
Intern © Siemens AG 2017

Lecture-05: Recurrent Neural Networks
(Deep Learning & AI)

Speaker: Pankaj Gupta
PhD Student (Advisor: Prof. Hinrich Schütze) CIS, University of Munich (LMU)
Research Scientist (NLP/Deep Learning), Machine Intelligence, Siemens AG | Nov 2018

Intern © Siemens AG 2017
May 2017Seite 2 Corporate Technology

Lecture Outline

 Motivation: Sequence Modeling

 Understanding Recurrent Neural Networks (RNNs)

 Challenges in vanilla RNNs: Exploding and Vanishing gradients. Why? Remedies?

 RNN variants:

o Long Short Term Memory (LSTM) networks, Gated recurrent units (GRUs)

o Bi-directional Sequence Learning

o Recursive Neural Networks (RecNNs): TreeRNNs and TreeLSTMs

o Deep, Multi-tasking and Generative RNNs (overview)

 Attention Mechanism: Attentive RNNs

 RNNs in Practice + Applications

 Introduction to Explainability/Interpretability of RNNs

Intern © Siemens AG 2017
May 2017Seite 3 Corporate Technology

Motivation: Need for Sequential Modeling

Why do we need Sequential Modeling?

Intern © Siemens AG 2017
May 2017Seite 4 Corporate Technology

Motivation: Need for Sequential Modeling

Examples of Sequence data Input Data Output

Speech Recognition This is RNN

Machine Translation

Language Modeling

Named Entity Recognition

Sentiment Classification

Video Activity Analysis

Hello, I am Pankaj.
Hallo, ich bin Pankaj.
हैलो, म� पंकज �ं।

Recurrent neural __ based __ model network

language

Pankaj lives in Munich Pankaj lives in Munich
person location

There is nothing to like in this movie.

Punching

Intern © Siemens AG 2017
May 2017Seite 5 Corporate Technology

Motivation: Need for Sequential Modeling

Inputs, Outputs can be different lengths in different examples
Example:

Sentence1: Pankaj lives in Munich

Sentence2: Pankaj Gupta lives in Munich DE

Intern © Siemens AG 2017
May 2017Seite 6 Corporate Technology

Motivation: Need for Sequential Modeling

Inputs, Outputs can be different lengths in different examples
Example:

Sentence1: Pankaj lives in Munich

Sentence2: Pankaj Gupta lives in Munich DE

…

…

Pankaj

lives

in

Munich

PAD

PAD

person

other

other

location

other

other

Pankaj

Gupta

lives

in

Munich

Germany

person

person

other

other

location

location

…

…

FF-net / CNN

Addit ional word

‘PAD’ i .e., padding

FF-net / CNN

*FF-net: Feed-forward network

Intern © Siemens AG 2017
May 2017Seite 7 Corporate Technology

Motivation: Need for Sequential Modeling

Inputs, Outputs can be different lengths in different examples
Example:

Sentence1: Pankaj lives in Munich

Sentence2: Pankaj Gupta lives in Munich DE

…

…

Pankaj

lives

in

Munich

PAD

PAD

person

other

other

location

other

other

Pankaj

Gupta

lives

in

Munich

Germany

person

person

other

other

location

location

Pankaj lives in Munich

Pankaj Gupta lives in Munich Germany

person person other other location location

person other other location

…

…

Sequential model: RNN

Models
variable
length

sequences

FF-net / CNNFF-net / CNN

*FF-net: Feed-forward network

Intern © Siemens AG 2017
May 2017Seite 8 Corporate Technology

Motivation: Need for Sequential Modeling

Share Features learned across different positions or time steps
Example:

Sentence1: Market falls into bear territory Trading/Marketing

Sentence2: Bear falls into market territory  UNK

Same uni-gram
stat ist ics

Intern © Siemens AG 2017
May 2017Seite 9 Corporate Technology

Motivation: Need for Sequential Modeling

Share Features learned across different positions or time steps
Example:

Sentence1: Market falls into bear territory Trading/Marketing

Sentence2: Bear falls into market territory  UNK

…

…

falls

bear

market

into

territory

Trading

…

…

falls

bear

market

into

territory

UNK

sentence2sentence1

No sequent ial
or temporal

model ing, i .e.,
order-less

Treats the two
sentences the

same

FF-net / CNN FF-net / CNN

Intern © Siemens AG 2017
May 2017Seite 10 Corporate Technology

Motivation: Need for Sequential Modeling

Share Features learned across different positions or time steps
Example:

Sentence1: Market falls into bear territory Trading/Marketing

Sentence2: Bear falls into market territory  UNK

…

…

falls

bear

market

into

territory

Trading

bear falls into market territory

UNK

Sequential model: RNN

…

…

falls

bear

market

into

territory

UNK

sentence2sentence1

market falls into bear territory

Trading
Language
concepts,

Word
ordering,

Syntact ic &
semant ic

informat ion

FF-net / CNN FF-net / CNN

Intern © Siemens AG 2017
May 2017Seite 11 Corporate Technology

Motivation: Need for Sequential Modeling

Share Features learned across different positions or time steps
Example:

Sentence1: Market falls into bear territory Trading/Marketing

Sentence2: Bear falls into market territory  UNK

…

…

falls

bear

market

into

territory

Trading

bear falls into market territory

UNK

Sequential model: RNN

…

…

falls

bear

market

into

territory

UNK

sentence2sentence1

market falls into bear territory

Trading
Language
concepts,

Word
ordering,

Syntact ic &
semant ic

informat ion

FF-net / CNN FF-net / CNN

Direct ion of
informat ion f low

matters!

Intern © Siemens AG 2017
May 2017Seite 12 Corporate Technology

Motivation: Need for Sequential Modeling

Machine Translation: Different Input and Output sizes, incurring sequential patterns

Pankaj lives in Munich

pankaj lebt in münchen

Encoder

Decoder

encodes input text

Pankaj lives in Munich

पंकज मुिनच म� रहता

Encoder

Decoder

encodes input text

है

Intern © Siemens AG 2017
May 2017Seite 13 Corporate Technology

Motivation: Need for Sequential Modeling

Convolutional vs Recurrent Neural Networks

RNN

- perform well when the input data is interdependent in a sequential pattern

- correlation between previous input to the next input

- introduce bias based on your previous output

CNN/FF-Nets

- all the outputs are self dependent

- Feed-forward nets don’t remember historic input data at test time unlike recurrent networks.

Intern © Siemens AG 2017
May 2017Seite 14 Corporate Technology

Motivation: Need for Sequential Modeling

Memory-less Models Memory Networks
Autoregressive models:

Predict the next input in a sequence from a fixed
number of previous inputs using “delay taps”.

Feed-forward neural networks:

Generalize autoregressive models by using
non-linear hidden layers.

inputt-2 inputt-1 inputt

Wt-2
Wt-1

inputt-2 inputt-1 inputt

Wt-2

Wt-1

-possess a dynamic hidden state that can store long
term information, e.g., RNNs.

Recurrent Neural Networks:

RNNs are very powerful, because they combine the
following properties-

Distributed hidden state: can efficiently store a lot of
information about the past.

Non-linear dynamics: can update their hidden state
in complicated ways

Temporal and accumulative: can build semantics,
e.g., word-by-word in sequence over time

Intern © Siemens AG 2017
May 2017Seite 15 Corporate Technology

Notations

• 𝒉𝒉𝑡𝑡: Hidden Unit

• 𝒙𝒙𝑡𝑡: Input

• 𝒐𝒐𝑡𝑡 : Output

• 𝑾𝑾ℎℎ : Shared Weight Parameter

• 𝑾𝑾ℎ𝑜𝑜 : Parameter weight between hidden layer and output

• 𝜃𝜃: parameter in general

• 𝑔𝑔𝜃𝜃 : non linear function

• 𝐿𝐿𝑡𝑡 :Loss between the RNN outputs and the true output

• 𝐸𝐸𝑡𝑡 : cross entropy loss

Intern © Siemens AG 2017
May 2017Seite 16 Corporate Technology

Long Term and Short Dependencies

Short Term Dependencies

 need recent information to perform the present task.

For example in a language model, predict the next word based on the previous ones.

“the clouds are in the ?”  ‘sky’

 Easier to predict ‘sky’ given the context, i.e., short term dependency

 Consider longer word sequence “I grew up in France…........…………………… I speak fluent French.”

 Recent information suggests that the next word is probably the name of a language, but if we want to
narrow down which language, we need the context of France, from further back.

Long Term Dependencies

“the clouds are in the sky”

Intern © Siemens AG 2017
May 2017Seite 17 Corporate Technology

Foundation of Recurrent Neural Networks

Goal

 model long term dependencies

 connect previous information to the present task

 model sequence of events with loops, allowing information to persist

punching

Intern © Siemens AG 2017
May 2017Seite 18 Corporate Technology

Foundation of Recurrent Neural Networks

Goal
 model long term dependencies

 connect previous information to the present task

 model sequence of events with loops, allowing information to persist

Feed Forward NNets can not take time dependencies into account.

Sequential data needs a Feedback Mechanism.

feedback mechanism

or internal state loop

o

x

A
x0 …

…

FF-net / CNN

xt

…

…

o0

ot

…

… x0

Recurrent Neural Network (RNN)

xt-1 xt xT

… …

o0 ot-1 ot oT
Unfold
in time

time

Whh Whh Whh

Whh

Intern © Siemens AG 2017
May 2017Seite 19 Corporate Technology

Foundation of Recurrent Neural Networks

Recurrent Neural Network

Whh

time

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

.8 .1 .2.1 .1 .7 .1 .1 .8 .1 .7 .2

person other other location

person

other

location

Pankaj lives in Munich

output labels

.8 .1 .2.1 .1 .7 .1 .1 .8 .1 .7 .2

softmax-layer

output layer

hidden layer

input layer

input sequence

Whh Whh

Wxh

Who

.5

.3.2

.7

.3

-.1

.5

.4

.9 .5

.6

.7

Intern © Siemens AG 2017
May 2017Seite 20 Corporate Technology

(Vanilla) Recurrent Neural Network

Process a sequence of vectors x by applying a recurrence at every time step:

o

x

A

x0

Vanilla Recurrent Neural Network (RNN)

xt-1 xt xT

… …

o0 ot-1 ot oT

Whh

Whh Whh Whh

Unfold
in time

time

feedback mechanism

or internal state loop

new hidden
state at time
step, t

some function with
parameters

Input vector at time step, t

old hidden state
at time step, t-1

Remark: The same function g and same set of parameters W are used at every time step

Wxh

Who

ℎ𝑡𝑡 = 𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
h0 ht

Whh Wxh

Intern © Siemens AG 2017
May 2017Seite 21 Corporate Technology

(Vanilla) Recurrent Neural Network

Process a sequence of vectors x by applying a recurrence at every time step:

o

x

A

x0

Vanilla Recurrent Neural Network (RNN)

xt-1 xt xT

… …

o0 ot-1 ot oT

Whh

Whh Whh Whh

Unfold
in time

time

feedback mechanism

or internal state loop

Wxh

Who

Remark: RNN‘s can be seen as selective summarization of input sequence in a fixed-size
state/hidden vector via a recursive update.

ℎ𝑡𝑡 = 𝑔𝑔𝜃𝜃 ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡

ℎ𝑡𝑡 = tanh(𝑊𝑊ℎℎ ℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥ℎ𝑥𝑥𝑡𝑡)

𝑜𝑜𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡)

Intern © Siemens AG 2017
May 2017Seite 22 Corporate Technology

Recurrent Neural Network: Probabilistic Interpretation

RNN as a generative model

 induces a set of procedures to model

the conditional distribution of xt+1 given x<=t

for all t = 1, …,T

 Think of the output as the probability distribution of the

xt given the previous ones in the sequence

Training: Computing probability of the sequence and Maximum likelihood training

x0

Generative Recurrent Neural Network (RNN)

xt-1 xt xT

… …

x1 xt xt+1 <eos>

time

<bos>

…

x0

Details: https://www.cs.cmu.edu/~epxing/Class/10708-17/project-reports/project10.pdf

Whh Whh Whh Whh

https://www.cs.cmu.edu/%7Eepxing/Class/10708-17/project-reports/project10.pdf

Intern © Siemens AG 2017
May 2017Seite 23 Corporate Technology

RNN: Computational Graphs

Initial
State, A0

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

Sequence of Inputs
𝜃𝜃

𝑔𝑔𝜃𝜃

Next state

𝑜𝑜1 𝑜𝑜2 𝑜𝑜3

Sequence of output

𝑔𝑔𝜃𝜃 𝑔𝑔𝜃𝜃

Intern © Siemens AG 2017
May 2017Seite 24 Corporate Technology

RNN: Different Computational Graphs

One to one Many to One

Many to Many

𝒙𝒙𝟏𝟏

𝒐𝒐𝟏𝟏

One to Many𝒙𝒙𝟏𝟏

Many to Many

𝒐𝒐𝟏𝟏 𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝟒𝟒

𝒐𝒐𝟏𝟏

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝟒𝟒𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐

𝒐𝒐𝟏𝟏 𝒐𝒐𝟐𝟐
𝒐𝒐𝟐𝟐𝒐𝒐𝟏𝟏 𝒐𝒐𝟑𝟑 𝒐𝒐𝟒𝟒

Intern © Siemens AG 2017
May 2017Seite 25 Corporate Technology

Backpropogation through time (BPTT) in RNN

 Training recurrent networks via BPTT

 Compute gradients via backpropagation on the (multi-layer) unrolled model

Intern © Siemens AG 2017
May 2017Seite 26 Corporate Technology

Backpropogation through time (BPTT) in RNN

 Training recurrent networks via BPTT

 Compute gradients via backpropagation on the (multi-layer) unrolled model

 Think of the recurrent net as a layered,
feed-forward net with shared weights and
then train the feed-forward net in time domain

Lecture from the course Neural Networks for Machine Learning

Intern © Siemens AG 2017
May 2017Seite 27 Corporate Technology

Backpropogation through time (BPTT) in RNN

 Training recurrent networks via BPTT

 Compute gradients via backpropagation on the (multi-layer) unrolled model

 Think of the recurrent net as a layered,
feed-forward net with shared weights and
then train the feed-forward net in time domain

Training algorithm in time domain:
 The forward pass builds up a stack of the activities of all the

units at each time step
 The backward pass peels activities off the stack to compute the

error derivatives at each time step.
 After the backward pass we add together the derivatives at all

the different times for each weight.
Lecture from the course Neural Networks for Machine Learning

Intern © Siemens AG 2017
May 2017Seite 28 Corporate Technology

Backpropogation through time (BPTT) in RNN

 Training recurrent networks via BPTT

 Compute gradients via backpropagation on the (multi-layer) unrolled model

 Think of the recurrent net as a layered,
feed-forward net with shared weights and
then train the feed-forward net in time domain

Training algorithm in time domain:
 The forward pass builds up a stack of the activities of all the

units at each time step
 The backward pass peels activities off the stack to compute the

error derivatives at each time step.
 After the backward pass we add together the derivatives at all

the different times for each weight.

Forward through entire sequence  compute loss
Backward through entire sequence  compute gradient

Lecture from the course Neural Networks for Machine Learning

Intern © Siemens AG 2017
May 2017Seite 29 Corporate Technology

Backpropogation through time (BPTT) in RNN

 Training recurrent networks via BPTT

The output at time t=T is dependent on the inputs from t=T to t=1

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

Direction of Forward pass

Intern © Siemens AG 2017
May 2017Seite 30 Corporate Technology

Backpropogation through time (BPTT) in RNN

 Training recurrent networks via BPTT

The output at time t=T is dependent on the inputs from t=T to t=1

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

Direction of Forward pass

Intern © Siemens AG 2017
May 2017Seite 31 Corporate Technology

Backpropogation through time (BPTT) in RNN

 Training recurrent networks via BPTT

The output at time t=T is dependent on the inputs from t=T to t=1

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

Direction of Forward pass

Intern © Siemens AG 2017
May 2017Seite 32 Corporate Technology

Backpropogation through time (BPTT) in RNN

 Training recurrent networks via BPTT

The output at time t=T is dependent on the inputs from t=T to t=1

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

Direction of Forward pass

Intern © Siemens AG 2017
May 2017Seite 33 Corporate Technology

Backpropogation through time (BPTT) in RNN

 Training recurrent networks via BPTT

The output at time t=T is dependent on the inputs from t=T to t=1

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

Direction of Forward pass

Intern © Siemens AG 2017
May 2017Seite 34 Corporate Technology

Backpropogation through time (BPTT) in RNN

 Training recurrent networks via BPTT

The output at time t=T is dependent on the inputs from t=T to t=1

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

Intern © Siemens AG 2017
May 2017Seite 35 Corporate Technology

Backpropogation through time (BPTT) in RNN

 Training recurrent networks via BPTT

 Let us take our loss/error function to be cross entropy:

The output at time t=T is dependent on the inputs from t=T to t=1

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

𝐸𝐸𝑡𝑡 𝑜𝑜𝑡𝑡′, 𝑜𝑜𝑡𝑡 = −𝑜𝑜𝑡𝑡′ log 𝑜𝑜𝑡𝑡

𝐸𝐸 𝑜𝑜𝑡𝑡′, 𝑜𝑜𝑡𝑡 = �
𝑡𝑡

𝐸𝐸𝑡𝑡(𝑜𝑜𝑡𝑡′, 𝑜𝑜𝑡𝑡)

𝐸𝐸 𝑜𝑜𝑡𝑡′ , 𝑜𝑜𝑡𝑡 = −�
𝑡𝑡

𝑜𝑜𝑡𝑡′ log 𝑜𝑜𝑡𝑡

Where 𝑜𝑜𝑡𝑡′ are the truth values

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

Intern © Siemens AG 2017
May 2017Seite 36 Corporate Technology

Backpropogation through time (BPTT) in RNN

The output at time t=3 is dependent on the inputs from t=3 to t=1

𝜕𝜕𝐸𝐸
𝜕𝜕θ

= �
1≤𝑡𝑡≤3

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕θ

𝜕𝜕𝐸𝐸3
𝜕𝜕𝑊𝑊ℎ𝑜𝑜

= 𝜕𝜕𝐸𝐸3
𝜕𝜕𝑜𝑜3

𝜕𝜕𝑜𝑜3
𝜕𝜕𝑊𝑊ℎ𝑜𝑜

= 𝜕𝜕𝐸𝐸3
𝜕𝜕𝑜𝑜3

𝜕𝜕𝑜𝑜3
𝜕𝜕𝑧𝑧3

𝜕𝜕𝑧𝑧3
𝜕𝜕𝑊𝑊ℎ𝑜𝑜

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

WhoWho
Who

Whh Whh

Writing gradients in a sum-of-products form

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 𝑧𝑧3 = 𝑊𝑊ℎ𝑜𝑜ℎ3
𝜕𝜕𝐸𝐸3
𝜕𝜕𝑊𝑊ℎ𝑜𝑜

= 𝑜𝑜3′(𝑜𝑜3 − 1) × (ℎ3)

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒, ×= 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜕𝜕𝐸𝐸3
𝜕𝜕𝑊𝑊ℎ𝑜𝑜

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑜𝑜3 , 𝑜𝑜3′ 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ3

i.e., 𝑜𝑜3 with softmax

Intern © Siemens AG 2017
May 2017Seite 37 Corporate Technology

Backpropogation through time (BPTT) in RNN

𝜕𝜕𝐸𝐸3
𝜕𝜕𝑊𝑊ℎ𝑜𝑜

= 𝑜𝑜3′(𝑜𝑜3 − 1) × (ℎ3) How ?

Proof

of f l ine

𝐸𝐸3 𝑜𝑜3′, 𝑜𝑜3 = −𝑜𝑜3′ log 𝑜𝑜3

𝜕𝜕𝐸𝐸3
𝜕𝜕𝑧𝑧3

= −𝑜𝑜3′
𝜕𝜕log(𝑜𝑜3)
𝜕𝜕𝑧𝑧3

𝑜𝑜3 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧3), 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧3 = 𝑊𝑊ℎ𝑜𝑜ℎ3

𝑜𝑜3 = 1
Ω
𝑒𝑒𝑧𝑧3 and ,Ω = ∑𝑖𝑖 𝑒𝑒𝑧𝑧𝑖𝑖 log o3 = z3 − log Ω

𝜕𝜕log(𝑜𝑜3)
𝜕𝜕𝑧𝑧3

= 1 − 1
Ω
𝜕𝜕Ω
𝜕𝜕𝑧𝑧3

𝜕𝜕Ω
𝜕𝜕𝑧𝑧3

= �
𝑖𝑖

𝑒𝑒𝑧𝑧𝑧𝑧𝛿𝛿𝑖𝑖3 = 𝑒𝑒𝑧𝑧𝑘𝑘

𝜕𝜕log(𝑜𝑜3)
𝜕𝜕𝑧𝑧3

= 1 − 𝑜𝑜3 𝜕𝜕𝑜𝑜3
𝜕𝜕𝑧𝑧3

= 𝑜𝑜3(1 − 𝑜𝑜3)

𝜕𝜕𝐸𝐸3
𝜕𝜕𝑧𝑧3

= −𝑜𝑜3′(1 − 𝑜𝑜3) = 𝑜𝑜3′ 𝑜𝑜3 − 1 𝜕𝜕𝐸𝐸3
𝜕𝜕𝑊𝑊ℎ𝑜𝑜

=
𝜕𝜕𝐸𝐸3
𝜕𝜕𝑜𝑜3

𝜕𝜕𝑜𝑜3
𝜕𝜕𝑧𝑧3

𝜕𝜕𝑧𝑧3
𝜕𝜕𝑊𝑊ℎ𝑜𝑜

=
𝜕𝜕𝐸𝐸3
𝜕𝜕𝑧𝑧3

𝜕𝜕𝑧𝑧3
𝜕𝜕𝑊𝑊ℎ𝑜𝑜

= 𝑜𝑜3′ 𝑜𝑜3 − 1 × (ℎ3)

1. http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

2. https://stats.stackexchange.com/questions/235528/backpropagation-with-softmax-cross-entropy

http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
https://stats.stackexchange.com/questions/235528/backpropagation-with-softmax-cross-entropy

Intern © Siemens AG 2017
May 2017Seite 38 Corporate Technology

Backpropogation through time (BPTT) in RNN

The output at time t=3 is dependent on the inputs from t=3 to t=1

𝜕𝜕𝐸𝐸
𝜕𝜕θ

= �
1≤𝑡𝑡≤3

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕θ

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

=
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕Wℎℎ

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

WhoWho
Who

Whh Whh

Writing gradients in a sum-of-products form

Since ℎ3 depends on ℎ2 𝐚𝐚𝐚𝐚𝐚𝐚 ℎ2 depends on ℎ1, therefore

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

= �
𝑘𝑘=1

3
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕Wℎℎ

= �
1≤𝑘𝑘≤𝑡𝑡

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

e.g.,

In general,

𝜕𝜕ℎ3
𝜕𝜕h1

=
𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

Intern © Siemens AG 2017
May 2017Seite 39 Corporate Technology

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

Backpropogation through time (BPTT) in RNN

The output at time t=3 is dependent on the inputs from t=3 to t=1

𝜕𝜕𝐸𝐸
𝜕𝜕θ

= �
1≤𝑡𝑡≤3

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕θ

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

=
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕Wℎℎ

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

WhoWho
Who

Whh Whh

Writing gradients in a sum-of-products form

Since ℎ3 depends on ℎ2 𝐚𝐚𝐚𝐚𝐚𝐚 ℎ2 depends on ℎ1, therefore

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

= �
𝑘𝑘=1

3
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕Wℎℎ

= �
1≤𝑘𝑘≤𝑡𝑡

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

𝜕𝜕ℎ3
𝜕𝜕h1

=
𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

Jacobian matrix 𝝏𝝏𝒉𝒉𝒕𝒕
𝝏𝝏𝒉𝒉𝒌𝒌

Transport error in time from step t back to step k

e.g.,

In general,

Intern © Siemens AG 2017
May 2017Seite 40 Corporate Technology

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

Backpropogation through time (BPTT) in RNN

The output at time t=3 is dependent on the inputs from t=3 to t=1

𝜕𝜕𝐸𝐸
𝜕𝜕θ

= �
1≤𝑡𝑡≤3

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕θ

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

=
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕Wℎℎ

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

WhoWho
Who

Whh Whh

Writing gradients in a sum-of-products form

Since ℎ3 depends on ℎ2 𝐚𝐚𝐚𝐚𝐚𝐚 ℎ2 depends on ℎ1, therefore

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

= �
𝑘𝑘=1

3
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

Weight matrix

Derivative of activation function

𝜕𝜕ℎ3
𝜕𝜕h1

=
𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

e.g.,

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕Wℎℎ

= �
1≤𝑘𝑘≤𝑡𝑡

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

In general,

Jacobian matrix 𝝏𝝏𝒉𝒉𝒕𝒕
𝝏𝝏𝒉𝒉𝒌𝒌

Transport error in time from step t back to step k

Intern © Siemens AG 2017
May 2017Seite 41 Corporate Technology

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

Backpropogation through time (BPTT) in RNN

The output at time t=3 is dependent on the inputs from t=3 to t=1

𝜕𝜕𝐸𝐸
𝜕𝜕θ

= �
1≤𝑡𝑡≤3

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕θ

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

=
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕Wℎℎ

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

WhoWho
Who

Whh Whh

Writing gradients in a sum-of-products form

Since ℎ3 depends on ℎ2 𝐚𝐚𝐚𝐚𝐚𝐚 ℎ2 depends on ℎ1, therefore

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

= �
𝑘𝑘=1

3
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕Wℎℎ

= �
1≤𝑘𝑘≤𝑡𝑡

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

Jacobian matrix 𝝏𝝏𝒉𝒉𝒕𝒕
𝝏𝝏𝒉𝒉𝒌𝒌

Transport error in time from step t back to step k

Repeated matrix multiplications leads to vanishing and exploding gradients

𝜕𝜕ℎ3
𝜕𝜕h1

=
𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

e.g.,

Intern © Siemens AG 2017
May 2017Seite 42 Corporate Technology

BPTT: Gradient Flow

𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑

𝒙𝒙𝟏𝟏

𝒐𝒐𝟏𝟏

𝑾𝑾𝒉𝒉𝒉𝒉 𝑾𝑾𝒉𝒉𝒉𝒉

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒉𝒉𝟐𝟐

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

= �
𝑘𝑘=1

3
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

= 𝜕𝜕𝐸𝐸3
𝜕𝜕𝑜𝑜3

𝜕𝜕𝑜𝑜3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ1
𝜕𝜕𝑊𝑊ℎℎ

+ 𝜕𝜕𝐸𝐸3
𝜕𝜕𝑜𝑜3

𝜕𝜕𝑜𝑜3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕𝑊𝑊ℎℎ

+ 𝜕𝜕𝐸𝐸3
𝜕𝜕𝑜𝑜3

𝜕𝜕𝑜𝑜3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕𝑊𝑊ℎℎ 𝜕𝜕ℎ2

𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝒉𝒉𝟏𝟏 𝒉𝒉𝟑𝟑

Intern © Siemens AG 2017
May 2017Seite 43 Corporate Technology

Backpropogation through time (BPTT) in RNN

Code snippet for forward-propagation is shown below (Before going for BPTT code) of f l ine

https://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

Intern © Siemens AG 2017
May 2017Seite 44 Corporate Technology

Backpropogation through time (BPTT) in RNN

Code snippet for backpropagation w.r.t. time is shown below

= ⋯+ 𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝑜𝑜𝑡𝑡

𝜕𝜕𝑜𝑜𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−1

𝜕𝜕ℎ𝑡𝑡−1
𝜕𝜕ℎ𝑡𝑡−2

𝜕𝜕ℎ𝑡𝑡−2
𝜕𝜕𝑊𝑊ℎℎ

+ 𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝑜𝑜𝑡𝑡

𝜕𝜕𝑜𝑜𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−1

𝜕𝜕ℎ𝑡𝑡−1
𝜕𝜕𝑊𝑊ℎℎ

+ 𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝑜𝑜𝑡𝑡

𝜕𝜕𝑜𝑜𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕𝑊𝑊ℎℎ

of f l ine
𝝏𝝏𝑬𝑬𝒕𝒕
𝝏𝝏𝑾𝑾𝒉𝒉𝒉𝒉

= �
𝒌𝒌=𝟏𝟏

𝒕𝒕
𝝏𝝏𝑬𝑬𝒕𝒕
𝝏𝝏𝒉𝒉𝒕𝒕

𝝏𝝏𝒉𝒉𝒕𝒕
𝝏𝝏𝒉𝒉𝒌𝒌

𝝏𝝏𝒉𝒉𝒌𝒌
𝝏𝝏𝑾𝑾𝒉𝒉𝒉𝒉

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

= −(𝑜𝑜𝑡𝑡−𝑜𝑜𝑡𝑡′)𝑊𝑊ℎ𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎
𝜕𝜕ℎ𝑡𝑡
𝜕𝜕𝑊𝑊ℎℎ

= (1− ℎ𝑡𝑡2)(ℎ𝑡𝑡−1)

𝜕𝜕𝐸𝐸
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕𝑊𝑊ℎℎ

= −(𝑜𝑜𝑡𝑡−𝑜𝑜𝑡𝑡′)𝑊𝑊ℎ𝑜𝑜(1 − ℎ𝑡𝑡2)(ℎ𝑡𝑡−1)

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒕𝒕

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝑊𝑊ℎ𝑜𝑜

= −(𝑜𝑜𝑡𝑡−𝑜𝑜𝑡𝑡′)(ℎ𝑡𝑡)

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝑜𝑜𝑡𝑡

𝜕𝜕𝑜𝑜𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−1

𝜕𝜕ℎ𝑡𝑡−1
𝜕𝜕𝑊𝑊ℎℎ

= − 𝑜𝑜𝑡𝑡 − 𝑜𝑜𝑡𝑡′ 𝑊𝑊ℎ𝑜𝑜 1 − ℎ𝑡𝑡2 (𝑊𝑊ℎℎ)(1 − ℎ𝑡𝑡−12)(ℎ𝑡𝑡−2)

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒕𝒕

𝐀𝐀

𝑩𝑩

𝜕𝜕𝐸𝐸
𝜕𝜕𝑊𝑊ℎℎ

= A + B + ⋯ (till the end of dependency)

Intern © Siemens AG 2017
May 2017Seite 45 Corporate Technology

Break (10 minutes)

Intern © Siemens AG 2017
May 2017Seite 46 Corporate Technology

Challenges in Training an RNN: Vanishing Gradients

Short Term Dependencies

 need recent information to perform the present task.

For example in a language model, predict the next word based on the previous ones.

“the clouds are in the ?”  ‘sky’

 Easier to predict ‘sky’ given the context, i.e., short term dependency  (vanilla) RNN Good so far.

 Consider longer word sequence “I grew up in France…........…………………… I speak fluent French.”

 Recent information suggests that the next word is probably the name of a language, but if we want to
narrow down which language, we need the context of France, from further back.

 As the gap increases  practically difficult for RNN to learn from the past information

Long Term Dependencies

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Intern © Siemens AG 2017
May 2017Seite 47 Corporate Technology

Challenges in Training an RNN: Vanishing Gradients

Assume an RNN of 5 time steps:

Let‘s look at the Jacobian matrix while BPTT:

𝜕𝜕𝐸𝐸5
𝜕𝜕𝜃𝜃

= 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ1
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕𝜃𝜃

+ …

−1.70e−06 8.70e−06 9.40e−06
−2.51e−07 7.30e−06 8.98e−06
7.32e−07 7.85e−06 1.05e−05

C =

𝑪𝑪 = 2.18e−05

−1.13e−08 2.61e−09 1.50e−08
−1.11e−08 5.70e−09 1.51e−08
−1.33e−08 9.11e−09 1.83e−08

B=

𝑩𝑩 = 1.53e−07

−1.70e−10 4.94e−10 2.29e−10
−1.73e−10 5.56e−10 2.55e−10
−1.81e−10 4.40e−10 2.08e−10

A=

𝑨𝑨 = 1.00e−09


𝜕𝜕𝐸𝐸5
𝜕𝜕𝜕𝜕

is dominated by short-term dependencies(e.g., C), but

 Gradient vanishes in long-term dependencies i.e. 𝜕𝜕𝐸𝐸5
𝜕𝜕𝜕𝜕

is updated much less due to A as compared
to updated by C

Long Term dependencies

Intern © Siemens AG 2017
May 2017Seite 48 Corporate Technology

Challenges in Training an RNN: Vanishing Gradients

Assume an RNN of 5 time steps:

Let‘s look at the Jacobian matrix while BPTT:

𝜕𝜕𝐸𝐸5
𝜕𝜕𝜃𝜃

= 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ1
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕𝜃𝜃

+ …

−1.70e−06 8.70e−06 9.40e−06
−2.51e−07 7.30e−06 8.98e−06
7.32e−07 7.85e−06 1.05e−05

C =

𝑪𝑪 = 2.18e−05

−1.13e−08 2.61e−09 1.50e−08
−1.11e−08 5.70e−09 1.51e−08
−1.33e−08 9.11e−09 1.83e−08

B=

𝑩𝑩 = 1.53e−07

−1.70e−10 4.94e−10 2.29e−10
−1.73e−10 5.56e−10 2.55e−10
−1.81e−10 4.40e−10 2.08e−10

A=

𝑨𝑨 = 1.00e−09


𝜕𝜕𝐸𝐸5
𝜕𝜕𝜕𝜕

is dominated by short-term dependencies(e.g., C), but

 Gradient vanishes in long-term dependencies i.e. 𝜕𝜕𝐸𝐸5
𝜕𝜕𝜕𝜕

is updated much less due to A as compared
to updated by C

Long Term Components goes exponentially fast to norm 0
 no correlation between temporally distant events

Long Term dependencies

Intern © Siemens AG 2017
May 2017Seite 49 Corporate Technology

Challenges in Training an RNN: Exploding Gradients

Assume an RNN of 5 time steps:

Let‘s look at the Jacobian matrix while BPTT:

𝜕𝜕𝐸𝐸5
𝜕𝜕𝜃𝜃

= 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ1
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕𝜃𝜃

+ …

−1.70e + 06 8.70e + 06 9.40e + 06
−2.51e + 07 7.30e + 06 8.98e + 06
7.32e + 07 7.85e + 06 1.05e + 05

C =

𝑪𝑪 = 2.18e+105

−1.13e + 08 2.61e + 09 1.50e + 08
−1.11e + 08 5.70e + 09 1.51e + 08
−1.33e + 08 9.11e + 09 1.83e + 08

B=

𝑩𝑩 = 1.53e+107

−1.70e + 10 4.94e + 10 2.29e−10
−1.73e + 10 5.56e + 10 2.55e−10
−1.81e + 10 4.40e + 10 2.08e−10

A=

𝑨𝑨 = 1.00e+109


𝜕𝜕𝐸𝐸5
𝜕𝜕𝜕𝜕

, gradient explodes, i.e., NaN due to very large numbers

Long Term dependencies

Intern © Siemens AG 2017
May 2017Seite 50 Corporate Technology

Challenges in Training an RNN: Exploding Gradients

Assume an RNN of 5 time steps:

Let‘s look at the Jacobian matrix while BPTT:

𝜕𝜕𝐸𝐸5
𝜕𝜕𝜃𝜃

= 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ1
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕𝜃𝜃

+ 𝜕𝜕𝐸𝐸5
𝜕𝜕ℎ5

𝜕𝜕ℎ5
𝜕𝜕ℎ4

𝜕𝜕ℎ4
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕𝜃𝜃

+ …

−1.70e + 04 8.70e + 04 9.40e + 04
−2.51e + 04 7.30e + 04 8.98e + 04
7.32e + 04 7.85e + 04 1.05e + 04

C =

𝑪𝑪 = 2.18e+85

−1.13e + 06 2.61e + 06 1.50e + 06
−1.11e + 06 5.70e + 06 1.51e + 06
−1.33e + 06 9.11e + 06 1.83e + 06

B=

𝑩𝑩 = 1.53e+97

−1.70e + 10 4.94e + 10 2.29e−10
−1.73e + 10 5.56e + 10 2.55e−10
−1.81e + 10 4.40e + 10 2.08e−10

A=

𝑨𝑨 = 1.00e+109


𝜕𝜕𝐸𝐸5
𝜕𝜕𝜕𝜕

, gradient explodes, i.e., NaN due to very large numbers
Large increase in the norm of the gradient during training 
due to explosion of long term components

Long Term dependencies

Intern © Siemens AG 2017
May 2017Seite 51 Corporate Technology

Vanishing Gradient in Long-term Dependencies

Often, the length of sequences are long….e.g., documents, speech, etc.

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝒐𝒐𝟑𝟑
𝐸𝐸50

𝒙𝒙𝟓𝟓𝟓𝟓

𝒉𝒉𝟓𝟓𝟓𝟓

𝜕𝜕𝐸𝐸50
𝜕𝜕ℎ50

…

In practice as the length of the sequence increases, the probability of training being successful
decrease drastically.

Why

Intern © Siemens AG 2017
May 2017Seite 53 Corporate Technology

Vanishing Gradient in Long-term Dependencies

Why

Let us look at the recurrent part of our RNN equation:

ℎ𝑡𝑡 = 𝑊𝑊ℎℎf(ℎt−1) + some other terms

ℎ𝑡𝑡 = 𝑊𝑊ℎℎℎ0 + some other terms

ℎ𝑡𝑡 = 𝑔𝑔𝑊𝑊 ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡

ℎ𝑡𝑡 = tanh(𝑊𝑊ℎℎ ℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥ℎ𝑥𝑥𝑡𝑡)

𝑜𝑜𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡)

tanh Expansion

Intern © Siemens AG 2017
May 2017Seite 54 Corporate Technology

Vanishing Gradient in Long-term Dependencies

𝜕𝜕𝐸𝐸
𝜕𝜕θ

= �
1≤𝑡𝑡≤3

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕θ

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

=
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕Wℎℎ

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

WhoWho
Who

Whh Whh

Writing gradients in a sum-of-products form

Since ℎ3 depends on ℎ2 𝐚𝐚𝐚𝐚𝐚𝐚 ℎ2 depends on ℎ1, therefore

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

= �
𝑘𝑘=0

3
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕Wℎℎ

= �
1≤𝑘𝑘≤𝑡𝑡

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

𝜕𝜕ℎ3
𝜕𝜕h1

=
𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

Jacobian matrix 𝝏𝝏𝒉𝒉𝒕𝒕
𝝏𝝏𝒉𝒉𝒌𝒌

Transport error in time from step t back to step k

This term is the product of Jacobian matrix .

𝒉𝒉𝒕𝒕 = 𝑾𝑾𝒉𝒉𝒉𝒉𝐟𝐟(𝒉𝒉𝐭𝐭−𝟏𝟏) + 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭

e.g.,

In general,

Intern © Siemens AG 2017
May 2017Seite 55 Corporate Technology

Vanishing Gradient in Long-term Dependencies

𝜕𝜕𝐸𝐸
𝜕𝜕θ

= �
1≤𝑡𝑡≤3

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕θ

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

=
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕Wℎℎ

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

WhoWho
Who

Whh Whh

Writing gradients in a sum-of-products form

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕Wℎℎ

= �
1≤𝑘𝑘≤𝑡𝑡

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

Jacobian matrix 𝝏𝝏𝒉𝒉𝒕𝒕
𝝏𝝏𝒉𝒉𝒌𝒌

Intern © Siemens AG 2017
May 2017Seite 56 Corporate Technology

Vanishing Gradient in Long-term Dependencies

𝜕𝜕𝐸𝐸
𝜕𝜕θ

= �
1≤𝑡𝑡≤3

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕θ

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

=
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕Wℎℎ

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

WhoWho
Who

Whh Whh

Writing gradients in a sum-of-products form

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕Wℎℎ

= �
1≤𝑘𝑘≤𝑡𝑡

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

Repeated matrix multiplications leads to vanishing gradients !!!

Intern © Siemens AG 2017
May 2017Seite 57 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

WhoWho
Who

Whh Whh

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

Consider identity activation function

If recurrent matrix Wℎℎ is a diagonalizable:

𝑾𝑾𝒉𝒉𝒉𝒉 = 𝑸𝑸−𝟏𝟏 ∗ 𝜵𝜵 ∗ 𝑸𝑸

matrix composed of eigenvectors of Wℎℎ

diagonal matrix with eigenvalues placed on the diagonals

Using power iteration method, computing powers of Wℎℎ :

𝑾𝑾𝒉𝒉𝒉𝒉 = 𝑸𝑸−𝟏𝟏 ∗ 𝜵𝜵 ∗ 𝑸𝑸n n

Bengio et al, "On the difficulty of training recurrent neural networks." (2012)

Intern © Siemens AG 2017
May 2017Seite 58 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

Direction of Backward pass (via partial derivatives)

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

WhoWho
Who

Whh Whh

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

Consider identity activation function

computing powers of Wℎℎ :

𝑾𝑾𝒉𝒉𝒉𝒉 = 𝑸𝑸−𝟏𝟏 ∗ 𝜵𝜵 ∗ 𝑸𝑸n n

Bengio et al, "On the difficulty of training recurrent neural networks." (2012)

𝜵𝜵 =
- 0.618

1.618

0

0
𝜵𝜵 =

- 0.0081

122.99

0

0

10

Exploding gradients

Vanishing gradients

Eigen values on the diagonal

Intern © Siemens AG 2017
May 2017Seite 59 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

Consider identity activation function

computing powers of Wℎℎ :

𝑾𝑾𝒉𝒉𝒉𝒉 = 𝑸𝑸−𝟏𝟏 ∗ 𝜵𝜵 ∗ 𝑸𝑸n n

Bengio et al, "On the difficulty of training recurrent neural networks." (2012)

𝜵𝜵 =
- 0.618

1.618

0

0
𝜵𝜵 =

- 0.0081

122.99

0

0

10

Exploding gradients

Vanishing gradients

Eigen values on the diagonal

Need for tight conditions

on eigen values

during training to prevent

gradients to vanish or explode

Intern © Siemens AG 2017
May 2017Seite 60 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

𝜕𝜕𝐸𝐸
𝜕𝜕θ

= �
1≤𝑡𝑡≤3

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕θ

𝜕𝜕𝐸𝐸3
𝜕𝜕Wℎℎ

=
𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕Wℎℎ

Direction of Backward pass (via partial derivatives)
--- gradient flow ---

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑𝒐𝒐𝟏𝟏

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕𝐸𝐸2
𝜕𝜕ℎ2

𝜕𝜕𝐸𝐸1
𝜕𝜕ℎ1

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ3
𝜕𝜕ℎ2

WhoWho
Who

Whh Whh

Writing gradients in a sum-of-products form

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕Wℎℎ

= �
1≤𝑘𝑘≤𝑡𝑡

𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

𝜕𝜕ℎ𝑘𝑘
𝜕𝜕Wℎℎ

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

� �
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

≤ Wℎℎ
𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1

Find Sufficient condition for when gradients vanish  compute an upper bound for 𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

term

 find out an upper bound for the norm of the jacobian!

Intern © Siemens AG 2017
May 2017Seite 61 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

Lets find an upper bound for the term: 𝑾𝑾𝑻𝑻 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒈𝒈′ 𝒉𝒉𝒊𝒊−𝟏𝟏

• Proof: 𝑀𝑀 2 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀∗𝑀𝑀) = 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚(M)

where the spectral norm 𝑀𝑀 2‖of a complex matrix 𝑀𝑀 is defined as 𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀𝑀𝑀 2: 𝑥𝑥 = 1

Put 𝐵𝐵 = 𝑀𝑀 ∗𝑀𝑀 which is a Hermitian matrix. As a linear transformation of Euclidean vector space 𝐸𝐸 is Hermite
iff there exists an orthonormal basis of 𝐸𝐸 consisting of all the eigenvectors of 𝐵𝐵

Let 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3 … 𝜆𝜆𝑛𝑛 be the eigenvalues of 𝐵𝐵 and 𝑒𝑒1, 𝑒𝑒2 … … . 𝑒𝑒𝑛𝑛 be an orthonormal basis of 𝐸𝐸

Let 𝑥𝑥 = 𝑎𝑎1𝑒𝑒1 + … … 𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛 (linear combination of eigen vectors)

The specttal norm of x:

𝑥𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖 ∑𝑖𝑖=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖 1/2 = ∑𝑖𝑖=1𝑛𝑛 𝑎𝑎𝑖𝑖2

The norm of a matrix is equal to the largest singular value of the matrix and is
related to the largest Eigen value (spectral radius)

Property of matrix norm

of f l ine

Intern © Siemens AG 2017
May 2017Seite 62 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

Using characteristic equation to find a matrix's eigenvalues,

𝐵𝐵𝐵𝐵 = 𝐵𝐵 �
𝑖𝑖=1

𝑛𝑛

𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛
𝑎𝑎𝑖𝑖𝐵𝐵 𝑒𝑒𝑖𝑖 = �

𝑖𝑖=1

𝑛𝑛

𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖

Therefore,

𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀 = 𝑥𝑥,𝑀𝑀∗𝑀𝑀𝑀𝑀 = 𝑥𝑥,𝐵𝐵𝐵𝐵 = �
𝑖𝑖=1

𝑛𝑛

𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖�
𝑖𝑖=1

𝑛𝑛

𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑎𝑎𝑖𝑖𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖 ≤ max
(1≤𝑗𝑗≤𝑛𝑛)

𝜆𝜆𝑗𝑗 × (𝑥𝑥)

Thus,

If 𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀𝑀𝑀 : 𝑥𝑥 = 1 , 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑀𝑀 ≤ max
1≤𝑗𝑗≤𝑛𝑛

𝜆𝜆𝑗𝑗 equation (1)

of f l ine

Intern © Siemens AG 2017
May 2017Seite 63 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

Consider,

𝑥𝑥0 = 𝑒𝑒𝑗𝑗0 ⇒ 𝑥𝑥 = 1, 𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑀𝑀 ≥ 𝑥𝑥,𝐵𝐵𝐵𝐵 = 𝑒𝑒𝑗𝑗0 ,𝐵𝐵 𝑒𝑒𝑗𝑗0 = 𝑒𝑒𝑗𝑗0 , 𝜆𝜆𝑗𝑗0𝑒𝑒𝑗𝑗0 = 𝜆𝜆𝑗𝑗0 … equation (2)

where, 𝑗𝑗0 is the largest eigen value.

Combining (1) and (2) give us 𝑀𝑀 = max
1≤𝑗𝑗≤𝑛𝑛

𝜆𝜆𝑗𝑗 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 𝜆𝜆𝑗𝑗 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝐵𝐵 = 𝑀𝑀∗𝑀𝑀

Conclusion : 𝑀𝑀 2 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀∗𝑀𝑀) = 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚(M) …. equation (3)

Remarks:

 The spectral norm of a matrix is equal to the largest singular value of the
matrix and is related to the largest Eigen value (spectral radius)

 If the matrix is square symmetric, the singular value = spectral Radius

of f l ine

Intern © Siemens AG 2017
May 2017Seite 64 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

Let’s use these properties:
𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

� �
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

≤ Wℎℎ
𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1

Intern © Siemens AG 2017
May 2017Seite 65 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

Let’s use these properties:
𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

� �
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

≤ Wℎℎ
𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1

Gradient of the nonlinear function
(sigmoid or tanh) 𝑔𝑔′ ℎ𝑖𝑖−1 is bounded by
constant, .i.e., 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1 ≤ 𝛾𝛾𝑔𝑔

an upper bound for the norm
of the gradient of activation

𝛾𝛾𝑔𝑔 = ¼ for sigmoid

𝛾𝛾𝑔𝑔 = 1 for tanh
constant

Intern © Siemens AG 2017
May 2017Seite 66 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

Let’s use these properties:
𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

� �
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

≤ Wℎℎ
𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1

Gradient of the nonlinear function
(sigmoid or tanh) 𝑔𝑔′ ℎ𝑖𝑖−1 is bounded by
constant, .i.e., 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1 ≤ 𝛾𝛾𝑔𝑔

an upper bound for the norm
of the gradient of activation

𝛾𝛾𝑔𝑔 = ¼ for sigmoid

𝛾𝛾𝑔𝑔 = 1 for tanh

𝜸𝜸𝑾𝑾 𝜸𝜸𝒈𝒈 = an upper bound for the norm of jacobian!

≤ 𝛾𝛾𝑊𝑊 𝛾𝛾𝑔𝑔
Largest Singular

value of 𝑾𝑾𝒉𝒉𝒉𝒉

constant

Intern © Siemens AG 2017
May 2017Seite 67 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

Let’s use these properties:
𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

� �
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

≤ Wℎℎ
𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1

Gradient of the nonlinear function
(sigmoid or tanh) 𝑔𝑔′ ℎ𝑖𝑖−1 is bounded by
constant, .i.e., 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1 ≤ 𝛾𝛾𝑔𝑔

an upper bound for the norm
of the gradient of activation

𝜸𝜸𝑾𝑾 𝜸𝜸𝒈𝒈 = an upper bound for the norm of jacobian!

≤ 𝛾𝛾𝑊𝑊 𝛾𝛾𝑔𝑔
Largest Singular

value of 𝑾𝑾𝒉𝒉𝒉𝒉

� �
𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

≤ 𝛾𝛾𝑊𝑊𝛾𝛾𝑔𝑔
𝑡𝑡−𝑘𝑘

Intern © Siemens AG 2017
May 2017Seite 68 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

Let’s use these properties:
𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

� �
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

≤ Wℎℎ
𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1

𝜸𝜸𝑾𝑾 𝜸𝜸𝒈𝒈 = an upper bound for the norm of jacobian!

≤ 𝛾𝛾𝑊𝑊 𝛾𝛾𝑔𝑔
Largest Singular

value of 𝑾𝑾𝒉𝒉𝒉𝒉

� �
𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

≤ 𝛾𝛾𝑊𝑊𝛾𝛾𝑔𝑔
𝑡𝑡−𝑘𝑘

Sufficient Condition for Vanishing Gradient
As 𝛾𝛾𝑊𝑊𝛾𝛾𝑔𝑔 < 1 and (t-k)∞ then long term
contributions go to 0 exponentially fast with t-k
(power iteration method).
Therefore,
sufficient condition for vanishing gradient to occur:

𝛾𝛾𝑊𝑊 < 1/𝛾𝛾𝑔𝑔
i.e. for sigmoid, 𝛾𝛾𝑊𝑊 < 4
i.e., for tanh, 𝛾𝛾𝑊𝑊 < 1

Intern © Siemens AG 2017
May 2017Seite 69 Corporate Technology

Mechanics behind Vanishing and Exploding Gradients

Let’s use these properties:
𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

� �
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

≤ Wℎℎ
𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1

𝜸𝜸𝑾𝑾 𝜸𝜸𝒈𝒈 = an upper bound for the norm of jacobian!

≤ 𝛾𝛾𝑊𝑊 𝛾𝛾𝑔𝑔
Largest Singular

value of 𝑾𝑾𝒉𝒉𝒉𝒉

� �
𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

≤ 𝛾𝛾𝑊𝑊𝛾𝛾𝑔𝑔
𝑡𝑡−𝑘𝑘

Necessary Condition for Exploding Gradient
As 𝛾𝛾𝑊𝑊𝛾𝛾𝑔𝑔 > 1 and (t-k)∞ then gradient explodes!!!
Therefore,
Necessary condition for exploding gradient to occur:

𝛾𝛾𝑊𝑊> 1/𝛾𝛾𝑔𝑔
i.e. for sigmoid, 𝛾𝛾𝑊𝑊> 4
i.e., for tanh, 𝛾𝛾𝑊𝑊> 1

Intern © Siemens AG 2017
May 2017Seite 70 Corporate Technology

Vanishing Gradient in Long-term Dependencies

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

� �
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

≤ Wℎℎ
𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1 ≤ 𝛾𝛾𝑊𝑊 𝛾𝛾𝑔𝑔

� �
𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

≤ 𝛾𝛾𝑊𝑊𝛾𝛾𝑔𝑔
𝑡𝑡−𝑘𝑘

What have we concluded with the upper bound of derivative from recurrent step?

If we multiply the same term 𝛾𝛾𝑊𝑊𝛾𝛾𝑔𝑔 < 1 again and again, the overall number becomes very
small(i.e almost equal to zero)

HOW ?
Repeated matrix multiplications leads to vanishing and exploding gradients

Intern © Siemens AG 2017
May 2017Seite 71 Corporate Technology

Vanishing Gradient in Long-term Dependencies

𝜕𝜕𝐸𝐸3
𝜕𝜕𝑊𝑊

= 𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ1
𝜕𝜕𝑊𝑊

+ 𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕𝑊𝑊

+ 𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕𝑊𝑊

𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑

𝒙𝒙𝟏𝟏

𝒐𝒐𝟏𝟏

𝑾𝑾 𝑾𝑾

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒉𝒉 𝟏𝟏
𝒉𝒉 𝟑𝟑𝒉𝒉 𝟐𝟐

≪≪ 1 ≪ 1 < 1+ +=

The gradients no longer depend on the past inputs…

since, the near past inputs dominate the gradient !!!

Problem of Vanishing Gradient

Total
Gradient

Gradient due to
long term

dependencies

Gradient due to
short term

dependencies

Remark: The gradients due to short term dependencies (just previous dependencies) dominates the
gradients due to long-term dependencies.

This means network will tend to focus on short term dependencies which is often not desired

Intern © Siemens AG 2017
May 2017Seite 72 Corporate Technology

Vanishing Gradient in Long-term Dependencies

𝜕𝜕𝐸𝐸3
𝜕𝜕𝑊𝑊

= 𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ1
𝜕𝜕𝑊𝑊

+ 𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕𝑊𝑊

+ 𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕𝑊𝑊

𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑

𝒙𝒙𝟏𝟏

𝒐𝒐𝟏𝟏

𝑾𝑾 𝑾𝑾

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒉𝒉 𝟏𝟏
𝒉𝒉 𝟑𝟑𝒉𝒉 𝟐𝟐

≪≪ 1 ≪ 1 < 1+ +=

The gradients no longer depend on the past inputs…

since, the near past inputs dominate the gradient !!!

Problem of Vanishing Gradient

Total
Gradient

Gradient due to
long term

dependencies

Gradient due to
short term

dependencies

Remark: The gradients due to short term dependencies (just previous dependencies) dominates the
gradients due to long-term dependencies.

This means network will tend to focus on short term dependencies which is often not desired

Repeated matrix multiplications leads to vanishing and exploding gradients

Intern © Siemens AG 2017
May 2017Seite 73 Corporate Technology

Exploding Gradient in Long-term Dependencies

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕h𝑘𝑘

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

= �
𝑡𝑡≥𝑖𝑖>𝑘𝑘

Wℎℎ
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑔𝑔′(ℎ𝑖𝑖−1)]

� �
𝜕𝜕ℎ𝑖𝑖
𝜕𝜕ℎ𝑖𝑖−1

≤ Wℎℎ
𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔′ ℎ𝑖𝑖−1 ≤ 𝛾𝛾𝑊𝑊 𝛾𝛾𝑔𝑔

� �
𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

≤ 𝛾𝛾𝑊𝑊𝛾𝛾𝑔𝑔
𝑡𝑡−𝑘𝑘

What have we concluded with the upper bound of derivative from recurrent step?

If we multiply the same term 𝜸𝜸𝑾𝑾 𝜸𝜸𝒈𝒈 > 1 again and again, the overall number explodes and
hence the gradient explodes

HOW ?
Repeated matrix multiplications leads to vanishing and exploding gradients

Intern © Siemens AG 2017
May 2017Seite 74 Corporate Technology

Vanishing Gradient in Long-term Dependencies

𝜕𝜕𝐸𝐸3
𝜕𝜕𝑊𝑊

= 𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕ℎ1

𝜕𝜕ℎ1
𝜕𝜕𝑊𝑊

+ 𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ2

𝜕𝜕ℎ2
𝜕𝜕𝑊𝑊

+ 𝜕𝜕𝐸𝐸3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕ℎ3

𝜕𝜕ℎ3
𝜕𝜕𝑊𝑊

𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑

𝒙𝒙𝟏𝟏

𝒐𝒐𝟏𝟏

𝑾𝑾 𝑾𝑾

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝒉𝒉 𝟏𝟏
𝒉𝒉 𝟑𝟑𝒉𝒉 𝟐𝟐

≫≫ 1 ≫≫ 1 ≫≫ 1+ +

= Very large number, i.e., NaN

Problem of Exploding Gradient

=

Intern © Siemens AG 2017
May 2017Seite 75 Corporate Technology

Vanishing vs Exploding Gradients

𝛾𝛾𝑊𝑊𝛾𝛾𝑔𝑔 less than 1

Gradient Vanishes !!!

𝛾𝛾𝑊𝑊𝛾𝛾𝑔𝑔 greater than 1

Gradient Expodes !!!

� �
𝜕𝜕ℎ3
𝜕𝜕ℎ𝑘𝑘

≤ 𝛾𝛾𝑊𝑊𝛾𝛾𝑔𝑔
𝑡𝑡−𝑘𝑘

Remark: This problem of exploding/vanishing gradient occurs because the same number is
multiplied in the gradient repeatedly.

For tanh or linear activation

Intern © Siemens AG 2017
May 2017Seite 76 Corporate Technology

Dealing With Exploding Gradients

Intern © Siemens AG 2017
May 2017Seite 77 Corporate Technology

Dealing with Exploding Gradients: Gradient Clipping

Scaling down the gradients

 rescale norm of the gradients whenever it goes over a threshold

 Proposed clipping is simple and computationally efficient,

 introduce an additional hyper-parameter, namely the threshold
Pascanu et al., 2013. On the difficulty of training recurrent neural networks.

Intern © Siemens AG 2017
May 2017Seite 78 Corporate Technology

Dealing With Vanishing Gradients

Intern © Siemens AG 2017
May 2017Seite 79 Corporate Technology

Dealing with Vanishing Gradient

• As discussed, the gradient vanishes due to the recurrent part of the RNN equations.

ℎ𝑡𝑡 = 𝑊𝑊ℎℎ ht−1 + some other terms

• What if Largest Eigen value of the parameter matrix becomes 1, but in this case, memory just grows.

• We need to be able to decide when to put information in the memory

Intern © Siemens AG 2017
May 2017Seite 80 Corporate Technology

Long Short Term Memory (LSTM): Gating Mechanism

„Clouds“

Forget
Gate

Output
Gate

Input
Gate

Input from rest
of the LSTM

Output to rest
of the LSTM

Gates :

 way to optionally let information through.

 composed out of a sigmoid neural net layer and a
pointwise multiplication operation.

 remove or add information to the cell state

 3 gates in LSTM

 gates to protect and control the cell state.

Current
Cell state

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Intern © Siemens AG 2017
May 2017Seite 81 Corporate Technology

Long Short Term Memory (LSTM): Gating Mechanism

Remember the word „ clouds“ over time….

Forget
Gate:0

Input
Gate:1 Input

Gate:0

Output
Gate:0 Output

Gate: 0
Input

Gate:0
Output
Gate:1

„clouds“
„clouds“

Forget
Gate:0

Forget
Gate:0 Forget

Gate:0

„clouds“ „clouds“ „clouds“

Lecture from the course Neural Networks for Machine Learning by Greff Hinton

Intern © Siemens AG 2017
May 2017Seite 82 Corporate Technology

Long Short Term Memory (LSTM)

Motivation:

 Create a self loop path from where gradient can flow

 self loop corresponds to an eigenvalue of Jacobian to be slightly less than 1

+ ×

Self loop

LONG SHORT-TERM MEMORY, Sepp Hochreiter and Jürgen Schmidhuber

𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼~

𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

Intern © Siemens AG 2017
May 2017Seite 83 Corporate Technology

Long Short Term Memory (LSTM): Step by Step

Key Ingredients

Cell state - transport the information through the units

Gates – optionally allow information passage

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Intern © Siemens AG 2017
May 2017Seite 84 Corporate Technology

Long Short Term Memory (LSTM): Step by Step

Cell: Transports information through the units (key idea)

 the horizontal line running through the top

LSTM removes or adds information to the cell state using gates.

Intern © Siemens AG 2017
May 2017Seite 85 Corporate Technology

Long Short Term Memory (LSTM): Step by Step

Forget Gate:

 decides what information to throw away or remember from the previous cell state

 decision maker: sigmoid layer (forget gate layer)

The output of the sigmoid lies between 0 to 1,

 0 being forget, 1 being keep.

 looks at ht−1 and xt, and outputs a number between 0 and 1

for each number in the cell state Ct−1

𝒇𝒇𝒕𝒕 = 𝒔𝒔𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊(𝜽𝜽𝒙𝒙𝒙𝒙𝒙𝒙𝒕𝒕 + 𝜽𝜽𝒉𝒉𝒉𝒉𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒇𝒇)

Intern © Siemens AG 2017
May 2017Seite 86 Corporate Technology

Long Short Term Memory (LSTM): Step by Step

Input Gate: Selectively updates the cell state based on the new input.

A multiplicative input gate unit to protect the memory contents stored in j from perturbation by irrelevant inputs

𝒊𝒊𝒕𝒕 = 𝒔𝒔𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊(𝜽𝜽𝒙𝒙𝒙𝒙𝒙𝒙𝒕𝒕 + 𝜽𝜽𝒉𝒉𝒉𝒉𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒊𝒊)

The next step is to decide what new
information we’re going to store in the cell
state. This has two parts:

1. A sigmoid layer called the “input gate layer”
decides which values we’ll update.

2. A tanh layer creates a vector of new candidate
values, , that could be added to the state.

In the next step, we’ll combine these two to
create an update to the state.

Intern © Siemens AG 2017
May 2017Seite 87 Corporate Technology

Long Short Term Memory (LSTM): Step by Step

Cell Update
- update the old cell state, Ct−1, into the new cell state Ct

- multiply the old state by ft, forgetting the things we
decided to forget earlier

- add it ∗ to get the new candidate values, scaled by
how much we decided to update each state value.

Intern © Siemens AG 2017
May 2017Seite 88 Corporate Technology

Long Short Term Memory (LSTM): Step by Step

Output Gate: Output is the filtered version of the cell state

- Decides the part of the cell we want as our output in the form of new hidden state

- multiplicative output gate to protect other units from perturbation by currently irrelevant memory contents

- a sigmoid layer decides what parts of the cell state goes to output. Apply tanh to the cell state and multiply it
by the output of the sigmoid gate  only output the parts decided

𝒐𝒐𝒕𝒕 = 𝒔𝒔𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝜽𝜽𝒙𝒙𝒙𝒙𝒙𝒙𝒕𝒕 + 𝜽𝜽𝒉𝒉𝒉𝒉𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒐𝒐
𝒉𝒉𝒕𝒕 = 𝒐𝒐𝒕𝒕 ∗ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑪𝑪𝒕𝒕)

Intern © Siemens AG 2017
May 2017Seite 89 Corporate Technology

Dealing with Vanishing Gradients in LSTM

As seen, the gradient vanishes due to the recurrent part of the RNN equations

ℎ𝑡𝑡 = 𝑊𝑊ℎℎ ht−1 + some other terms

How LSTM tackled vanishing gradient?

Answer: forget gate

 The forget gate parameters takes care of the vanishing gradient problem

 Activation function becomes identity and therefore, the problem of vanishing gradient is addressed.

 The derivative of the identity function is, conveniently, always one. So if f = 1, information from the
previous cell state can pass through this step unchanged

Intern © Siemens AG 2017
May 2017Seite 90 Corporate Technology

LSTM code snippet

Code snippet for LSTM unit:

Parameter Dimension

Off l ine

Intern © Siemens AG 2017
May 2017Seite 91 Corporate Technology

LSTM code snippet

Code snippet for LSTM unit: LSTM equations forward pass and shape of gates Of f l ine

Intern © Siemens AG 2017
May 2017Seite 92 Corporate Technology

Gated Recurrent Unit (GRU)

• GRU like LSTMs, attempts to solve the Vanishing gradient problem in RNN

Gates:

Update
Gate

Reset Gate

These 2 vectors decide
what information
should be passed to
output

• Units with short-term dependencies will have active reset gates r

• Units with long term dependencies have active update gates z

Intern © Siemens AG 2017
May 2017Seite 93 Corporate Technology

Gated Recurrent Unit (GRU)

Update Gate:

- to determine how much of the past information

(from previous time steps) needs to be passed

along to the future.

- to learn to copy information from the past such that

gradient is not vanished.

Here, 𝑥𝑥𝑡𝑡 is the input and ℎ𝑡𝑡−1 holds the information

from the previous gate.

𝑧𝑧𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1)

Intern © Siemens AG 2017
May 2017Seite 94 Corporate Technology

Gated Recurrent Unit (GRU)

Reset Gate

- model how much of information to forget by the unit

Here, 𝑥𝑥𝑡𝑡 is the input and ℎ𝑡𝑡−1 holds the information

from the previous gate.

𝑟𝑟𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊(𝑟𝑟)𝑥𝑥𝑡𝑡 + 𝑈𝑈(𝑟𝑟)ℎ𝑡𝑡−1)

Memory Content:

Final Memory at current time step

ℎ′𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑟𝑟_𝑡𝑡 ⊙ 𝑈𝑈ℎ𝑡𝑡−1)

ℎ𝑡𝑡 = 𝑧𝑧𝑡𝑡 ⊙ ℎ 𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡) ⊙ℎ𝑡𝑡′

Intern © Siemens AG 2017
May 2017Seite 95 Corporate Technology

Dealing with Vanishing Gradient s in Gated Recurrent Unit (GRU)

We had a product of Jacobian:

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

= �
𝑗𝑗=𝑘𝑘+1

𝑡𝑡
𝜕𝜕ℎ𝑗𝑗
𝜕𝜕ℎ𝑗𝑗−1

≤ 𝛼𝛼𝑡𝑡−𝑗𝑗−1

Where, alpha depends upon weight matrix and derivative of the activation function

Now,

𝜕𝜕ℎ𝑗𝑗
𝜕𝜕ℎ𝑗𝑗−1

= 𝑧𝑧𝑗𝑗 + 1 − 𝑧𝑧𝑗𝑗
𝜕𝜕ℎ𝑗𝑗

′

𝜕𝜕ℎ𝑗𝑗−1

And,
𝜕𝜕ℎ𝑗𝑗

′

𝜕𝜕ℎ𝑗𝑗−1
= 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑗𝑗 = 1

Off l ine

Intern © Siemens AG 2017
May 2017Seite 96 Corporate Technology

Code snippet of GRU unit

Code snippet of GRU unit: Of f l ine

Intern © Siemens AG 2017
May 2017Seite 97 Corporate Technology

Comparing LSTM and GRU

LSTM over GRU

One feature of the LSTM has: controlled exposure of the memory content, not in GRU.

In the LSTM unit, the amount of the memory content that is seen, or used by other units in the network is controlled by
the output gate. On the other hand the GRU exposes its full content without any control.

 GRU performs comparably to LSTM

Chung et al, 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

GRU LSTM unit

Intern © Siemens AG 2017
May 2017Seite 98 Corporate Technology

Break (10 minutes)

Intern © Siemens AG 2017
May 2017Seite 99 Corporate Technology

Bi-directional RNNs

Bidirectional Recurrent Neural Networks (BRNN)

- connects two hidden layers of opposite directions to the same output

- output layer can get information from past (backwards) and future (forward) states simultaneously

- learn representations from future time steps to better understand the context and eliminate ambiguity

Example sentences:

Sentence1: “He said, Teddy bears are on sale”

Sentnce2: “He said, Teddy Roosevelt was a great President”.

when we are looking at the word “Teddy” and the previous two words

“He said”, we might not be able to understand if the sentence refers

to the President or Teddy bears.

Therefore, to resolve this ambiguity, we need to look ahead.
sequence of
Input

sequence of
Output

Forward state

Backward

state

https://towardsdatascience.com/introduction-to-sequence-models-rnn-bidirectional-rnn-lstm-gru-73927ec9df15

Intern © Siemens AG 2017
May 2017Seite 100 Corporate Technology

Bi-directional RNNs

Bidirectional Recurrent Neural Networks (BRNN)

Gupta 2015. (Master Thesis). Deep Learning Methods for the Extraction of Relations in Natural Language Text

Gupta and Schütze. 2018. LISA: Explaining Recurrent Neural Network Judgments via Layer-wIse Semantic Accumulation and Example to Pattern Transformation

Vu et al., 2016. Combining recurrent and convolutional neural networks for relation classification

Intern © Siemens AG 2017
May 2017Seite 101 Corporate Technology

Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM

RNN

RecNN

 applying the same set of weights recursively over a structured
input, by traversing a given structure in topological order,

e.g., parse tree

 Use principle of compositionality

 Recursive Neural Nets can jointly learn compositional

vector representations and parse trees

 The meaning (vector) of a sentence is determined by

(1) the meanings of its words and

(2) the rules that combine them.

http://www.iro.umontreal.ca/~bengioy/talks/gss2012-YB6-NLP-recursive.pdf

Intern © Siemens AG 2017
May 2017Seite 102 Corporate Technology

Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM

http://www.iro.umontreal.ca/~bengioy/talks/gss2012-YB6-NLP-recursive.pdf

Intern © Siemens AG 2017
May 2017Seite 103 Corporate Technology

Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM

Applications

 represent the meaning of longer phrases

 Map phrases into a vector space

 Sentence parsing

 Scene parsing

Intern © Siemens AG 2017
May 2017Seite 104 Corporate Technology

Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM

Application: Relation Extraction Within and Cross Sentence Boundaries, i.e., document-level relation extraction

Gupta et al., 2019. Neural Relation Extraction Within and Across Sentence Boundaries.

Intern © Siemens AG 2017
May 2017Seite 105 Corporate Technology

Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM

Relation Extraction Within and Cross Sentence Boundaries, i.e., document-level relation extraction

Gupta et al., 2019. Neural Relation Extraction Within and Across Sentence Boundaries.

Intern © Siemens AG 2017
May 2017Seite 106 Corporate Technology

Deep and Multi-tasking RNNs

Marek Rei . 2017. Semi-supervised Multitask Learning for Sequence Labeling

Multi-task RNN architectureDeep RNN architecture

Intern © Siemens AG 2017
May 2017Seite 107 Corporate Technology

RNN in Practice: Training Tips

Weight Initialization Methods

 Identity weight initialization with ReLU activation

Activation Function: ReLU

i.e., ReLU(x) = max{0,x}

And it’s gradient = 0 for x < 0 and 1 for x > 0

Therefore,

Intern © Siemens AG 2017
May 2017Seite 108 Corporate Technology

RNN in Practice: Training Tips

Weight Initialization Methods (in Vanilla RNNs)

 Random Whh initialization of RNN  no constraint on eigenvalues

vanishing or exploding gradients in the initial epoch

 Careful initialization of Whh with suitable eigenvalues

Whh initialized to Identity matrix

 Activation function: ReLU

 allows the RNN to learn in the initial epochs

 can generalize well for further iterations

Geoffrey et al, “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units”

What else?

Batch Normal izat ion: faster convergence

 Dropout : better generalization

Intern © Siemens AG 2017
May 2017Seite 109 Corporate Technology

Attention Mechanism: Attentive RNNs

Translation often requires arbitrary input length and output length

 Encode-decoder can be applied to N-to-M sequence, but is one hidden state really enough?

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

Intern © Siemens AG 2017
May 2017Seite 110 Corporate Technology

Attention Mechanism: Attentive RNNs

Attention to improve the performance of the Encoder-Decoder RNN on machine translation.

 allows to focus on local or global features

 is a vector, often the outputs of dense layer using softmax function

 generates a context vector into the gap between encoder and decoder

Context vector

 takes all cells’ outputs as input

 compute the probability distribution of source language

words for each word in decoder (e.g., ‘Je’)

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

Intern © Siemens AG 2017
May 2017Seite 111 Corporate Technology

Attention Mechanism: Attentive RNNs

How does it Work?

Idea: Compute Context vector for every output/target word, t (during decoding)

For each target word, t

1. generate scores between each encoder state hs and the target state ht

2. apply softmax to normalize scores  attention weights

(the probability distribution conditioned on the target state)

3. compute context vector for the target word, t

using attention weights

4. compute attention vector for the target word, t

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

Intern © Siemens AG 2017
May 2017Seite 112 Corporate Technology

Explainability/Interpretability of RNNs

Visualization

Visualize output predictions: LISA

 Visualize neuron activations: Sensitivity Analysis

Further Details:

- Gupta et al, 2018. “LISA: Explaining Recurrent Neural Network Judgments via Layer-wIse Semantic Accumulation and Example to

Pattern Transformation”. https://arxiv.org/abs/1808.01591

- Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

- Hendrick et al, “Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks”

Intern © Siemens AG 2017
May 2017Seite 113 Corporate Technology

Explainability/Interpretability of RNNs

 Visualize output predictions: LISA

Checkout our POSTER about LISA paper (EMNLP2018 conference)

https://www.researchgate.net/publication/328956863_LISA_Explaining_RNN_Judg
ments_via_Layer-
wIse_Semantic_Accumulation_and_Example_to_Pattern_Transformation_Analyzi
ng_and_Interpreting_RNNs_for_NLP

Full paper:

Gupta et al, 2018. “LISA: Explaining Recurrent Neural Network Judgments via Layer-
wIse Semantic Accumulation and Example to Pattern Transformation”.
https://arxiv.org/abs/1808.01591

https://www.researchgate.net/publication/328956863_LISA_Explaining_RNN_Judgments_via_Layer-wIse_Semantic_Accumulation_and_Example_to_Pattern_Transformation_Analyzing_and_Interpreting_RNNs_for_NLP
https://arxiv.org/abs/1808.01591

Intern © Siemens AG 2017
May 2017Seite 114 Corporate Technology

Explainability/Interpretability of RNNs

Visualize neuron activations via Heat maps, i.e. Sensitivity Analysis

Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”

Figure below shows the plot of the sensitivity score .Each row corresponds to saliency score for the
correspondent word representation with each grid representing each dimension.

All three models assign high sensitivity to “hate” and dampen the influence of other tokens. LSTM offers a clearer focus
on “hate” than the standard recurrent model, but the bi-directional LSTM shows the clearest focus, attaching almost zero
emphasis on words other than “hate”. This is presumably due to the gates structures in LSTMs and Bi-LSTMs that
controls information flow, making these architectures better at filtering out less relevant information.

LSTM and RNN capture short-term depdendency

Intern © Siemens AG 2017
May 2017Seite 115 Corporate Technology

Explainability/Interpretability of RNNs

Visualize neuron activations via Heat maps, i.e. Sensitivity Analysis

LSTM captures long-term depdendency, (vanilla) RNN not.

Jiwei LI et al, “Visualizing and Understanding Neural Models in NLP”

Intern © Siemens AG 2017
May 2017Seite 116 Corporate Technology

RNNs in Topic Trend Extraction (Dynamic Topic Evolution): RNN-RSM

h(1)

V(1)

bh
(1)

bv
(1)

Wvh

u(1)

Wvu

h(2)

V(2)

bh
(2)

bv
(2)

Wvh

u(2)

Wvu

h(T-1)

V(T-1)

bh
(T-1)

bv
(T-1)

Wvh

u(T-1)

Wvu

u(0)

h(T)

V(T)

bh
(T)

bv
(T)

Wvh

u(T)

Wvu

Wuh

Wuv Wuv Wuv

Wuh Wuh Wuh

Wuv

RSM RSM RSM RSM

RNN
Wuu Wuu Wuu Wuu

…

1996

Observable
Softmax Visibles

Neural Network
Language Models

Word Representat ion
Linear Model

Rule Set

Neural Network
Language Models

Supervised
Linear Model

Rule Set

Neural Network
Language Models
Word Embedding
Word Embeddings

Word Representat ion

Neural Network
Language Models

Word Representat ion
Linear Model

Rule Set

Neural Network
Language Models

Supervised
Linear Model

Rule Set

Neural Network
Language Models
Word Embedding
Word Embeddings

Word Representat ion

Topic-words
over time
for topic

‘Word Vector’
1997 2014

Gupta et al. 2018. Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time

Intern © Siemens AG 2017
May 2017Seite 117 Corporate Technology

RNNs in Topic Trend Extraction (Dynamic Topic Evolution): RNN-RSM

h(1)

V(1)

bh
(1)

bv
(1)

Wvh

u(1)

Wvu

h(2)

V(2)

bh
(2)

bv
(2)

Wvh

u(2)

Wvu

h(T-1)

V(T-1)

bh
(T-1)

bv
(T-1)

Wvh

u(T-1)

Wvu

u(0)

h(T)

V(T)

bh
(T)

bv
(T)

Wvh

u(T)

Wvu

Wuh

Wuv Wuv Wuv

Wuh Wuh Wuh

Wuv

RSM RSM RSM RSM

RNN
Wuu Wuu Wuu Wuu

…
Latent Topics

Observable
Softmax Visibles

Cost in RNN-RSM, the negative log-likelihood

Training via BPTT

Gupta et al. 2018. Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time

Intern © Siemens AG 2017
May 2017Seite 118 Corporate Technology

RNNs in Topic Trend Extraction (Dynamic Topic Evolution): RNN-RSM

Topic Trend Extraction or Topic Evolution in NLP research over time

Gupta et al. 2018. Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time

Intern © Siemens AG 2017
May 2017Seite 119 Corporate Technology

Key Takeaways

 RNNs model sequential data

 Long term dependencies are a major problem in RNNs

Solution:

 careful weight initialization

 LSTM/GRUs

 Gradients Explodes

Solution:  Gradient norm clipping

 Regularization (Batch normalization and Dropout) and attention help

 Interesting direction to visualize and interpret RNN learning

Intern © Siemens AG 2017
May 2017Seite 120 Corporate Technology

References, Resources and Further Reading

 RNN lecture (Ian Goodfellow): https://www.youtube.com/watch?v=ZVN14xYm7JA

 Andrew Ng lecture on RNN: https://www.coursera.org/lecture/nlp-sequence-models/why-sequence-models-0h7gT

 Recurrent Highway Networks (RHN)

 LSTMs for Language Models (Lecture 07)

 Bengio et al,. "On the difficulty of training recurrent neural networks." (2012)

 Geoffrey et al, “Improving Perfomance of Recurrent Neural Network with ReLU nonlinearity”

 Geoffrey et al, “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units”

 Cooijmans, Tim, et al. "Recurrent batch normalization."(2016).

 Dropout : A Probabilistic Theory of Deep Learning, Ankit B. Patel, Tan Nguyen, Richard G. Baraniuk.

 Barth (2016) : “Semenuita et al. 2016. “Recurrent dropout without memory loss”

 Andrej Karpathy, Blog on “Unreasonable Effectiveness of Recurrent Neural Networks”

 Ilya Sutskever, et al. 2014. “Sequence to Sequence Learning with Neural Networks”

 Bahdanau et al. 2014. “Neural Machine Translation by Jointly Learning to Align and Translate”

 Hierarchical Attention Networks for Document Classification, 2016.

 Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification, 2016

 Good Resource: http://slazebni.cs.illinois.edu/spring17/lec20_rnn.pdf

https://www.youtube.com/watch?v=ZVN14xYm7JA
https://www.coursera.org/lecture/nlp-sequence-models/why-sequence-models-0h7gT

Intern © Siemens AG 2017
May 2017Seite 121 Corporate Technology

References, Resources and Further Reading

 Lecture from the course Neural Networks for Machine Learning by Greff Hinton

 Lecture by Richard Socher: https://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

 Understanding LSTM: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

 Recursive NN: http://www.iro.umontreal.ca/~bengioy/talks/gss2012-YB6-NLP-recursive.pdf

 Attention: https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

 Gupta, 2015. Master Thesis on “Deep Learning Methods for the Extraction of Relations in Natural Language Text”

 Gupta et al., 2016. Table Filling Multi-Task Recurrent Neural Network for Joint Entity and Relation Extraction.

 Vu et al., 2016. Combining recurrent and convolutional neural networks for relation classification.

 Vu et al., 2016. Bi-directional recurrent neural network with ranking loss for spoken language understanding.

 Gupta et al. 2018. Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time

 Gupta et al., 2018. LISA: Explaining Recurrent Neural Network Judgments via Layer-wIse Semantic Accumulation and Example to

Pattern Transformation.

 Gupta et al., 2018. Replicated Siamese LSTM in Ticketing System for Similarity Learning and Retrieval in Asymmetric Texts.

 Gupta et al., 2019. Neural Relation Extraction Within and Across Sentence Boundaries

 Talk/slides: https://vimeo.com/277669869

https://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.iro.umontreal.ca/%7Ebengioy/talks/gss2012-YB6-NLP-recursive.pdf
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
https://vimeo.com/277669869

Intern © Siemens AG 2017
May 2017Seite 122 Corporate Technology

Thanks !!!

Write me, if interested in ….

firstname.lastname@siemens.com

@Linkedin: https://www.linkedin.com/in/pankaj-gupta-6b95bb17/

About my research contributions:

https://scholar.google.com/citations?user=_YjIJF0AAAAJ&hl=en

https://www.linkedin.com/in/pankaj-gupta-6b95bb17/
https://scholar.google.com/citations?user=_YjIJF0AAAAJ&hl=en

	Lecture-05: Recurrent Neural Networks� (Deep Learning & AI)
	Lecture Outline
	Motivation: Need for Sequential Modeling
	Motivation: Need for Sequential Modeling
	Motivation: Need for Sequential Modeling
	Motivation: Need for Sequential Modeling
	Motivation: Need for Sequential Modeling
	Motivation: Need for Sequential Modeling
	Motivation: Need for Sequential Modeling
	Motivation: Need for Sequential Modeling
	Motivation: Need for Sequential Modeling
	Motivation: Need for Sequential Modeling
	Motivation: Need for Sequential Modeling
	Motivation: Need for Sequential Modeling
	Notations
	Long Term and Short Dependencies
	Foundation of Recurrent Neural Networks
	Foundation of Recurrent Neural Networks
	Foundation of Recurrent Neural Networks
	(Vanilla) Recurrent Neural Network
	(Vanilla) Recurrent Neural Network
	Recurrent Neural Network: Probabilistic Interpretation
	RNN: Computational Graphs
	RNN: Different Computational Graphs
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	BPTT: Gradient Flow
	Backpropogation through time (BPTT) in RNN
	Backpropogation through time (BPTT) in RNN
	Foliennummer 45
	Challenges in Training an RNN: Vanishing Gradients
	Challenges in Training an RNN: Vanishing Gradients
	Challenges in Training an RNN: Vanishing Gradients
	Challenges in Training an RNN: Exploding Gradients
	Challenges in Training an RNN: Exploding Gradients
	Vanishing Gradient in Long-term Dependencies
	Vanishing Gradient in Long-term Dependencies
	Vanishing Gradient in Long-term Dependencies
	Vanishing Gradient in Long-term Dependencies
	Vanishing Gradient in Long-term Dependencies
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Mechanics behind Vanishing and Exploding Gradients
	Vanishing Gradient in Long-term Dependencies
	Vanishing Gradient in Long-term Dependencies
	Vanishing Gradient in Long-term Dependencies
	Exploding Gradient in Long-term Dependencies
	Vanishing Gradient in Long-term Dependencies
	Vanishing vs Exploding Gradients
	Foliennummer 76
	Dealing with Exploding Gradients: Gradient Clipping
	Foliennummer 78
	Dealing with Vanishing Gradient
	Long Short Term Memory (LSTM): Gating Mechanism
	Long Short Term Memory (LSTM): Gating Mechanism
	Long Short Term Memory (LSTM)
	Long Short Term Memory (LSTM): Step by Step
	Long Short Term Memory (LSTM): Step by Step
	Long Short Term Memory (LSTM): Step by Step
	Long Short Term Memory (LSTM): Step by Step
	Long Short Term Memory (LSTM): Step by Step
	Long Short Term Memory (LSTM): Step by Step
	Dealing with Vanishing Gradients in LSTM
	LSTM code snippet
	LSTM code snippet
	Gated Recurrent Unit (GRU)
	Gated Recurrent Unit (GRU)
	Gated Recurrent Unit (GRU)
	Dealing with Vanishing Gradient s in Gated Recurrent Unit (GRU)
	Code snippet of GRU unit
	Comparing LSTM and GRU
	Foliennummer 98
	Bi-directional RNNs
	Bi-directional RNNs
	Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM
	Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM
	Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM
	Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM
	Recursive Neural Networks (RecNNs): TreeRNN or TreeLSTM
	Deep and Multi-tasking RNNs
	RNN in Practice: Training Tips
	RNN in Practice: Training Tips
	Attention Mechanism: Attentive RNNs
	Attention Mechanism: Attentive RNNs
	Attention Mechanism: Attentive RNNs
	Explainability/Interpretability of RNNs
	Explainability/Interpretability of RNNs
	Explainability/Interpretability of RNNs
	Explainability/Interpretability of RNNs
	RNNs in Topic Trend Extraction (Dynamic Topic Evolution): RNN-RSM
	RNNs in Topic Trend Extraction (Dynamic Topic Evolution): RNN-RSM
	RNNs in Topic Trend Extraction (Dynamic Topic Evolution): RNN-RSM
	Key Takeaways
	References, Resources and Further Reading
	References, Resources and Further Reading
	Thanks !!!

