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Lecture Outline

» Motivation: Sequence Modeling
» Understanding Recurrent Neural Networks (RNNS)
» Challenges in vanilla RNNs: Exploding and Vanishing gradients. Why? Remedies?
» RNN variants:
o Long Short Term Memory (LSTM) networks, Gated recurrent units (GRUS)
o Bi-directional Sequence Learning
o0 Recursive Neural Networks (RecNNs): TreeRNNs and TreeLSTMs
o Deep, Multi-tasking and Generative RNNs (overview)
» Attention Mechanism: Attentive RNNSs
» RNNs in Practice + Applications
» Introduction to Explainability/Interpretability of RNNs
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? Why do we need Sequential Modeling?

Intern © Siemens AG 2017
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‘lilll\

Motivation: Need for Sequential Modeling

Examples of Sequence data Input Data Output
Speech Recognition A — This is RNN
_ _ _ Hallo, ich bin Pankaj.
Machine Translation Hello, | am Pankaj. < %Fﬁ ﬁﬁWEI
: R |‘) based ? del network
’ language
Named Entity Recognition . : : - : :
y g Pankaj lives in Munich Pankaj lives in Munich
person location
Sentiment Classification There is nothing to like in this movie. \/“;gﬁ(izﬁ/ﬂ;

Video Activity Analysis :
y y Punching

Seite 4 May 2017 Corporate Technology
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Example:

Sentencel: Pankaj lives in Munich

Sentence2: Pankaj Gupta lives in Munich DE

Intern © Siemens AG 2017
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Example:
Sentencel: Pankaj lives in Munich

Sentence2: Pankaj Gupta lives in Munich DE

FF-net / CNN FF-net / CNN

ntern © Siemens AG 2017 *FE-net: Feed-forward network
Seite 6 May 2017 Corporate Technology
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Example:
Sentencel: Pankaj lives in Munich e Oier oie focation
| | o ol [o] [o] [0
Sentence?2: Pankaj Gupta lives in Munich DE
)P Ol=lol-{ol—lo
Ol (O] 0] |0
Pankaj lives in Munich

person person other other location location

Ol |0] 1|0 |0] [0 |O
O—=10—|0—=10—|0—|0
O] 0] O 0] 0] |0
Pankaj Gupta lives in  Munich Germany
FF-net / CNN -
FF-net/CNN Sequential model: RNN

ntern © Siemens AG 2017 *FE-net: Feed-forward network
Corporate Technology
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Example:

Sentencel: Market falls into bear territory = Trading/Marketing

Sentence2: Bear falls into market territory 2 UNK

Intern © Siemens AG 2017
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Example:
Sentencel: Market falls into bear territory = Trading/Marketing

Sentence2: Bear falls into market territory 2 UNK

EEl—
bear —>

EEl

bear —>
market—>
o —

tertory—>

sentencel

market—> Nk
o —
tertory—>

sentence2

FF-net / CNN FF-net / CNN

Intern © Siemens AG 2017
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Example:
Sentencel: Market falls into bear territory = Trading/Marketing
Trading
Sentence2: Bear falls into market territory 2 UNK
Ol (O] |0 O
O—=10—(0 O
O] 0] |O O

EEl

-% market falls into  bear territory

-6

> 3

E O] |0 [0 |0] 1O

E O—0—=|0—0—>|0
Ol O] (O] |0 |O

sentence2

bear —>

market—> Trading
o —
tertory—>

sentencel

A4

\4

FF-net / CNN FE-net / CNN bear falls into market territory

Sequential model: RNN

Intern © Siemens AG 2017
Seite 10 May 2017
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Example:
Sentencel: Market falls into bear territory - Trading/Marketing
Trading
Sentence2: Bear falls into market territory = UNK
Ol |0 O
>0—0 O
O |O O
falls into  bear territory
UNK
Ol (O |0 1|0
Or—0—10—|0
O O] 0] |0
sentencel sentence?
FE-net / CNN FE-net / CNN bear falls into  market territory
Intern © Siemens AG 2017 Sequential model: RNN

Seite 11 May 2017 Corporate Technology
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Machine Translation: Different Input and Output sizes, incurring sequential patterns

Decoder Decoder
pankaj lebt in  minchen RLa] qfv= H edl 3
Of 10| (O |0 Of 10| |[O
O—=0—|0—10 O—0—0
. O (O] |0 O| (0] |O
o 0 O B e ol [0 [0
Or—0F—|0—10 O—>0—0—
O % O O Wnput text O O % encodes input text
Pankaj lives in  Munich Pankaj lives in  Munich
Encoder Encoder

Intern © Siemens AG 2017
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Convolutional vs Recurrent Neural Networks

RNN
- perform well when the input data is interdependent in a sequential pattern
- correlation between previous input to the next input

- introduce bias based on your previous output

CNN/FF-Nets
- all the outputs are self dependent

- Feed-forward nets don’t remember historic input data at test time unlike recurrent networks.

Intern © Siemens AG 2017
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Motivation: Need for Sequential Modeling

Memory-less Models
Autoregressive models:

Predict the next input in a sequence from a fixed
number of previous inputs using “delay taps”.

Wt-2

| Wt-l Vv

input,_, > input;

input,_,

Feed-forward neural networks:

Generalize autoregressive models by using
non-linear hidden layers.

input,_, input, input,

Seite 14 May 2017
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Memory Networks

-possess a dynamic hidden state that can store long
term information, e.g., RNNSs.

Recurrent Neural Networks:

RNNs are very powerful, because they combine the
following properties-

Distributed hidden state: can efficiently store a lot of
information about the past.

Non-linear dynamics: can update their hidden state
in complicated ways

Temporal and accumulative: can build semantics,
e.g., word-by-word in sequence over time

Corporate Technology



SIEMENS

* h;:Hidden Unit

e x;: Input

* o0, : Output

« Wy, : Shared Weight Parameter

« W,, : Parameter weight between hidden layer and output
e @:parameter in general

* gp : non linear function

» L, :Loss between the RNN outputs and the true output

» E,:cross entropy loss

Intern © Siemens AG 2017
Seite 15 May 2017 Corporate Technology



SIEMENS

Long Term and Short Dependencies

[Short Term Dependencies ]

- need recent information to perform the present task.
For example in a language model, predict the next word based on the previous ones.
“the clouds are in the ?” - ‘sky’ ‘the clouds are in the sky”

—> Easier to predict ‘sky’ given the context, i.e., short term dependency

[ Long Term Dependencies ]

—> Consider longer word sequence “l grew up in France.............coovvvveiiieinnnn .. | speak fluent French.”

- Recent information suggests that the next word is probably the name of a language, but if we want to
narrow down which language, we need the context of France, from further back.

Seite 16 May 2017 Corporate Technology



SIEMENS

Foundation of Recurrent Neural Networks

Goal
» model long term dependencies
» connect previous information to the present task

» model sequence of events with loops, allowing information to persist

Intern © Siemens AG 2017
Seite 17 May 2017
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Goal

» model long term dependencies

» connect previous information to the present task

» model sequence of events with loops, allowing information to persist

Feed Forward NNets can not take time dependencies into account.

Sequential data needs a Feedback Mechanism.

0 OO Ot-l Ot OT

Unfold 1 1 A

-% feedback mechanism in time —)
— or internal state loop '(A\) n O Whh\ O Whh O Whh O
B %A - OF=0—=0=(0
- Wi 0. 10) 9.0
- T FT T
X Xo X1 X Xt

>

FF-net / CNN fime
Recurrent Neural Network (RNN)

Intern © Siemens AG 2017
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output labels person other other location
softmax-layer | (SO (2D DD {(D{D{2) O persor
output layer A - L z O location
e (@O0 [(000)] [0WE)] (@O o
Who

hidden layer

A4

5 90000 ® ® 1+

Recurrent Neural Network

OEEOH O ® @ 1+

@
9 ©
b B
input layer % %
© ®
input sequence Pankaj in Munich
Intern © Siemens AG 2017 > time
Seite 19 May 2017
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Process a sequence of vectors x by applying a recurrence at every time step:

0 Qo Or1 Oy Oy
W
feedback mechanism _Unf_old i ho
_ O in time O Olw.. 10 w.|O
or internal state loop A W, hrl hh
~ - 030|010
O W "0).. |0) nO) |0
L A
—>
time
Input vector at time step, t _
new hidden Vanilla Recurrent Neural Network (RNN)
state attime some function witn ~ ©ld hidden state
Step, t parameters WthXh a.t t|me Step, t'l

Remark: The same function g and same set of parameters W are used at every time step

Intern © Siemens AG 2017
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Process a sequence of vectors x by applying a recurrence at every time step:

0 O 011 O Ot
feedback mechanism Unfold iWh0
or internal state loop (A) in time O W, O W, O W, O
e N YA - 030|030
w O]..10] (O] .10
he = go(he—1,%¢) A h

d U M
X Xo Xt-1 Xy Xt
hy = tanh(Wyp, he—1 + Wypxe) fime

Vanilla Recurrent Neural Network (RNN)

o = softmax(Wy,h:)

- /

Remark: RNN'‘s can be seen as selective summarization of input sequence in a fixed-size
state/hidden vector via a recursive update.

Intern © Siemens AG 2017
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Recurrent Neural Network: Probabilistic Interpretation

RNN as a generative model Xg X4 Xq X,  <€o0s>
» induces a set of procedures to model ~L ,T1 i i i
" . . OWthWthWthWth
the conditional distribution of x,,; given x<=t O F—0OF—=10F—0+{0
forallt=1,..,T T OJ . % - 10] 0.0
K3 T T T
P(X) = P(xl, ...xT) = Z P(xt|xt_1,xt_2, . xl) <bos> Xo Xt X X1
t=1 >

time
» Think of the output as the probability distribution of the Generative Recurrent Neural Network (RNN)
X, given the previous ones in the sequence

» Training: Computing probability of the sequence and Maximum likelihood training
Ly = —log P(x¢lxi—1,X¢—2,..X1)

Details: https://www.cs.cmu.edu/~epxing/Class/10708-17/project-reports/project10.pdf

Seite 22 May 2017 Corporate Technology
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Sequence of output

O
O
O

Initial
State, A,

O
0
O

Next stat

(OO O]

Sequence of Inputs

Intern © Siemens AG 2017
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» Training recurrent networks via BPTT

» Compute gradients via backpropagation on the (multi-layer) unrolled model

Intern © Siemens AG 2017
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» Training recurrent networks via BPTT
» Compute gradients via backpropagation on the (multi-layer) unrolled model
» Think of the recurrent net as a layered, time=3

feed-forward net with shared weights and

then train the feed-forward net in time domain
time=2

time=1

time=0

Lecture from the course Neural Networks for Machine Learning

Intern © Siemens AG 2017
Seite 26 May 2017 Corporate Technology



Backpropogation through time (BPTT) in RNN

» Training recurrent networks via BPTT

» Compute gradients via backpropagation on the (multi-layer) unrolled model

» Think of the recurrent net as a layered,
feed-forward net with shared weights and
then train the feed-forward net in time domain

Training algorithm in time domain:

» The forward pass builds up a stack of the activities of all the
units at each time step

» The backward pass peels activities off the stack to compute the
error derivatives at each time step.

> After the backward pass we add together the derivatives at all
the different times for each weight.

Lecture from the course Neural Networks for Machine Learning

Seite 27 May 2017

time=3

time=2

W2 W3 W4
W2 W3 W4

time=1

time=0
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» Training recurrent networks via BPTT

» Compute gradients via backpropagation on the (multi-layer) unrolled model

> Think of the rec
feed-forward n
then train the f

Training algorithm in time domaiir.
» The forward pass builds up a stack of the activities of all the
units at each time step time=1
» The backward pass peels activities off the stack to compute the
error derivatives at each time step.
> After the backward pass we add together the derivatives at all time=0
the different times for each weight.

Lecture from the course Neural Networks for Machine Learning

Intern © Siemens AG 2017
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» Training recurrent networks via BPTT

X1 X2 X3

Direction of Forward pass

Intern © Siemens AG 2017
Seite 29 May 2017 Corporate Technology
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» Training recurrent networks via BPTT

X1 X2 X3

Direction of Forward pass

Intern © Siemens AG 2017
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» Training recurrent networks via BPTT

X3

Direction of Forward pass

Intern © Siemens AG 2017
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» Training recurrent networks via BPTT

E; E,
01 ‘Tz 03
SN
hy h, hs
X1 X3

Direction of Forward pass

Intern © Siemens AG 2017
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» Training recurrent networks via BPTT

01 ‘Tz 03
>
hq h, hs
X1 X2

Direction of Forward pass

Intern © Siemens AG 2017
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» Training recurrent networks via BPTT

Ey E; E;
01 % 0, aEZ 03 %
| an, 1 an, | oy

oL__Jol___Jo
| O 02 1| O ony 1,|O

oh, an,

X1 X2 X3

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

Intern © Siemens AG 2017
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» Training recurrent networks via BPTT

» Let us take our loss/error function to be cross entropy: Ey Ey E5
01 0Ey 0, 0E, 0; OE3
E:(o;',0; ) = —o;'logo; iahl Ti oh, i dhs

Ol__JoL
O dhz O] dhy h3O

dhy ahz
E(of, 0 ) = — Z o; logo; X1 Xy X3
t Direction of Backward pass (via partial derivatives)
--- gradient flow ---

E(o,0;) = Z Ei(o', 0¢)
t

Where o, are the truth values

Intern © Siemens AG 2017
Seite 35 May 2017 Corporate Technology



SIEMENS

Writing gradients in a sum-of-products form

0FE 0E;
20 ELR) Ex k2 Es
1=t<3 01 0E; 0, 03 %
6E3 — 6E3 603 — 6E3 603 aZ3 WhO \Lahl W \Lahz Wh0 \L ah3
6Wh0 603 6Wh0 603 623 6Wh0
| | Ol wuw |O \ Wi
where, z3 = Wy,hs i.e., o3 with softmax
0E3 — 0 ’(O . 1) x (h ) h’l O ahz h O ahg h3
ow,, -3 3 dh,
X
where, X= outer product ! X3

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

OF;
[ W depends only on o5, 05 and h3]

Intern © Siemens AG 2017
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0E; ,
W, 03'(03 —1) x (h3) How ?
Proof , ,

E;(03',03) = —03'log o 03 = softmax(zs), and z3 = Wy hs
% = —0,' M 03 = %823 and, Q = }}; e? log(o3) = z3 — log(Q))
023 6Z3
dlog(os) _ , _ 100 a—ﬂ=zeZi6- = o

623 o QaZ3 aZB ; t3
dlog(o3) _ .
9zz 1=0; 3_: = 03(1 — 03)
0E;

623

= —03’(1 — 03) = Oé(O3 — 1) »' 0E3 _ 0E3 603 623 _ 6E3 623

= _ = o (on — 1
oW,, 0030z30W,, 0z30Wy, 03(03 ) X (h3)

1. http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

7. https://stats.stackexchange.com/questions/235528/backpropagation-with-softmax-cross-entropy

Intern © Siemens AG 2017
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Writing gradients in a sum-of-products form E, 5, E,
a_E — aEt 6E3 aES ah3 01 aEl %\Z\LOEZ 03 g}El‘?)
= _ W

)

O Wik

O A O
th\ahz hZO ah3 h3®

Since h; depends on h, and h, depends on h;, therefore

aE3 ; aEB@ ahk ah3 5h3 ahz —
aW = ah h W eg, ahl — ahz 5h1 ahl ahz
hh = 7 3K hh h xlz .
In general OE; 6Et@ dhy Direction of Backward pass (via partial derivatives)
| - ient flow ---
aWhh 157%t ahtwawhh gl‘adlen ow

Intern © Siemens AG 2017
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Writing gradients in a sum-of-products form E, E, E,
o _ OE, 0E;  OE; Ohs 01 0F; 0, 0, 0; 0E3
9 1<t<3 96 OWn,  0hg OWpy Who iahl w iahz Wio | 0hs
Since h; depends on h, and h, depends on h,, therefore O i Whn fa _ Whn O
0E;  ~o 0F;0hy Ohy dh; Oy oh, m( O % O dhs s O
OWpp, £t Ohg Oy Wiy €9 8h, ~ ok, ok, J 1 ) dh, i
In general, O0E, _ 6Et@ ohy, Direction of Backward pass (via partial derivatives)
oWy, ey ahtWaWhh --- gradient flow ---

dh; dh; Transport error in time from step t back to step k

_t _ — T y- ! )
o= | | o tli:[kwhh diaglg' (hi—1)] /

. . 0Ohg
_ Jacobian matrix —
Intern © Siemens AG 2017 ohy
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Writing gradients in a sum-of-products form E, B 7
0F _ OE; JE;  OE; dhs 01 9E; 0, OE, 0, OEs
99 1<t=<3 99 OWpp,  Ohg OWpy, Who | Ohy W T oh, Who i Ohs
Since h; depends on h, and h, depends on h;, therefore O Whn | O \ Whh N O
0Es : 0E; 0hy Ohy dhs  0hz dh, hy O 322 h; O ah3 h3 O
OWp, £t Ohg 0hy 0W,, 97 0h; 0k, 0k 4 dh,
k=1 X1 X2 X3
In general, J0E; _ dE; 0h; dhx  |Weight matrix| Direction of Backwa;(:apc)l?:st(;ﬂ)awpartial derivatives)
OWpp 1Sk 0y Oy OWy, X
dh; Derivative of activation function
aT = ah 1_[ ( lag[g (hl 1)
ko Siske vl Sisk Transport error in time from step t back to step k
_ Jacobian matrix 2
Intern © Siemens AG 2017 ahk
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Writing gradients in a sum-of-products form E, E, E,
OF OF, 0E;  OE; Ohs o1 0 0 iaEz 05 OF3
0 ER) = Wi, | VO, ah, oh
0 g 9 OWpp  Oh3 OWpp ol YRy Wy, | YOh, Who [y s
Since h; depends on h, and h, depends on h;, therefore O Wan Whn - O

_ = oh
MWy fe Ohs Oy Wy, =9 Ohy ~ 9hy OBy !

pol
O
0E; < 0E;dhy Ohy, dh; 0hsdh, (O] ok, % dhs s O

X1 X2 X3

oh,
oh, ohi_4

diag[g'(hi—1)]
£>i>k >k Transport error in time from step t back to step k

. . dh
_ Jacobian matrix 2 —7
Intern © Siemens AG 2017 Ohy

Seite 41 May 2017 Corporate Technology



SIEMENS

0E; ~o 0E; dhy Oy

oW, £ Oh3 Ohy OWp,

E4 E; E3

— 6E3 603 6h3 ah2@ + 6E3 603 6h3® + 6E3 603 6h3 @
603 6h3 ahz ah]_W 603 ahg ahzw 603 6h3 6h3 W

v

{000
f»

Vi
O
O
O

iy

Intern © Siemens AG 2017
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Code snippet for forward-propagation is shown below (Before going for BPTT code)

def forward propagation(self, x):

# The total number of time steps

T = len(x)

# During forward propagation we save all hidden states in 5 because need them Later.

# We add one additional element for the initial hidden, which we set to @

h = np.zeros((T + 1, self.hidden dim))

h[-1] = np.zeros(self.hidden_dim)

# The| outputs at each time step. Again, we save them for Later.

0 = np.zeros((T, self.word dim))

# For each time step...

for t in np.arange(T):
# Note that we are indxing W xh by x[t]. This is the same as multiplying W xh with a one-hot vector.
h[t] = np.tanh(self.W xh[:,x[t]] + self.W_hh.dot(h[t-1]))
o[t] = softmax(self.W xo.dot(h[t]))

return [o, h]

https://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

Intern © Siemens AG 2017
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LMU
Backpropogation through time (BPTT) in RNN

Code snippet for backpropagation w.r.t. time is shown below

def back_prop_through_time(self, x, y): t
T=len(y) aEt _ aEt aht ahk
#perform a forward propogation 3 -
o,h = sel-F.?-::ur‘war*d_pr‘opc-gaticn(x} Offllne awhh k=1 aht ahk a[/th
#Following wvariagbles accumulate gradient
#wrt W_hh, W_xx and W_xy
dLdW_xh=np.zeros(self.W_xh.shape) — 000 aEt aot aht aht_l aht_z + aEt aOt aht aht_l + aEt aot aht
dLdW _hy=np.zeros({self.W hy.shape)
dLdW _hh=np.zeros({self.W hh.shape) aOt aht aht_l aht_z aWhh aOt aht aht_l aWhh aot aht aWhh
delta o= &
delta o[np.arrange(len(y)),y]=1 E)Et ,
. . . e = —(0t—0¢ ) (he)
#For each output backwards. .. ho
for £ in np.arrange(T)[::-1]: 6Et , aht 2
dLdwW_hy += np.outer(delta_o[t],h[t].T) — = —(0;—0; )Wy, and = (1—hi)(hs—
oh t t ho oW, t t—1
t hh
# Next for calculating backpropogation through time, i.e
#di_dik hh, we need delta t 0FE aht , 2
#Initial Delta Colculation: di_dz — = —(o.—o0, W, 1—~h h.
delta t- self.W hy.T.dot(delta o[t]}*(1-(h[t]**2)}) dhy OWyp, \( t =0t JWho!( t)(he-1) > A

|
Initial delta_t

kpropogation through time for (atmost self.bptt Tl steps)

= = at Equotion-2 in the slides

for bptt_step in np.arrange(max(8,t-self.bptt.truncate),t+1)[::-1]:
# print Backpropagation step

#Add the gradient to each previous step aEt 6ot 6ht 6ht_1

t

1
9N
I

£ K
-

5]

5

AT

[~

= —\(Ot = 0) (Wro)[1 = hE](Wrn)(1 — h?—q(ht—z) —B

dLdW_hh += np.outer{delta t, h[bptt_step-1])

dLdW_xh[:,x[bptt_step]] += delta_ t do; Ohy Ohy_q OWhy, Y
#Update delta for the next time step dL/dz at t-1 delta t
delta t =self.W_hh.T.dot{delta t)*(1 h[bptt step 1]%%2) P elta_

return [dLdW xh,dLdwW hy, dLdW hh]
OWhn

Seite 44 May 2017 Corporate Technology
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Break (10 minutes)

Intern © Siemens AG 2017
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Challenges in Training an RNN: Vanishing Gradients

[Short Term Dependencies ]

- need recent information to perform the present task.
For example in a language model, predict the next word based on the previous ones.
“the clouds are in the ?” > ‘sky’

—> Easier to predict ‘sky’ given the context, i.e., short term dependency - (vanilla) RNN Good so far.

[ Long Term Dependencies ]

—> Consider longer word sequence “l grew up in France.............ccovvvviiiiinnnn .. | speak fluent French.”

- Recent information suggests that the next word is probably the name of a language, but if we want to
narrow down which language, we need the context of France, from further back.

—> As the gap increases - practically difficult for RNN to learn from the past information

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Seite 46 May 2017 Corporate Technology
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Assume an RNN of 5 time steps: [ Long Term dependencies ]
Let's look at the Jacobian matrix while BPTT:

Challenges in Training an RNN: Vanishing Gradients

OEs _ OEs Ohs Ohy Ohs Ohy Ohy | OEs Ohs Ohy Ohs 0hy 9Es dhs Ohy Ohs
90 ~ Ohs Oh, Ohy Oh, dhy 00  dhs dh, Ohs Oh, 30  dhs dhy, dhg 06

\ ¥ ¥

_|_

~1.70e-10 4.94e-10 2.29e-10 :i'ﬁzzgg é'%zzgg }'gggzgg
A= [-1.73e-10 5.56e-10 2.55e-10 1336-08 911609 1836-08 ~1.70e-06 8.70e-06 9.40e-06
-1.81e-10 4.40e-10 2.08e-10 B '1653 07' € -00€ C = [-2.51e-07 7.30e-06 8.98e-06
1Al = 1.00e=09 IB]| = 1.53e 7.32e-07 7.85e-06 1.05e-05
. IC|| = 2.18e-05
> 6—95 Is dominated by short-term dependencies(e.g., C), but

oE5

» Gradient vanishes in long-term dependencies i.e. 7

to updated by C

is updated much less due to A as compared
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Assume an RNN of 5 time steps: [ Long Term dependencies ]
Let's look at the Jacobian matrix while BPTT:

Challenges in Training an RNN: Vanishing Gradients

OEs _ OEs Ohs Ohy Ohs Ohy Ohy | OEs Ohs Ohy Ohs 0hy 9Es dhs Ohy Ohs
90 ~ Ohs Oh, Ohy Oh, dhy 00  dhs dh, Ohs Oh, 30  dhs dhy, dhg 06

\ ¥ ¥

_|_

-1.13e-08 2.61e-09 1.50e-08
—-1.70e-10 4.94e-10 2.29e-10
A= [-1.73e-10 556e-10 2.55e—10] ~1.11e-08 5.70e-09 1'516_08] ~1.70e-06 8.70e-06 9.40e-06
_181e-10 4.40e-10 2.08e—10 ~1.33e-08 9.11e-09 1.83e-081  C = |-251e-07 7.30e-06 8.98e-06
I1A]| = 1.00e-09 IB]l = 1.53e-07 7.32e-07 7.85e-06 1.05e-05
o IC|| = 2.18e-05
> —>isdo _
Long Term Components goes exponentially fast to norm 0
» Gradient{ = ho correlation between temporally distant events as compared

to updated Dy C

Seite 48 May 2017 Corporate Technology



SIEMENS

Assume an RNN of 5 time steps: [ Long Term dependencies ]
Let's look at the Jacobian matrix while BPTT:

Challenges in Training an RNN: Exploding Gradients

OEs _ OEs Ohs Ohy Ohs Ohy Ohy | OEs Ohs Ohy Ohs 0hy 9Es dhs Ohy Ohs
90 ~ Ohs Oh, Ohy Oh, dhy 00  dhs dh, Ohs Oh, 30  dhs dhy, dhg 06

\ $ ¥

—170e+10 4.94e + 10 2_2%_10]8: -1.13e + 08 2.61e +09 1.50e + 08

_|_

-1.70e + 06 8.70e + 06 9.40e + 06
—-2.51e+07 7.30e +06 8.98e + 06
7.32e +07 7.85e+ 06 1.05e+ 05

[|C|| = 2.18e+105

A=

-1.73¢+10 556e+10 255e-10 et 5700 + 09 151e " 08
-1.81e +10 4.40e+10 2.08e-10 ' - -

|A|| = 1.00e+109 |B|| = 1.53e+107

C =

> 6—125 , gradient explodes, i.e., NaN due to very large numbers
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Assume an RNN of 5 time steps: [ Long Term dependencies ]
Let's look at the Jacobian matrix while BPTT:

Challenges in Training an RNN: Exploding Gradients

OEs _ OEs Ohs Ohy Ohs Ohy Ohy | OEs Ohs Ohy Ohs 0hy 9Es dhs Ohy Ohs
90 ~ Ohs Oh, Ohy Oh, dhy 00  dhs dh, Ohs Oh, 30  dhs dhy, dhg 06

\ $ ¥

—170e+10 4.94e + 10 2_2%_10]8: -1.13e + 06 2.61e+06 1.50e+ 06

_|_

—-1.70e + 04 8.70e + 04 9.40e + 04
—-2.51e+04 7.30e +04 8.98e + 04
7.32e +04 7.85e+ 04 1.05e + 04

||C|| = 2.18e+85

A=

-1.73¢+10 556e+10 255e-10 aaete 5700 + 06 151e " 06
-1.81e +10 4.40e+10 2.08e-10 ' - -

|A|| = 1.00e+109 |B|| = 1.53e+97

C =

. Large increase in the norm of the gradient during training >
> a—; , 9rd due to explosion of long term components
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Often, the length of sequences are long....e.g., documents, speech, etc.

E1 E2 E3 E50
01 aEl 02 aEz 03 6E3 03 aESO

lon,  Nam, |l ks L ohso
ol  [0O] ol

h10<%h20 <6h3 th hso
dh, o, |

X1 X, X3 x50

In practice as the length of the sequence increases, the probability of training being successful

decrease drastically.
‘) Why
O

Intern © Siemens AG 2017
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9 Why
[

Let us look at the recurrent part of our RNN equation:

/

o

he = gw(he—1,x¢)

Winxt)

o; = softmax(Wp,h;)

\

/

Intern © Siemens AG 2017
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tanh Expansion

hy = Wypnf(hi_1) + some other terms

hy = Wypphy + some other terms

SIEMENS
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Writing gradients in a sum-of-products form E; E, E;
01 0E,; 0, O0E, 0, OEj3
Wio [ VOR,  w

Vanishing Gradient in Long-term Dependencies

aE aEt aEg aE3 ah3

0 e, 9 OWpp,  Ohs Wy (ma —
Since h; depends on h, and h, depends on h;, therefore et 8
hq dh; h
0E;  ~o 0, dhy Oy dhs  hs Oh, Ohs  hy
= e.g., = dh,
OWpn &t Ohg Ohy OWpy oh;  0hy 0hy X3
In general, oE, - aEt@ dh,, Direction of Backward pgss (via partial derivatives)
= --- gradient flow ---
OWnp £ Ohy %ﬁwhh
Ay h, = Wp,f(h._{) + some terms
dh; dh; T ,
=] | 5= = | | Wi diagle'(hi-n)]
ko omisk Ul sk Transport error in time from step t back to step k
\ ) Jacobian matrix 2t —7

Y ahy

This term is the product of Jacobian matrix .

Seite 54 May 2017 Corporate Technology



Writing gradients in a sum-of-products form

OF OF,

0E;  OF; Oh,

00 90

oE, Z 0E; dh, Oh,

Wy £ Oh; Oy, 0Wpy
aht ahl T 5- !
—_ = — = ‘ ‘ Wiy diaglg (hi-1)]
ahk . 6hi—l ;
t=i>k t=i>k ) . 0h
Jacobian matrix _ah,i

Intern © Siemens AG 2017
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oW, 0hy Wy,

Direction of Backward pass (via partial derivatives)
--- gradient flow ---
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Writing gradients in a sum-of-products form E; E, E;
01 OF 0F 0FE
0F _ § 9k 0E; _ 0E; Ohs o w A N A
= Who 6h1 ahz Who \l/ ahS
00 £ 00 OW,,  0hs 0Wpy,
o O | |
e T TR, QS % 1O ar, (O
hh et TR TTRR ahz
_— = d ! h'_
dh,, oh;_4 1_[ laglg (hi-1)] Direction of Backward pass (via partial derlvatives)

t>i>k - t>i>k

-- gradient flow ---

Intern © Siemens AG 2017
Seite 56 May 2017 Corporate Technology



SIEMENS

Mechanics behind Vanishing and Exploding Gradients

ohy 1—[ v " E E, E;
on, | ahl ) @ laglg (hi-1) 01 OE; 0, OF, 0; 0F;
t=i>k t=i>k \L— P
Who \l/ahl W ahz Who \l/ ahS

Consider identity activation function O Whn | O | Wh O

If recurrent matrix Wy;, is a diagonalizable: hy O % h, O dh; h, O

Wi =Q 1+ V o Oh;
hh — Q\l/ Q X1 X2 X3

Direction of Backward pass (via partial derivatives)

matrix composed of eigenvectors of Wy, - gradient flow ---

diagonal matrix with eigenvalues placed on the diagonals

Using power iteration method, computing powers of Wy, :

n — n
Whn=Q 1 + 7"+ Q
Bengio et al, "On the difficulty of training recurrent neural networks." (2012)
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Mechanics behind Vanishing and Exploding Gradients

ohy 1—[ 74 " E E, E;
on, | ahl ) @ laglg (hi-1) 01 OE; 0, OF, 0; 0F;
t=i>k t=i>k i/_ i/—
Who ahl W ahz Who \l/ ahS
Consider identity activation function O Whn | O | Wh O
computing powers of Wy, : hy Q ohy p, O dhs hs Q
oh ET
Whn = Q * Vx Q X1 X2 X3

Vanlshlng gradients Direction of Backward pass (via partial derivatives)

p— |0618 0 » -0.0081] 0
0 leis 0 [122.99

Eigen values on the diagonal \ _ _
Exploding gradients

Bengio et al, "On the difficulty of training recurrent neural networks." (2012)
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diaglg'(hi—1)]

i [ =[]
ahk_ . ahll @

t=i>k t=i>k

Consider identity activation function

computing powers of Wy, :
W’qh:Q_l %k Vn* Q

Vanlshmg gradients

g |"088 0 » -0.0081 0
0 1e18 0 [122.99

Eigen values on the diagonal \ _ ,
Exploding gradients

Bengio et al, "On the difficulty of training recurrent neural networks." (2012)
Intern © Siemens AG 2017
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Mechanics behind Vanishing and Exploding Gradients

Writing gradients in a sum-of-products form E; E, E;
OF 0, OF 03 OEj3
2 oE d0E;  0E; 0h g 22 e
3 & 3 3 Who ahl W T ahz WhO\l/ ahS

ECl 96 oW, 0h, OW
1<t<3 hh 3 hh O W, @ W, O

b

0E, z d0E3 0h, Ohy hy O ohy p, O dhs hs O

oWy,

1<kst Ot Oy OWpn 0hy dh,
dh; T X1 X2 X3
= Wy, di "(h;_
% ad oh;_q tl:[k wn diaglg (hi-1)] Direction of Backward pass (via partial derivatives)
21 21

--- gradient flow ---

Find Sufficient condition for when gradients vanish = compute an upper bound for g—:; term

dh; T . ,
ahi—lH < [Whn'[[lidiag(lg’(hi-DDIl 5 Find out an upper bound for the norm of the jacobian!
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Property of matrix norm

Mechanics behind Vanishing and Exploding Gradients

Lets find an upper bound for the term: ||W" ||[ldiag([g’ (h;_)DI

 Proof: ||M||2 = \/Amax(M*M) — Vmax(M) <

where the spectral norm ||M]|,llof a complex matrix M is ddfined as max{||Mx||,: ||lx]| = 1} offline

The norm of a matrix is equal to the largest singular value of the matrix and is
related to the largest Eigen value (spectral radius)

Put B = M x M which is a Hermitian matrix. As a linear transformation of Euclidean vector space E is Hermite
Iff there exists an orthonormal basis of E consisting of all the eigenvectors of B

Let A4, 4,, 45 ...4,, be the eigenvalues of B and {eq, e, ... .... e, } be an orthonormal basis of E
Letx = ae; + ... a,e, (linear combination of eigen vectors)

The specttal norm of x:

x|l = Craie; X, aie)? = ¥, a?
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Using characteristic equation to find a matrix's eigenvalues,

n n n
Bx =B (Z al-el-) = Z al-B(ei) = Z/liaiei
i=1 n
i=1

i=1

Therefore,
n n n
|IMx|| = (Mx, Mx) = (x, M*Mx) = (x, Bx) = < a;e; Aiaiei> = Z a;A;a; < max
i=1 i=1 NS
Thus,
If ||M|| = max{||Mx||: ||x|| = 1}, then ||M|]| < max |/1j| equation (1)
<jsn

Intern © Siemens AG 2017
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Consider,

xo = ej, =|lx|| = 1,s0 that |[M]|| = (x, Bx) = (ejo,B(ejo)) = (ejo,/ljoejo) = |/1j | ... equation (2
where, j, is the largest eigen value.

Combining (1) and (2) give us ||[M|| = max |/1j| where, A; is the eigen value of B = M*™M

1<js<n

Conclusion : [[Mll; = Anax(M*M) = Ypmax(M) ... equation (3)

Intern © Siemens AG 2017
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Let’s use these properties:
Oh; oh;

oh, lloan_, 11 Wy, diag[g’ (hi-1)]
t>i>k tzi>k
ah . /
[ < |Wrn"||lldiag(Lg’ (hi—)DII
dh;_q

Intern © Siemens AG 2017
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Mechanics behind Vanishing and Exploding Gradients

Let’'s use these properties:

oh, oh. Gradient of the nonlinear function
l . / . . .
oh, T Wiy diag[g’(hi-1)] (sigmoid or tanh) g’ (h;_,) is bounded by
4 4 _1 4 4 . .
i>k T ik constant, .i.e., ||diag(g'(hi_))|| < v,
/
oh: an upper bound for the norm
l T . ; ; . .
FTA < ||Whh ||||dlag(g (hi—1))” of the gradient of activation
i—1 Some Common Activation Functions Activation Function Derivatives
0.5
0.5 : |
yg — ]/4 for SlngId 1 NSSSRRSSNS NS 8 Diinear )2 grlinear(x}
S Constant _Q‘Iugistic;| _glogist{ic}
— -1+ ! g'r_anh(x grI;_mh X : i
Yg =1 fortanh B e s
X X
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Gradient of the nonlinear function

Mechanics behind Vanishing and Exploding Gradients

Let’'s use these properties:

dh dh; e . . .
ﬁ = ETS 11 = Wiy diag[g’(hi-1)] (sigmoid or tanh) g’ (h;_,) is bounded by
i>k T ik constant, .i.e., ||diag(g'(hi_))|| < v,
/
oh: an upper bound for the norm
l T . ; ; . .
H < ||Whh ||||dlag(g (hi—1))” of the gradient of activation
ahi—l X/ Some Common Activation Functions Activation Function Derivatives
Largest Singular / ! ' 1 ' ' '
S | YwlYg
| ; | 0.5 : |
YwYg =an upper bound for the norm of jacobian! ) e SO SN S— é
Yy = ¥a for sigmoid PO I B S R O — g |
— cons t an t — Oiogistic A - erogistic
yg = 1 for tanh At : an® | s O | |
) -4 -2 0 2 4 4 2 0 2 4
X
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Let’s use these properties: _ _ .
oh, oh, Gradient of the nonlinear function
oh, = o = | Wy, diag[g'(hi—1)] (sigmoid or tanh) g’(h;_;) is bounded by

vk L RSk constant, .i.e., ||diag(g'(hi_))|| < v,

ahi T an upper bound for the norm
9h. 1” = ”Whh ||||diag(g’(hi_1))|| of the gradient of activation
i

x/ Some Common Activation Functions Activation Function Derivatives
_ 1 e e e S
Largest Singular /

S | YwiYg

Yw Y4 =an upper bound for the norm of jacobian! =" )i

4 )

dh t—k
i = e
g J

Intern © Siemens AG 2017

—g, )
_'g'bngistla(x]
||

-4 2 0 2 4
X
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Let’s use these properties:

dh, dh; - , Sufficient Condition for Vanishing Gradient
oh, AL dhiy B 11 Whn' diaglg (hi-1)] As Yy, < 1 and (t-k)>oo then long term

= = contributions go to 0 exponentially fast with t-k

O h;

T - Therefore,
dh;_4 = ”Whh ||||dlag(g'(hi_1))|| sufficient condition for vanishing gradient to occur:

: <1
Largest Singular  _ x/ / Yw < 1/yg

YwlVg i.e. for sigmoid, yy, < 4
l.e., fortanh, yy <1

H (power iteration method).

value of Wy,

YwYg =an upper bound for the norm of jacobian!

4 )
ahg t—k
— | <
P) hk (YW Yg)
. y
Intern © Siemens AG 2017
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Let’s use these properties:

dh, dh; Necessary Condition for Exploding Gradient
o= — = | | W' diag[g'(hi-1)] -
oh, 1lon_, L1 17H =1 As Yy, > 1 and (t-k)>oo then gradient explodes!!!
t=i>k t=i>k Therefore
I Necessary condition for exploding gradient to occur:
i T - ; > 1/y
< (W dia (h;_{) Yw g
6hi_1H ” x/hh ”” g(g . )” l.e. for sigmoid, yy,> 4
Largest Singular  _ T / l.e., fortanh, yy> 1

value of Wy,

YwYg =an upper bound for the norm of jacobian!

4 )

dh t—k
i = (o
g J

Intern © Siemens AG 2017
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? What have we concluded with the upper bound of derivative from recurrent step?

oh oh. o 4 A
o . ]_[ Win" diag[g' (hi—)]
a B AL ahi—]_ 2t ah3 t—k
> > — | < (vwvg)
dhy,
\_ _J

dh;
H ~|[ = IWrn"ldiag(Lg’ i-DDI < v ¥y

dh;_4

If we multiply the same term yy, v, < 1 again and again, the overall number becomes very
small(i.e almost equal to zero)

HOW ?

Intern © Siemens AG 2017
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Vanishing Gradient in Long-term Dependencies

dW  Ohs dh, dhy OW  dhz dh, OW  dhg dhg OW

= KK1 + «1 + <1

The gradients no longer depend on the past inputs...

since, the near past inputs dominate the gradient !!!

Total Gradient due to Gradient due to
Gradient | long term short term
radaien dependencies dependencies

h,

E4

SIEMENS

i
O
Or=
Of .
T

i
O O
O— 0
O O
T T

Remark: The gradients due to short term dependencies (just previous dependencies) dominates the

gradients due to long-term dependencies.

This means network will tend to focus on short term dependencies which is often not desired

Problem of Vanishing Gradient

Seite 71 May 2017
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9By _ 0E3 0hs Ohy 0hy | 0E3 Ohs Ohy | 0E3 Ohs Ohs
dW  Ohz dhy, Ohy OW  Ohg dhy, OW  dhs dhg OW

= KK1 + (1 + <1

1
O
O
O

T

Total Gradient due to Gradient due to
Gradient — long terrr_l short term X4 Xy
raalen dependencies dependencies

Remark: The gradients due to short term dependencies (just previous dependencies) dominates the
gradients due to long-term dependencies.

This means network will tend to focus on short term dependencies which is often not desired
Problem of Vanishing Gradient

Intern © Siemens AG 2017
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? What have we concluded with the upper bound of derivative from recurrent step?

oh oh. o 4 A
o . ]_[ Win" diag[g' (hi—)]
a B AL ahi—]_ 2t ah3 t—k
> > — | < (vwvg)
dhy,
\_ _J

dh;
H ~|[ = IWrn"ldiag(Lg’ i-DDI < v ¥y

dh;_4

If we multiply the same term yy, vy, > 1 again and again, the overall number explodes and
hence the gradient explodes

HOW ?

Intern © Siemens AG 2017
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9By _ 0E3 0hs Ohy 0hy | 0E3 Ohs Ohy | 0E3 Ohs Ohs
dW  Ohz dhy, Ohy OW  Ohg dhy, OW  dhs dhg OW
E E
= »»1 + >>»1 + >»>>»1 _
02

= Very large number, i.e., NaN

Problem of Exploding Gradient

*[OCEIO]*
|

N
O
O
O

T T

Intern © Siemens AG 2017
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— I < (ywvy) For tanh or linear activation

YwYgy greater than 1 j \ YwYg less than 1

Gradient Expodes !l Gradient Vanishes !l!

Remark: This problem of exploding/vanishing gradient occurs because the same number is
multiplied in the gradient repeatedly.

Intern © Siemens AG 2017
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4 )
Dealing With Exploding Gradients
g /

Seite 76
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Without clipping

Scaling down the gradients
» rescale norm of the gradients whenever it goes over a threshold

J(ub)

Algorithm 1 Pseudo-code for norm clipping

g Y 35
if ||g|| > threshold then
threshold ~
&< Tl 8
f 3
N//:/

end i

» Proposed clipping is simple and computationally efficient
» introduce an additional hyper-parameter, namely the threshold

Pascanu et al., 2013. On the difficulty of training recurrent neural networks

Intern © Siemens AG 2017
May 2017
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With clipping

J(w,b)
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4 )
Dealing With Vanishing Gradients
N\ J
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» As discussed, the gradient vanishes due to the recurrent part of the RNN equations.

h; = hi_1; + some other terms

4 )

« What if Largest Eigen value of the parameter matrix becomes 1, but in this case, memory just grows.

\° We need to be able to decide when to put information in the memory )

Intern © Siemens AG 2017
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Long Short Term Memory (LSTM): Gating Mechanism

Gates :

- way to optionally let information through.

- composed out of a sigmoid neural net layer and a
pointwise multiplication operation.

- remove or add information to the cell state

_®_

- 3 gatesin LSTM 1

Input from rest Output to rest
—> gates to protect and control the cell state. of the LSTM of the LSTM

Current
Cell state

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM): Gating Mechanism

Remember the word ,, clouds” over time....

Forget Forget Forget
Gate:0 Gate:0 Gate:0 Forgt-et
Gate:0

_clouds” \//;E;;;;\\ ‘//;;;;;;\\ >

\

g;:gu(; Input Output Input Outp}Jt
\
,clouds” “
~clouds

Lecture from the course Neural Networks for Machine Learning by Greff Hinton
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Motivation:
» Create a self loop path from where gradient can flow

» self loop corresponds to an eigenvalue of Jacobian to be slightly less than 1

/[ Self loop ]

old state

new state

new state = old state + update

old state
dnew state _

dold state = [dentity

update

LONG SHORT-TERM MEMORY, Sepp Hochreiter and Jirgen Schmidhuber
Intern © Siemens AG 2017
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Key Ingredients

Cell state - transport the information through the units O : | q
Neural Network Pointwise Vector
Gates — optionally allow information passage Layer Operation  Transfer ~ Concatenate Copy

© ® ©

A
Ct1 > Ci T T
4 R 4 N N
> —O——@ > [
Ganh>
- A ol A
FRUGEYOAIR ST G [0 | [tanh] [ O |
(]
-
\J J-’:r J-’\_ J
ht-1 ht-1 ht I |

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Intern © Siemens AG 2017
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Cell: Transports information through the units (key idea)
—> the horizontal line running through the top

LSTM removes or adds information to the cell state using gates.

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Intern © Siemens AG 2017
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Long Short Term Memory (LSTM): Step by Step

Forget Gate:

—> decides what information to throw away or remember from the previous cell state

—> decision maker: sigmoid layer (forget gate layer)

The output of the sigmoid lies between 0 to 1,

—> 0 being forget, 1 being keep.

- looks at h,_; and x;, and outputs a number between 0 and 1

fit = sigmoid(0ysx; + Opsh;_1 + by)

for each number in the cell state C,_,

Seite 85

May 2017

Neural Network
Layer

O

Pointwise
Operation

SIEMENS

—

Vector
Transfer

> <]

Concatenate Copy
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Long Short Term Memory (LSTM): Step by Step

SIEMENS

Input Gate: Selectively updates the cell state based on the new input.

A multiplicative input gate unit to protect the memory contents stored in j from perturbation by irrelevant inputs

i, = sigmoid(0,ix; + 0p;h;_1 + b;)
C'y = Tanh(Oyx, + Onghe_y + by)

Seite 86 May 2017

The next step is to decide what new
information we’re going to store in the cell
state. This has two parts:

1. A sigmoid layer called the “input gate layer”
decides which values we’ll update.

2. Atanh layer creates a vector of new candidate
values, C;, that could be added to the state.

In the next step, we’ll combine these two to
create an update to the state.

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Corporate Technology
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Long Short Term Memory (LSTM): Step by Step

Cell Update
- update the old cell state, C,_;, into the new cell state C,
- multiply the old state by f,, forgetting the things we
C, . C, decided to forget earlier
& O . - add i, *C, to get the new candidate values, scaled by

% how much we decided to update each state value.
f

Cy = fi xCy_1 4+ 14 x Cy

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy
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Long Short Term Memory (LSTM): Step by Step

Output Gate: Output is the filtered version of the cell state
- Decides the part of the cell we want as our output in the form of new hidden state
- multiplicative output gate to protect other units from perturbation by currently irrelevant memory contents

- a sigmoid layer decides what parts of the cell state goes to output. Apply tanh to the cell state and multiply it
by the output of the sigmoid gate - only output the parts decided

ht

0; = sigmoid(0,,x; + Op,h;_1 + b,)
ht - Ot * tanh(ct)

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy
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Dealing with Vanishing Gradients in LSTM

As seen, the gradient vanishes due to the recurrent part of the RNN equations

h; = @ht—l + some other terms

‘) How LSTM tackled vanishing gradient?

® Answer: forget gate

Ot :®>I< Ct—l + 24 * ét

» The forget gate parameters takes care of the vanishing gradient problem
» Activation function becomes identity and therefore, the problem of vanishing gradient is addressed.

» The derivative of the identity function is, conveniently, always one. So if f = 1, information from the
previous cell state can pass through this step unchanged
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Code snippet for LSTM unit: |n_j_n - 2 # for embedded reber grammar -
n_hidden = n_i = n_c = n_o = n_+t = 18 Offllne
n_y = 2 # for embedded reber grammar
W xi = sample weights{n_in, n_1i)

W hi = sample weights{n_hidden, n_1i}

W ci = sample weights({n_c, n_3i)

b i = np.random.uniform{(-8.5,.5,size = n_1)
W xf = sample weights({n_in, n_+)

W _hf = sample weights{n_hidden, n_+)

W _cf = sample weights{n_c, n_+)

b f = np.random.uniform{(&, 1.,size = n_+)
W _xc = sample weights({n_in, n_c)

W _hc = sample weights{n_hidden, n_c)

b ¢ = np.zeros{n_c)

W xo = sample weights{n_in, n_o)

W ho = sample weights{n_hidden, n_o)

W co = sample weights({n_c, n_o)

b o = np.random.uniform{(-8.5,.5,size = n_o)
W hy = sample weights{n_ hidden, n_vw)

b = np.zeros{n_y)

c8® = np.zeros{n_hidden)

he = np.tanh{cé)

Parameter Dimension
Intern © Siemens AG 2017
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Code snippet for LSTM unit: LSTM equations forward pass and shape of gates

ﬂfline

fei
rt

ot ottt
| 1 |

sigma(np.dot(X, W xi)} + np.dot(h@, W _hi) + np.dot(c@, W _ci) + b_i)
sigma(np.dot(X, W xf) + np.dot(he, W _h¥) + np.dot(ce, W_cf) + b_+)
f £t * 8 + 1 t * np.tanh(np.dot(X, W xc) + np.dot(h@&, W _hc) + b_c)
sigma(np.dot(X, W xo)+ np.dot(he&, W ho) + np.dot{c t, W co) + b _o)
o t * np.tanh{c_t)

sigma(np.dot(h_t, W_hy) + b_w)

el il B T S

print{np.shape(i_t))
print{np.shape(f_t))
print{np.shape{c_t))
print{np.shape({o_t))
print{np.shape(h_t))

print{np.shape(y_t))

(3eeL, 1eL)
(3eeL, 18L)
(3eeL, 1eL)
(3BBL, 18L)
(3eeL, 1eL)
(3BeL, 2L)

Intern © Siemens AG 2017
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 GRU like LSTMs, attempts to solve the Vanishing gradient problem in RNN

Gates:

Update
Gate

These 2 vectors decide
what information
should be passed to
output

{ Reset Gate

» Units with short-term dependencies will have active reset gates r

» Units with long term dependencies have active update gates z

Intern © Siemens AG 2017
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Update Gate:

- to determine how much of the past information
(from previous time steps) needs to be passed

along to the future.

- to learn to copy information from the past such that

gradient is not vanished.

Here, x; is the input and h;_, holds the information

from the previous gate.

z; = sigmoid(W?x; + U?ht_1)

Intern © Siemens AG 2017
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Reset Gate

- model how much of information to forget by the unit

Here, x; is the input and h;_, holds the information

from the previous gate.

r, = sigmoid(W Mx, + UMh,_,)

Memory Content:
h'y = tanh(Wx; +r_t © Uh;_,)
Final Memory at current time step
he =2z O hg-y + (1 —2) O hy

Intern © Siemens AG 2017
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We had a product of Jacobian:

Offline

% - a?lhj <t
k j=k+1 J—1

Where, alpha depends upon weight matrix and derivative of the activation function

Now,
oh; on'
] ]
=zi+(1-—z
Ohj_q ] ( ])6hj_1
And M g 1
nd, oy for z; =

Intern © Siemens AG 2017
Seite 95 May 2017 Corporate Technology



Code snippet of GRU unit:

SIEMENS

Offline

1 def GRU(x_t, s_tl_prev):

2

3 # Get the input as a word vector

4 X e = E[:,X t]

5

6 # GRU Layer

7 z_tl = T.nnet.hard sigmoid(U[0].dot(x_e) + W[0O].dot(s_tl prev) + b[0])
8 r tl = T.nnet.hard sigmoid(U[1l].dot(x_e) + W[1l].dot(s_tl prev) + b[1l])
9 c tl = T.tanh(U[2].dot(x_e) + W[2].dot(s_tl prev * r tl) + b[2])

10 s tl = (T.ones_like(z_tl) - z tl) * c t1 + z _tl * s _tl prev

11

12 # Final output calculation

13 # Theano's softmax returns a matrix with one row, we only need the row
14 o t = T.nnet.softmax(V.dot(s_tl) + c)[0]

15

16 return [o_t, s_tl]

17

Intern © Siemens AG 2017
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Comparing LSTM and GRU

LSTM over GRU
One feature of the LSTM has: controlled exposure of the memory content, not in GRU.

In the LSTM unit, the amount of the memory content that is seen, or used by other units in the network is controlled by
the output gate. On the other hand the GRU exposes its full content without any control.

LSTM unit
i |

» GRU performs comparably to LSTM Q}D

J

.

Chung et al, 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
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Break (10 minutes)
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Bi-directional RNNs

Bidirectional Recurrent Neural Networks (BRNN)
- connects two hidden layers of opposite directions to the same output
- output layer can get information from past (backwards) and future (forward) states simultaneously

- learn representations from future time steps to better understand the context and eliminate ambiguity

. Output

Sentencel: “He said, Teddy bears are on sale” Pt
B : : ” Forward state
Sentnce2: “He said, Teddy Roosevelt was a great President”. ﬂ >.
when we are looking at the word “Teddy” and the previous two words < .‘ B ackuard
W
“He said”, we might not be able to understand if the sentence refers state
to the President or Teddy bears. sequence of
Input

Therefore, to resolve this ambiguity, we need to look ahead.

https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-Istm-gru-73927ec9df15
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Bidirectional Recurrent Neural Networks (BRNN)

<fe2> N
_
U terror Backward direction
° U <e2>
h Tw, 4 of C-BRNN
> h, | W Vs ¢Un cause
W, th
l+ h N w ¢uh e wass
W, 3 © Nl W ° U <le1> B
P . * h, b ¢ b U demolition
'Y h ) . \ hh W, ¢ A cel>
bi bi W A h, W, ¢ u,
il . * S W U i
* > W, + h, ~al »  cause
+ hu \: w + hh- \hA effect
h Wf hl‘.i bi W v . hb (ellez)
t \ W + \ hu g I' :
h, \fA + S~ hu W, + =
TU hf W[ + \ h Whi + E
f U \ h w + ‘ bi \ h Whi W C
<el> ¢ ¢ \Ar W ¥ : .
demolition i TU 0 f . L A
</el> 1 U f h Wf . i I
was f TU t [l h, W, w + o
the ' TU \ h; \& N
cause f U hf |
of ! ?U softmax
<e2> f ?U layer
Forward direction ——————— terror f
</e2>

Figure 1: Connectionist Bi-directional Recurrent Neural Network (C-BRNN) (Vu et al., 2016a)

Gupta 2015. (Master Thesis). Deep Learning Methods for the Extraction of Relations in Natural Language Text
Gupta and Schitze. 2018. LISA: Explaining Recurrent Neural Network Judgments via Layer-wilse Semantic Accumulation and Example to Pattern Transformation

Vu et al., 2016. Combining recurrent and convolutional neural networks for relation classification

Intern © Siemens AG 2017
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Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM

» applying the same set of weights recursively over a structured 1
input, by traversing a given structure in topological order,

e.g., parse tree

» Use principle of compositionality

» Recursive Neural Nets can jointly learn compositional

_ the country of
vector representations and parse trees
RecNN
> The meaning (vector) of a sentence is determined by S 23 -—)[:'g——) -
(1) the meanings of its words and 1‘ A 1‘ 1‘ 1‘
. 0.4 2.1 7 4 2.3
(2) the rules that combine them. 0.3 3.3 7 [4_5 36
the country of my birth
http://www.iro.umontreal.ca/~bengioy/talks/gss2012-YB6-NLP-recursive.pdf RNN
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Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM

score = 1.3 [g ] = parent

score = UTp

Neural g

Network — | p = tanh (W [ cl ] - b)

2

Same W parameters at all nodes

[i] [3] of the tree

children C C -

http://www.iro.umontreal.ca/~bengioy/talks/gss2012-YB6-NLP-recursive.pdf
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Applications X2
5 x the country of my birth

> represent the meaning of longer phrases K the place where 1 was born

» Map phrases into a vector space
» Sentence parsing

» Scene parsing

GO

cat sat on the mat.

Intern © Siemens AG 2017 e WD
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Application: Relation Extraction Within and Cross Sentence Boundaries, i.e., document-level relation extraction

Paul Allen has started a company and named [Vern Raburn|.;
its President. The company, to be called [Paul Allen Group],, will
be based in Bellevue, Washington.

- conj dobj

. NEXTS
cc
compound iobi poss

Paul Allen a company and named [Vern Rabum]‘,_,1 its President Allen and company company called will be Wa.shlngton

nsubjpass

compound Paul President a the to be in Bellevue
The company to be called [Paul Allen Group] , will be in Bellevue Washington el its e2

Figure 1: Left: Sentences and their dependency graphs. Right: Inter-sentential Shortest Dependency Path (1ISDP) across sentence
boundary. Connection between the roots of adjacent sentences by NEXTS.

Gupta et al., 2019. Neural Relation Extraction Within and Across Sentence Boundaries.

Intern © Siemens AG 2017
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Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM

Relation Extraction Within and Cross Sentence Boundaries, i.e., document-level relation extraction

@ Bi-directional hidden Word embedding E Subtree embedding Softmax
vector layer

Inter-sentential Bi-directional Recurrent Neural Network

layer vector vector

5 Paul Allen has started a company and named [Vern Raburn|.
® , . .
2| its President. The company, to be called [Paul Allen Group] ,, will
S . . 29
[\Iern Raburn] named started based called [Paul Allen Group]ez' ‘6 be based in BCHCVUC, WﬂShlﬂg[Oﬂ.
X 2 R
°
e NEXTS
started p based
Wdobj auxpass Alleﬁ” and named comﬁany compaIﬁy called will Ee Was'hinglon
= - Word
© S Embedding (x,,) - - aar
§= o P, 3] Paul | Raburn President a the to be  group in Bellevue
4 g Subtree L]
Inter-sentential & O Embedding (c,) =
Dependency 2
Subtrees po W Wiet compound g el Vem its Paul  Allen e2
@ Inter-sentential T
n © S Recursive
= £ 2 Neural Network
9]
@

Figure 2: Inter-sentential Dependency-based Neural Network variants: iDepNN-SDP and iDepNN-ADP
Gupta et al., 2019. Neural Relation Extraction Within and Across Sentence Boundaries.
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tacking recurrent neural network
t=1 =2 t=3 t=4

Deep
in height

word1 word?2 word3 word4

Deep in time

Deep RNN architecture

Intern © Siemens AG 2017
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<s> PER proposes Fischler 0 measures proposes 0 </s>
Lo JlLo JlLa&a | (& Jloe |[& | L& J[o |[ & |
1 1 1 t 1 1 t t

| Lme | [ d L | d | [ m |

| [ |
~a \ / -
pama

Fischler proposes measures

Figure 1: The unfolded network structure for a sequence labeling model with an additional language
modeling objective, performing NER on the sentence ”Fischler proposes measures”. The input tokens
are shown at the bottom, the expected output labels are at the top. Arrows above variables indicate the
directionality of the component (forward or backward).

Multi-task RNN architecture

Marek Rei . 2017. Semi-supervised Multitask Learning for Sequence Labeling

Corporate Technology
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Weight Initialization Methods RelLU

> ldentity weight initialization with ReLU activation

oh, 1 1lon_, mn diaglg'(hi-)] o { 0 forx<o :

tzi>k tzi>k x forx=>0

Activation Function: ReLU
l.e., ReLU(x) = max{0,x} -

And it's gradient =0 forx <0 and 1 forx >0

Therefore,

Intern © Siemens AG 2017
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RNN in Practice: Training Tips

Weight Initialization Methods (in Vanilla RNNs)

» Random W, initialization of RNN > no constraint on eigenvalues
» vanishing or exploding gradients in the initial epoch

» Careful initialization of W, , with suitable eigenvalues
-2 W,,, initialized to Identity matrix
- Activation function: ReLU What else?
- Batch Normalization:faster convergence
» allows the RNN to learn in the initial epochs > Dropout: better generalization
» can generalize well for further iterations

Geoffrey et al, “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units”
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—> Translation often requires arbitrary input length and output length
- Encode-decoder can be applied to N-to-M sequence, but is one hidden state really enough?

ENCODER DECODER

UUU[‘@M

how are you ?

L Il IL IL J L Il L I

fime step 1 2 3 4 5 b 7

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

Intern © Siemens AG 2017
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Attention Mechanism: Attentive RNNs

Attention to improve the performance of the Encoder-Decoder RNN on machine translation.
—> allows to focus on local or global features
—> Is a vector, often the outputs of dense layer using softmax function

—> generates a context vector into the gap between encoder and decoder
Je suis étudiant </s>

attention
vector

Context vector

context
vector

- takes all cells’ outputs as input

attention 0 : 5 03

weights ‘( s

- compute the probability distribution of source language

words for each word in decoder (e.g., ‘Je’)

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129 | am a student <s> Je suis étudiant
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Attention Mechanism: Attentive RNNs

How does it Work?
Idea: Compute Context vector for every output/target word, t (during decoding)
For each target word, t

1. generate scores between each encoder state h, and the target state h,

2. apply softmax to normalize scores = attention weights > SHE e

attention
vector

(the probability distribution conditioned on the target state)

exp (score(h;. RH)) s = 1 T ¢ 1
Qs = —= 2
D=1 €xp (score(hy, hy)) gitemiondc Y 53 .
Y ...

3. compute context vector for the target word, t I A ' I I I
using attention weights ¢ =) oush,

4. compute attention vector for the target word, t * >I :! :!

a; — f(C;. h;) = tallh(Wc[C{; hg]) S T . -

I am a student <s> Je suis étudiant

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
Intern © Siemens AG 2017
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Visualization
—>Visualize output predictions: LISA

- Visualize neuron activations: Sensitivity Analysis

Further Details:

- Gupta et al, 2018. “LISA: Explaining Recurrent Neural Network Judgments via Layer-wise Semantic Accumulation and Example to
Pattern Transformation”. https://arxiv.org/abs/1808.01591

- Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

- Hendrick et al, “Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks”

Intern © Siemens AG 2017
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LISA: Explaining RNN Judgments via Layer-wlIse Semantic

9 VISl,Ia|Ize Output predlctlons LISA Accumulation and Example to Pattern Transformation

Analyzing and Interpreting RNNs for NLP

Pankaj Gupta? & Hinrich Schiltze!
1CIS, University of Munich (LMU), Germany
ZCorporate Technology, Machine-Intelligence, Siemens AG Munich, Germany LMU

Checkout our POSTER about LISA paper (EMNLP2018 conference) e SIEMENS

https://www.researchgate.net/publication/328956863 LISA_Explaining_ RNN_JudQ — cmmmmrmesmmmimmonss |l
ments_via_Layer- g |

wlise Semantic Accumulation and Example to Pattern Transformation Analyzi
ng and Interpreting RNNs for NLP

Figuae & Comneciborisd Bi-directional Recurseat Newal Metwosk (- BRNNY [2, 3]

Layer-wlse Semantic Accumulation (LISA) Formulation

Full paper: e o e

Gupta et al, 2018. “LISA: Explaining Recurrent Neural Network Judgments via Layer-
wlise Semantic Accumulation and Example to Pattern Transformation”. e il b
https://arxiv.org/abs/1808.01591 el B

P
]

whesll, o2
pus——

Conclusion & Future Work
PURS ;5 M) - s Wy - Ry + By) for ke [1,n] o R . [ S
= Study snd analyse RNN nature with distoried shulfle crderiag of wonis)
Example2pattern Transformation for Saliency Patiern - e
Commuie M. el o the by L e
e : = ! T
S i o o CRNN o compu: (1S ) whe: e N-ram (N iemguence . e r—y i e —
Sax -l D e O I T Ve T LA e 1 S bt s et oo i e it e e
Sk -ty by, i) and Nogrami - s, w% ke m e T A T g S5 g s T S AT
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Figure below shows the plot of the sensitivity score .Each row corresponds to saliency score for the
correspondent word representation with each grid representing each dimension.

Explainability/Interpretability of RNNs

Visualize neuron activations via Heat maps, i.e. Sensitivity Analysis

the

movie foos

o 10 ) E™) AL & ] n = 0 0 50

Recurrent ‘ LSTM | Ei - Directibnal LSTM

All three models assign high sensitivity to “hate” and dampen the influence of other tokens. LSTM offers a clearer focus
on “hate” than the standard recurrent model, but the bi-directional LSTM shows the clearest focus, attaching almost zero
emphasis on words other than “hate”. This is presumably due to the gates structures in LSTMs and Bi-LSTMs that
controls information flow, making these architectures better at filtering out less relevant information.

LSTM and RNN capture short-term depdendency

Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”
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Visualize neuron activations via Heat maps, i.e. Sensitivity Analysis

hate

the

maovie
though

I

|| IR

il

7

10 20 30 40 50
Recurrent

|
0.09
el
0.08
the
0.07
movie
n.08
though
0.05
the
0.04 !
plot
0.03
is
002 !
interesting
0.01
000

10 20 30 43 5O

LSTM

Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”
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LSTM captures long-term depdendency, (vanilla) RNN not.
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RNNs in Topic Trend Extraction (Dynamic Topic Evolution): RNN-RSM

RSM

Neural Network
Language Models
Word Representation
Linear Model

Rule Set

1996

Neural Network
Language Models
Supervised
Linear Model

Rule Set

1997

RSM

Observable
Softmax Visibles

Neural Network Topic_words
Language Models :

Word Embedding over tm_]e
Word Embeddings for topic
Word Representation  “\Word Vector’

2014

Gupta et al. 2018. Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
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RNNs in Topic Trend Extraction (Dynamic Topic Evolution): RNN-RSM

SIEMENS
RSM RSM RSM RSM

o h® 2@ o hen m@ Latent Topics
by, < bh by /

(T
b
| o ol A
Wuh I WVh Wuh I WVh Wuh I WVh Wuh I WVh

(T-1

oD o o i
« @ ¥ (e w (v v
| | |

W, W W W Wy,

WV
RNN (w0 () ’@
NUU WUU Wuu

Cost in RNN-RSM, the negative log-likelihood

C = 23;1 C, = fozl —In P(f[(t)) Training via BPTT

~

Observable
Softmax Visibles

Gupta et al. 2018. Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
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Topic Trend Extraction or Topic Evolution in NLP research over time

I_EI_IR};NI_RJSLIII T T 1T T 17T T 1T T T I_EI_IR:DJIN_IRISNII T 1T 17T 17T T T T T T°1 I_EI_IRNINI_R-ISL& T 1T 1T 17T T 1T T T T°1
07— ®rsMm | UTH e ®rSM | 07H e rsM | ]
ogH—— DA | ] ngll—— tbA | ] ogll— LbA ]

= —— DTM z2 ——  DTM = ——  DTM
R 8 05— 5 05— -
L= g o4l £ o4
2 2 2
: = ‘= 03
S 8 8
0.2%
0.1
0 ] DIIIIIIIIIIIIIIIIII
25228558382885832 -0 25%32z-g22ggsBee oo
Years Years
Topic: Sentiment Analysis Topic: Word Vector Topic: Dependency Parsing

Gupta et al. 2018. Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
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» RNNs model sequential data
» Long term dependencies are a major problem in RNNs
Solution:
—> careful weight initialization
- LSTM/GRUs
» Gradients Explodes
Solution: - Gradient norm clipping
» Regularization (Batch normalization and Dropout) and attention help

» Interesting direction to visualize and interpret RNN learning

Intern © Siemens AG 2017
Seite 119 May 2017 Corporate Technology



SIEMENS

LMU

References, Resources and Further Reading

» RNN lecture (lan Goodfellow): https://www.youtube.com/watch?v=ZVN14xYm7JA

= Andrew Ng lecture on RNN: https://www.coursera.org/lecture/nlp-sequence-models/why-sequence-models-0h7gT

» Recurrent Highway Networks (RHN)

» LSTMs for Language Models (Lecture 07)

» Bengio et al,. "On the difficulty of training recurrent neural networks." (2012)

» Geoffrey et al, “Improving Perfomance of Recurrent Neural Network with ReLU nonlinearity”

» Geoffrey et al, “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units”

» Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).

= Dropout : A Probabilistic Theory of Deep Learning, Ankit B. Patel, Tan Nguyen, Richard G. Baraniuk.
» Barth (2016) : “Semenuita et al. 2016. “Recurrent dropout without memory loss”

» Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

= [lya Sutskever, et al. 2014. “Sequence to Sequence Learning with Neural Networks”

» Bahdanau et al. 2014. “Neural Machine Translation by Jointly Learning to Align and Translate”

» Hierarchical Attention Networks for Document Classification, 2016.

» Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification, 2016

» Good Resource: http://slazebni.cs.illinois.edu/springl17/lec20_rnn.pdf
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LMU

References, Resources and Further Reading

= Lecture from the course Neural Networks for Machine Learning by Greff Hinton
» Lecture by Richard Socher: https://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf
» Understanding LSTM: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

= Recursive NN: http://www.iro.umontreal.ca/~benqgioy/talks/gss2012-YB6-NLP-recursive.pdf

= Attention: https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

» Gupta, 2015. Master Thesis on “Deep Learning Methods for the Extraction of Relations in Natural Language Text”

» Gupta et al., 2016. Table Filling Multi-Task Recurrent Neural Network for Joint Entity and Relation Extraction.

* Vu etal., 2016. Combining recurrent and convolutional neural networks for relation classification.

» Vu et al., 2016. Bi-directional recurrent neural network with ranking loss for spoken language understanding.

» Gupta et al. 2018. Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time

= Gupta et al., 2018. LISA: Explaining Recurrent Neural Network Judgments via Layer-wlse Semantic Accumulation and Example to
Pattern Transformation.

» Gupta et al., 2018. Replicated Siamese LSTM in Ticketing System for Similarity Learning and Retrieval in Asymmetric Texts.

» Gupta et al., 2019. Neural Relation Extraction Within and Across Sentence Boundaries

» Talk/slides: https://vimeo.com/277669869
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