel hidden layers

 predict the word vi, given the sequence of preceding words v<i

Limitations:

 does not take into account the following words v>i in the sequence

 poor in modeling short-text documents 

(i.e., does not use pre-trained word embeddings)
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Neural Autoregressive Topic Model (DocNADE)

Probabilistic graphical model that learns topics over sequences of words 

 learn topic-word distribution based on word co-occurrences 

 learn distributed word representations 

 compute joint distribution via autoregressive conditionals

 compute joint distribution or log-likelihood for a document, v

in language modeling fashion 

 interpreted as a neural network with several parallel hidden layers

 predict the word vi, given the sequence of preceding words v<i

Limitations:

 does not take into account the following words v>i in the sequence

 poor in modeling short-text documents due to limited context i.e., co-occurrences
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Neural Autoregressive Topic Model (DocNADE)

DocNADE Formulation

 inspired by RBM, RSM and NADE models 

 models the joint distribution of all words vi

i.e., the index of the ith word in the dictionary of vocabulary size K

 a document v of size D is represented as,

 joint distribution p(v) computed via each autoregressive conditionals, 

autoregressive conditional, p(vi=3 | v<3)
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Neural Autoregressive Topic Model (DocNADE)

DocNADE Formulation

 inspired by RBM, RSM and NADE models 

 models the joint distribution of all words vi

i.e., the index of the ith word in the dictionary of vocabulary size K

 a document v of size D is represented as,

 joint distribution p(v) computed via each autoregressive conditionals, 

via a feed-forward neural network, where

autoregressive conditional, p(vi=3 | v<3)
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Neural Autoregressive Topic Model (DocNADE)

DocNADE Formulation

 inspired by RBM, RSM and NADE models 

 models the joint distribution of all words vi

i.e., the index of the ith word in the dictionary of vocabulary size K

 a document v of size D is represented as,

 joint distribution p(v) computed via each autoregressive conditionals, 

via a feed-forward neural network, where

where,
Topic matrix 

autoregressive conditional, p(vi=3 | v<3)
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Neural Autoregressive Topic Model (DocNADE)

S1: Deal with stock index fall
S2: Brace for market share drop

deal with stock index fall
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Neural Autoregressive Topic Model (DocNADE)

S1: Deal with stock index fall
S2: Brace for market share drop

deal with stock index fall

p(deal)
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Neural Autoregressive Topic Model (DocNADE)

S1: Deal with stock index fall
S2: Brace for market share drop

deal with stock index fall

p(deal)p(with|deal)

Embedding aggregation
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Neural Autoregressive Topic Model (DocNADE)

S1: Deal with stock index fall
S2: Brace for market share drop

deal with stock index fall

p(deal)p(with|deal)
p(stock|deal, with)

Embedding aggregation
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Neural Autoregressive Topic Model (DocNADE)

S1: Deal with stock index fall
S2: Brace for market share drop

deal with stock index fall

p(deal)p(with|deal)
p(stock|deal, with)

p(fall|deal, with, stock, index)

Embedding aggregation
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Neural Autoregressive Topic Model (DocNADE)

DocNADE Formulation

Properties of weight matrix, W

 each column-vector W:,vi
 a vector for the word vi

 each row-vector Wj,:
 a distribution over vocabulary of size K,    

representing the jth topic 

 exploit column-vector property and introduce 

additional matrix E, to incorporate pre-trained word embeddings 

or distributional word representations 



Intern © Siemens AG 2017
May 2017Seite 115 Corporate Technology

Neural Autoregressive Topic Model (DocNADE)

DocNADE Formulation

 inspired by RBM, RSM and NADE models 

 models the joint distribution of all words vi

i.e., the index of the ith word in the dictionary of vocabulary size K

 a document v of size D is represented as,

 joint distribution p(v) computed via each autoregressive conditionals, 

via a feed-forward neural network, where

where,
DOES NOT take into account the 
following words v>i

autoregressive conditional, p(vi=3 | v<3)

Topic matrix 

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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DocNADE extensions……… 
Exploit ing distr ibuted word representat ions (word embeddings)

+
Full Context  informat ion  

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior

Checkout the backup sl ides, i f  interested !!!
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Document Representation in iDocNADE variants

Tasks:
Information retrieval 
 document representation 
 word representation 
 text classification 
 text clustering, etc. 

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior

Visualizing or interpret ing f i l ters i.e., W matrix. (column vectors word embeddings)
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Document Representation in iDocNADE variants

Tasks:
Information retrieval 
 document representation 
 word representation 
 text classification 
 text clustering, etc. 

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior

Visualizing or interpret ing f i l ters i.e., W matrix. (row vectors  topic informat ion)

Checkout the backup slides!!!
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Document Representation in iDocNADE variants

Tasks:
Information retrieval 
 document representation 
 word representation 
 text classification 
 text clustering, etc. 

Limitat ions: 

 Bag-of-word models

 missing word ordering

 missing local dynamics of the sequence

Extension(s):

 Joint neural autoregressive topic (e.g., DocNADE) and 
neural language models (e.g., RNN or LSTM)

 Introduce language concepts (e.g., word ordering, latent 
syntactic and semantic information) into DocNADE 

Further reading: https://arxiv.org/abs/1810.03947

https://arxiv.org/abs/1810.03947
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Compositional Distributional Semantics

Compositional models in Neural Networks: RNN-LM or Recursive Neural Network or seq2seq (Lecture-05)

a

Generative Recurrent Neural Network (RNN)

cat catches a

cat catches a mouse

time

<bos>

a

W’hh W’hh W’hh W’hh

a cat catches a mouse

Recursive Neural Network

Whh Whh Whh Whh
captures syntactic 
information, good for 
POS tagging, etc., 

captures semantic 
information, good for 
WSD, etc., 



Intern © Siemens AG 2017
May 2017Seite 121 Corporate Technology

Compositional Distributional Semantics

Compositional models in Neural Networks: RNN-LM or Recursive Neural Network or seq2seq (Lecture-05)

a

Generative Recurrent Neural Network (RNN)

cat catches a

cat catches a mouse

time

<bos>

a

W’hh W’hh W’hh W’hh

a cat catches a mouse

Recursive Neural Network

Whh Whh Whh Whh
captures syntactic 
information, good for 
POS tagging, etc., 

captures semantic 
information, good for 
WSD, etc., 

RNN-LM captures local dynamics of the sequence, i.e., word ordering, syntact ic and 
semant ic informat ion from word co-occurrences in collocat ion/nearby pat terns

RNN-LMs (or LSTM-LM) lack in capturing global semant ics, i .e. long-term dependencies

 DocNADEs capture global semant ics in form of topics 
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Distributional Representations: Local and Global Semantics

Combine or Joint  t raining of DocNADE and LSTM-LM: textTOvec

Further reading: Gupta et al, 2018. textTOvec: https://arxiv.org/abs/1810.03947

https://arxiv.org/abs/1810.03947
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Metric Learning for Similarity (overview) 

Aditya Thyagarajan and Jonas Mueller. 2016. Siamese Recurrent Architectures for Learning Sentence Similarity

Similarity metric

semantic relatedness 
score  e.g., [1-5] gold predicted

Learn Text-Pair Representations
in a Highly Structured Space

Word Embedding layer, i.e., distributional Word vectors 
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Key Take Aways

 unsupervised learning for distributed representations in neural networks 

 pre-train and transfer learning to initialize neural networks for better convergence

 distributed word representations encode syntactic, semantic information into vectors

 metric learning to compute similarity over representations learned    
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References, Resources and Further Reading 

 https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/slides/L1_intro.pdf

 https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/

 Generative models: https://ift6135h18.wordpress.com/author/aaroncourville/page/1/

 Boltzmann Machines: http://www.iro.umontreal.ca/~bengioy/ift6266/H12/html/contents.html#contents-en

 Boltzmann Machines: https://ift6266h15.wordpress.com/category/lectures/page/1/

 http://www.iro.umontreal.ca/~bengioy/ift6266/H16/representation-learning.pdf  

 https://ift6266h16.wordpress.com/2016/03/14/lecture-19-march-17th-2016-representation-learning/

 Generative models: https://ift6266h15.files.wordpress.com/2015/03/chapter21.pdf

 http://cse.iitkgp.ac.in/~sudeshna/courses/DL17/Autoencoder-15-Mar-17.pdf

 https://www.cl.cam.ac.uk/~pv273/slides/UCLSlides.pdf

 Autoregressive networks: https://ift6135h18.files.wordpress.com/2018/04/autoregressive_gen.pdf

 https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

 Plotting Samples and Filters: http://deeplearning.net/tutorial/utilities.html#how-to-plot

 iDocNADEe: Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior

 ctx-DocANDEe (textTOvec): Gupta et al, 2018. textTOvec: https://arxiv.org/abs/1810.03947

 Siamese LSTM: Gupta et al, 2018. Replicated Siamese LSTM in Ticketing System for Similarity Learning and Retrieval in Asymmetric Texts

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/slides/L1_intro.pdf
https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/
https://ift6135h18.wordpress.com/author/aaroncourville/page/1/
http://www.iro.umontreal.ca/%7Ebengioy/ift6266/H12/html/contents.html
https://ift6266h15.wordpress.com/category/lectures/page/1/
https://ift6266h16.wordpress.com/2016/03/14/lecture-19-march-17th-2016-representation-learning/
https://ift6266h15.files.wordpress.com/2015/03/chapter21.pdf
http://cse.iitkgp.ac.in/%7Esudeshna/courses/DL17/Autoencoder-15-Mar-17.pdf
https://www.cl.cam.ac.uk/%7Epv273/slides/UCLSlides.pdf
https://ift6135h18.files.wordpress.com/2018/04/autoregressive_gen.pdf
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
http://deeplearning.net/tutorial/utilities.html
https://arxiv.org/abs/1810.03947
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Thanks !!!  Question ???

Write me, if interested in ….

firstname.lastname@siemens.com

@Linkedin: https://www.linkedin.com/in/pankaj-gupta-6b95bb17/

About my research contributions:

https://scholar.google.com/citations?user=_YjIJF0AAAAJ&hl=en

https://www.linkedin.com/in/pankaj-gupta-6b95bb17/
https://scholar.google.com/citations?user=_YjIJF0AAAAJ&hl=en
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Backup sl ides, i f  interested !!!
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Informed Document Autoregressive Topic Model with Word Embeddings

Source Text Sense/Topic

In biological brains, we study noisy neurons at cellular level                        “biological neural network”

Like biological brains, study of noisy neurons in artificial neural networks    “artificial neural network”

Training Contexts (Preceding + Following) Sense/Topic of “neurons”

Like biological brains, study of noisy  +   in artificial neural networks    “biological neural network”

Like biological brains, study of noisy  +   in artificial neural networks    “artificial neural network” 

Context information around words helps in determining their actual meaning !!!

Motivation1: Contextual Information

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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Informed Document Autoregressive Topic Model with Word Embeddings

 “Lack of Context” in short-text documents, e.g., headlines, tweets, etc. 

 “Lack of Context” in a corpus of few documents

TO RESCUE: Use External/additional information, e.g., word embeddings         
(encodes semantic and syntactic relatedness in words)

 trading

Incoherent Topics, e.g.,  
Topic1: price, wall, china, fall, shares

Topic2: shares, price, profits, rises, earnings

incoherent

coherent

No word overlap

(e.g., 1-hot-encoding)

Same 
topic 
class trading

Difficult to learn good representation due to: 

 small number of word co-occurrences

 significant word non-overlap

Motivation2: Distributional Semantics for Lack of Context
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DocNADE variants: Contextualized DocNADE (iDocNADE) 

 incorporating full contextual information around words in a document (preceding and following words) 

 boost the likelihood of each word and subsequently the document

 improved representation learning 

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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DocNADE variants: Contextualized DocNADE (iDocNADE) 
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DocNADE variants: Contextualized DocNADE (iDocNADE) 

Incomplete Context  
around words in 

DocNADE

Complete Context  
around words in 

iDocNADE

Need for
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DocNADE variants: DocNADE + Embedding Priors ‘e’ (DocNADEe)

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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DocNADE variants: DocNADE + Embedding Priors ‘e’ (DocNADEe)

 introduce weighted word 
embedding aggregation at 
each autoregressive step k 

 E as fixed prior

 topics with word embeddings

 generate a complementary 

textual representation (duality)

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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DocNADE variants: DocNADE + Embedding Priors ‘e’ (DocNADEe)

 introduce weighted word 
embedding aggregation at 
each autoregressive step k 

 E as fixed prior

 topics with word embeddings

 generate a complementary 

textual representation (duality)

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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Deep DocNADEs Variants with/without Embedding Priors

 Deep, multiple hidden layer architectures 

 Adding new hidden layers as in a regular deep feed-forward neural network

DeepVairant1

DeepDNE

DeepVairant2

iDeepDNE

DeepVairant3

DeepDNEe

DeepVairant4

iDeepDNEe

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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Document Representation in iDocNADE variants

Tasks:
Information retrieval 
 document representation 
 word representation 
 text classification 
 text clustering, etc. 

Gupta et al, 2018. Document Informed Neural Autoregressive Topic Models with Distributional Prior
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