
DBS

Lecture Notes to
Big Data Management and Analytics

Winter Term 2018/2019

Batch Processing Systems

 Matthias Schubert, Matthias Renz, Felix Borutta, Evgeniy
Faerman, Christian Frey, Klaus Arthur Schmid, Daniyal

Kazempour, Julian Busch

 2016-2018

Outline

• Distributed File Systems (re-visited)

• MapReduce

• Motivation

• Programming Model

• Example Applications

• Hadoop MapReduce

• System Architecture

• Workflow

• YARN

Big Data Management and Analytics 2

NoSQL and RBDMS

• Drawbacks of RDBMS
• Database system are difficult to scale.

• Database systems are difficult to configure and maintain

• Diversification in available systems complicates its

selection

• Peak provisioning leads to unnecessary costs

• Advantages of NoSQL systems:

• Elastic scaling

• Less administration

• Better economics

• Flexible data models

Big Data Management and Analytics 3

NoSQL and Batch Systems

• NoSQL drops a lot of functionality of RDBMS:
• no real data dictionaries, but semi-structured models for

providing meta-data. (Still hard to access without explicit
knowledge of the data model.)

• Transaction processing cmp. CAP-theorem
• often limited access control (no user groups, roles)
• limited indexing / efficiency is most replaced with scalability

• So what’s left:
• storing massive amount of data in cluster environments

(sharding and replication)
• eventual consistency (at some point after the change every

instance of the data is replication consistent
• some database like APIs (e.g., CQL)

But then:
What’s makes the DBMS so much different from a File-System?

Big Data Management and Analytics 4

Distributed File Systems

• majority of analysis is still run on files
• machine learning, statistics and

data mining methods usually access
all available data

• most data mining and statistics methods
require a well-defined input and not
semi-structured objects

(data cleaning, transformation...)
 Scalable Data Analytics often suffices with a

distributed file system
 Analytics methods are parallelized on top of the

distributed file systems

Big Data Management and Analytics 5

Distributed File Systems

Past
• most computing is done on a single processor:
• one main memory
• one cache
• one local disk, …

New Challenges:
• Files must be stored redundantly:

• If one node fails, all of its files would be unavailable
until the node is replaced (see File Management)

• Computations must be divided into tasks:
• a task can be restarted without affecting other tasks

(see MapReduce)
• use of commodity hardware
Big Data Management and Analytics 6

Distributed File Systems

Parallel computing architecture
• Referred to as cluster computing
• Physical Organization:

• compute nodes are stored on racks (8-64)
• nodes on a single rack connected by a network

Switch

Nodes within a rack are connected by a
network, typically gigabit Ethernet

Rack Rack Rack Rack

Racks of servers (and switches at the top), at Goo
gle’s Mayes County, Oklahoma data center
[extremetech.com]

Big Data Management and Analytics 7

Distributed File Systems

Parallel computing architecture

Large-Scale File-System Organization:
• Characteristics:

• files are several terabytes in size (Facebook’s daily logs: 60TB;
1000 genomes project: 200TB; Google Web Index; 10+ PB)

• files are rarely updated
• reads and appends are common

• Exemplary distributed file systems:
• Google File System (GFS)
• Hadoop Distributed File System (HDFS, by Apache)
• CloudStore
• HDF5
• S3 (Amazon EC2)
• …

Big Data Management and Analytics 8

Distributed File Systems

Parallel computing architecture

• Large-Scale File-System Organisation:
• Organisation:

• files are divided into chunks (typically 16-64MB in size)
• chunks are replicated n times (i.e default in HDFS: n=3) at n

different nodes (optimally: replicas are located on different racks
optimising fault tolerance)

• how to find files?
• existence of a master node
• holds a meta-file (directory) about location of all copies of a file
 all participants using the DFS know where copies are located

Big Data Management and Analytics 9

Hadoop Distributed File System (HDFS)

Apache Hadoop - Architecture of HDFS
• HDFS: A distributed file system that provides high-throughput

access to application data
• HDFS has a master/slave architecture

• NameNode as master
• arbitrator and repository for all HDFS metadata
• manages the file system namespace
• mapping of blocks to DataNodes
• regulates access to files by clients

• DataNodes as clients:
• manage storage attached to the nodes that they run on
• storing “blocks” of files
• responsible for serving read and write requests from the clients
• perform block creation, deletion and replication upon instruction

from the NameNode

Big Data Management and Analytics 10

HDFS-Architecture

Apache Hadoop - Hadoop Distributed File System (HDFS)

Source: http://hortonworks.com/hadoop/hdfs/#section_2
Big Data Management and Analytics 11

http://hortonworks.com/hadoop/hdfs/#section_2

Data Storage Operations on HDFS

• Characteristics:
• Write Once, Read Often Model
• Content of individual files cannot be modified, but we can

append new data at the end of a file

• Operations:
• create a new file
• delete a file
• rename a file
• append content to the end of a file
• modify file attributes (owner, read, write)

Big Data Management and Analytics 12

Partitioning the input data

HDFS Blocks
• File is divided into blocks (default:64 MB) and duplicated

in multiple nodes (default: 3 replicas)
=> Fault tolerance

• Dividing files into blocks is common for a FS, e.g. default
block size in Linux is 4KB.
=> Difference of HDFS is the scale

• Hadoop was designed to operate at the petabyte scale
• Every data block stored in HDFS has its own metadata and

needs to be tracked by a central server
• files in HDFS are write-once and have strictly one writer at

any time

Big Data Management and Analytics 13

Partitioning the input data

HDFS Blocks
Network Topology and Distance
• process on the same node

distance(/d1/r1/n1, /d1/r1/n1) = 0

• different nodes / same rack
distance(/d1/r1/n1, /d1/r1/n2) = 2

• different racks/same datacenter
distance(/d1/r1/n1, /d1/r2/n3) = 4

• different datacenters
distance(/d1/r1/n1, /d2/r3/n4) = 6

Big Data Management and Analytics 14

Partitioning the input data

HDFS Blocks

Hadoop’s default replica placement strategy:
- 1st replica:

- same node as the client
- if node outside cluster, choose a random node

- 2nd replica:
- off-rack, chosen at random

- 3rd replica:
- same rack as 2nd, but on a different node,

chosen at random
- further replicas:

- random nodes; avoid placing too many replicas
on same rack

Big Data Management and Analytics 15

HDFS Robustness

• Data Disk Failure, Heartbeats and Re-replication
• Cluster Rebalancing

• move data from one DataNode to another if free space falls
below a certain threshold

• Data Integrity
• checksum checking of each block of a file

• Metadata Disk Failure
• replica of NameNode + copies of log files

• Snapshots
• support of storing a copy of data at a particular instant of time

Big Data Management and Analytics 16

Data Disk Failure, Heartbeats and
Re-replication

- Each DataNode sends a Heartbeat message to the NameNode
periodically.

- (subsets of) DataNodes may lose connectivity with the NameNode
 detected by absence of Heartbeats

- Affected DataNodes marked as dead
 no new IO requests from NameNode.

- Any data that was registered to a dead DataNode is not available to
HDFS any more.

- DataNode death may cause the replication factor of some blocks to
fall below their specified value
 re-replication (initiated by NameNode) needed.

- re-replication also required if the replication factor of a file has
been increased.

Big Data Management and Analytics 17

Cluster Rebalancing

• The HDFS architecture is compatible with data rebalancing
schemes.

• A scheme might automatically move data from one DataNode to
another if the free space on a DataNode falls below a certain
threshold.

• In the event of a sudden high demand for a particular file, a
scheme might dynamically create additional replicas and rebalance
other data in the cluster.

• These types of data rebalancing schemes are not yet implemented.

Big Data Management and Analytics 18

Data Integrity

• It is possible that a block of data fetched from a DataNode arrives
corrupted (e.g. because of faults in a storage device, network
faults, or buggy software.)

• The HDFS client software implements checksum checking on the
contents of HDFS files. When a client creates an HDFS file, it
computes a checksum of each block of the file and stores these
checksums in a separate hidden file in the same HDFS
namespace.

• When a client retrieves file contents it verifies that the data it
received from each DataNode matches the checksum stored in the
associated checksum file. If not, then the client can opt to retrieve
that block from another DataNode that has a replica of that block.

Big Data Management and Analytics 19

Metadata Disk Failure

• FsImage and EditLog are central data structures of HDFS.
• Corruption of these files can cause the HDFS instance to be

non-functional.
 maintaining multiple copies of the FsImage and EditLog.

• Updates to each FsImage or EditLog instance only
synchronously  degrades the rate of namespace transactions
per second (but HDFS applications are not metadata intensive)

• When a NameNode restarts, it selects the latest consistent
FsImage and EditLog to use.

• The NameNode machine is a single point of failure for an HDFS
cluster. If the NameNode machine fails, manual intervention is
necessary. Currently, automatic restart and failover of the
NameNode software to another machine is not supported.

Big Data Management and Analytics 20

Snapshots

• Snapshots support storing a copy of data at a particular instant of
time.

• One usage of the snapshot feature may be to roll back a corrupted
HDFS instance to a previously known good point in time.

• HDFS does not currently support snapshots but will in a future
release.

Big Data Management and Analytics 21

Overview

MapReduce

- Motivation
- Programming Model

- Recap Functional Programming

- Examples

Big Data Management and Analytics 22

MapReduce

Motivation: MapReduce - Comparison to Other Systems

MapReduce vs. RDBMS

MapReduce RDBMS

Data size Petabytes Gigabytes

Access Batch Interactive and Batch

Updates Write once, read many times Read & Write many times

Structure Dynamic schema Static schema

Integrity Low High (normalized data)

Scaling Linear Non-linear

Big Data Management and Analytics 23

MapReduce

Motivation: MapReduce - Comparison to Other Systems

MapReduce vs. Grid Computing

- Accessing large data volumes becomes a problem in High
performance computing (HPC), as the network bandwidth is the
bottleneck <-> Data Locality in MapReduce

- in HPC, programmers have to explicitly handle the data flow <->
MapReduce operates only in higher level, i.e. data flow is
implicit

- handling partial failures <-> MapReduce as a shared-nothing-
architecture (no dependence of tasks); detects failures and
reschedules missing operations

Big Data Management and Analytics 24

MapReduce

Motivation: Large Scale Data Processing

In General:

- MapReduce can be used to manage large-scale computations
in a way that is tolerant of hardware faults

- System itself manages automatic parallelisation and
distribution, I/O scheduling, coordination of tasks that are
implemented in map() and reduce() and copes with
unexpected system failures or stragglers

- several implementations: Google’s internal implementation,
open-source implementation Hadoop (using HDFS), …
Big Data Management and Analytics 25

MapReduce

Programming Model - General Processing

- Input & Output: each a set of key/value pairs
- Programmer specifies two functions:

map (in_key, in_value) -> list (out_key, intermediate_value)
·Processes input key/value pair; one Map()-Call for every pair
·Produces a set of intermediate pairs

reduce (out_key, list(intermediate_value)) -> list (out_value)
·combines all intermediate values for a particular key;
one Reduce()-call per unique key

·produces a set of merged output values
(usually just one output value)

Big Data Management and Analytics 26

MapReduce

Programming Model – Recap: Functional Programming

- MapReduce is inspired by similar primitives in LISP, SML,
Haskell and other languages

- The general idea of higher order functions (map and fold) in
functional programming (FP) languages are transferred in the
environment of MapReduce:
- map in MapReduce <-> map in FP
- reduce in MapReduce <-> fold in FP

Big Data Management and Analytics 27

MapReduce

Programming Model – Recap: Functional Programming

- MAP:
- 2 parameters: applies a function on each element of a list
- the type of the elements within the result list can differ from the type of

the input list
- the size of the result list remains the same

In Haskell:

Example:

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

*Main> map (\x -> (x,1)) [“Big”,”Data”,”Management”,”and”,”Analysis”]
[(“Big”,1),(“Data”,1),(”Management”,1),(“and”,1),(“Analysis”,1)]

Big Data Management and Analytics 28

MapReduce

Programming Model – Recap: Functional Programming

- FOLD:
- 3 parameters: traverse a list and apply a function f() to each element

plus an accumulator. f() returns the next accumulator value
- in functional programming: foldl and foldr

In Haskell (analog foldr):

Example:

foldl :: (b->a->b) -> b -> [a] -> b
foldl f acc [] = acc
foldl f acc (x:xs) = fold f (f acc x) xs

*Main> foldl (\acc (key,value) -> acc + value) 0 [(“Big”, 1), (“Big”, 1), (“Big”,1)]
3

Big Data Management and Analytics 29

MapReduce

Programming Model - General Processing of MapReduce

- 1. Chunks from a DFS are attached to Map tasks turning each
chunk into a sequence of key-value pairs.

- 2. key-value pairs are collected by a master controller and
sorted by key. The keys are divided among all Reduce tasks.

- 3. Reduce tasks work on each key separately and combine all
the values associated with a specific key.

Big Data Management and Analytics 30

MapReduce

Programming Model - High-level MapReduce diagram

Big Data Management and Analytics 31

MapReduce

Programming Model - High-level MapReduce diagram

Big Data Management and Analytics 32

MapReduce

Programming Model - General Processing

- Programmer’s task: specify map() and reduce();
- MapReduce environment takes care of:

- Partitioning the input data
- Scheduling
- Shuffle and Sort (performing the group-by-key step)
- Handling machine failures and stragglers
- Managing of required inter-machine communication

Big Data Management and Analytics 33

MapReduce

Programming Model - General Processing

Partitioning the input data
- data files are divided into blocks (default in GFS/HDFS: 64

MB) and replicas of each are stored on different nodes
- Master schedules map() tasks in close proximity to data

storage
- map() tasks are executed physically on the same machine where

one replica of an input file is stored (or, at least on the same rack
 communication via network switch)

-  Goal: conserve network bandwidth (c.f Grid Computing)

 achieves to read input data at local disk speed, rather
than limiting read rate by rack switches

Big Data Management and Analytics 34

MapReduce

Programming Model - General Processing

Scheduling
- One master, many workers

- split input data into M map tasks
- reduce phase partitioned into R tasks
- tasks are assigned to workers dynamically

- Master assigns each map task to a free worker
- considers proximity of data to worker

-  worker reads task input (optimal: from local disk)
-  output: files containing intermediate (key,value)-pairs

sorted by key

- Master assigns each reduce task to a free worker
- worker reads intermediate (key, value)-pairs
- worker merges and applies reduce()-function for output

Big Data Management and Analytics 35

MapReduce

Programming Model - General Processing

Shuffle and Sort (performing the group-by-key step)

- input to every reducer is sorted by key
- Shuffle: sort and transfer the map outputs to the reducers

as inputs
- Mappers need to separate output intended for different

reducers
- Reducers need to collect their data from all(!) mappers

- keys at each reducer are processed in order

Big Data Management and Analytics 36

MapReduce

Programming Model - General Processing

Shuffle and Sort (performing the group-by-key step)

Quelle: Oreilly, Hadoop - The Definitive Guide 3rd Edition, May 2012
Big Data Management and Analytics 37

MapReduce

Programming Model - General Processing

Handling machine failures and stragglers
- General: master pings workers periodically to detect failures

- Map worker failure
- Map tasks completed or in-progress at worker are reset to idle
- all reduce workers will be notified about any re-execution

- Reduce worker failure
- only in-progress tasks at worker will be re-executed
-  output stored in global FS

- Master failure
- master node is replicated itself. ‘Backup’ master recovers last

updated log files (metafile) and continues
- if no ‘backup’ master  MR task is aborted and client is notified

Big Data Management and Analytics 38

MapReduce

Programming Model - General Processing

Handling machine failures and stragglers
- Failures

Big Data Management and Analytics 39

MapReduce

Programming Model - General Processing

Handling machine failures and stragglers
- Stragglers

- slow workers lengthen the termination of a task
- close to completion, backup copies of the remaining in-progress

tasks are created
- Causes: hardware degradation, software misconfiguration, …
- if a task is running slower than expected, another equivalent task

will be launched as backup  speculative execution of tasks
- when a task completes successfully, any duplicate task are killed

Big Data Management and Analytics 40

MapReduce

Programming Model - General Processing

Handling machine failures and stragglers
- Stragglers

Big Data Management and Analytics 41

MapReduce

Programming Model - General Processing

Managing required inter-machine communication

- Task status (idle, in-progress, completed)
- Idle tasks get scheduled as workers become available
- In completion of a map task, the worker sends the location

and sizes of its intermediate files to the master
- Master pushes this info to reducers
- Fault tolerance: master pings workers periodically to detect

failures

Big Data Management and Analytics 42

MapReduce

Programming Model - General Processing - Workflow

Workflow of MapReduce (as original implemented by Google):
1. Initiate the MapReduce environment on a cluster of machines
2. One Master, the rest are workers that are assigned tasks by the master
3. A map task reads the contents of an input split and passes them to the

MAP-function. The results are buffered in memory
4. The buffered (key,value)-pairs are written to local disk. The location of

these (intermediate) files are passed back to the master
5. A reduce worker who has been notified by the master, uses remote

procedure calls to read the buffered data.
6. Reduce worker iterates over the sorted intermediate (key,value)-pairs

and passes them to the REDUCE-function

 On completion of all tasks, the master notifies the user program.

Big Data Management and Analytics 43

MapReduce

Programming Model - Low-level MapReduce diagram

Big Data Management and Analytics 44

MapReduce

Example #1 WordCount

- Setting: text documents, e.g. web server logs
- Task: count occurrence of distinct words appearing in the

input file, e.g find popular URLs in server logs

Challenges:
- File is too large for to fit in a single machines’s memory
- parallel execution

 Solution: Apply MapReduce

Big Data Management and Analytics 45

MapReduce

Example #1 WordCount

- Goal: Count word occurrence in a set of documents
- Input: “Wer A sagt, muss auch B sagen! Wer B sagt, braucht

B nicht nochmal sagen!”

map (k1, v1) -> list (k2, v2) reduce (k2, list(v2)) -> list(v2)

map (String key, String value):
//key:document name
//value: content of document
for each word w in value do:

emitIntermediate(w, “1”)

reduce (String key, Iterator values):
//key:a word
//values: a list of counts
int result = 0;
for each v in values do:

result += parseInt(v);
emit(result.toString())

Big Data Management and Analytics 46

MapReduce

Example #1 WordCount

· In a parallel environment:
· worker: 2

Wer A sagt
muss auch

B sagen!

Wer B sagt
braucht B
nicht
nochmal
sagen.

Input

{(Wer,1),(A,1),
(sagt,1),(muss,1),
(auch,1),(B,1),
(sagen! ,1)

{(Wer,1),(B,1),
(sagt,1),
(braucht,1),(B,1),
(nicht,1),
(nochmal,1),
(sagen,1)}

{(Wer,1),(Wer,1),
(A,1),(sagt,1),
(sagt,1),(muss,1),
(auch,1),
(braucht,1)}

{(B,1), (B,1),(B,1),
(nicht,1),
(nochmal,1),
(sagen,1),(sagen,1
)}

{(Wer,2),(A,1),
(sagt,2), (muss,1),
(auch,1),
(braucht,1)}

{(B,3), (nicht,1),
(nochmal,1),
(sagen,2)}

Wer,2
A, 1
sagt,2
muss,1
auch,1
B,3
sagen,2
nicht,1
nochmal1

Output

Big Data Management and Analytics 47

MapReduce

Example #2 k-Means

Randomly initialize k centers:

Classify: Assign each point j{1,..,m} to nearest center:

Recenter: i becomes center of assigned points:

Big Data Management and Analytics 48

MapReduce

Example #2 k-Means - MapReduce - Scheme

Big Data Management and Analytics 49

MapReduce

Example #2 k-Means - Classification Step As Map

Classify: Assign each point j{1,..,m} to nearest center:

Map:
Input:
- subset of d-dimensional objects of M={x1,..xm} in each mapper
- initial set of centroids

Output:
- list of objects assigned to nearest centroid. This list will later be

read by the reducer program

Big Data Management and Analytics 50

MapReduce

Example #2 k-Means - Classification Step As Map

Classify: Assign each point j{1,..,m} to nearest center:

for all x_i in M do
bestCentroid <- null
minDist <- inf
for all c in C do

dist <- l2Dist(x, c)
if bestCentroid == null || dist < mindist then

minDist <- dist
bestCentroid <- c

endif
endfor
outputlist << (bestCentroid, x_i)

endfor
return outputlist

Big Data Management and Analytics 51

MapReduce

Example #2 k-Means - Recenter Step as Reduce

Recenter: i becomes centroid of assigned points

Note: equivalent to averaging the points!

Reduce:
Input:
- list of (key,value)-pairs, where key = bestCentroid

and value = objects assigned to this centroid

Output:
- (key,value), where key = oldcentroid and value = newBestCentroid,

which is the new centroid calculated for that bestCentroid
Big Data Management and Analytics 52

MapReduce

Example #2 k-Means - Recenter Step as Reduce

Recenter: i becomes centroid of its points:

assignmentList <- outputlists // lists from mappers are merged together (shuffle)

for all (key,values) in assignmentList do
newCentroid, sumOfObjects, numOfObjects <- null
for all obj in values do

sumOfObjects += obj
numOfObjects ++

endfor
newCentroid <- (sumOfObjects / numOfObjects)
newCentroidList << (key, newCentroid)

endfor
return newCentroidList

Big Data Management and Analytics 53

Big Data in Hadoop

Apache Hadoop - Historical Background

- 2003: Google publishes its cluster architecture & DFS (GFS)
- 2004: MapReduce as a new programming model is introduced

by Google, working on top of GFS
- written in C++ as a closed-source project

- 2006: Apache & Yahoo! publish Hadoop & HDFS
- Java implementation of Google MapReduce and GFS

- 2008: Hadoop becomes an independent Apache project

- Today: Hadoop widely used as a general-purpose storage and
analysis platform for big data

Big Data Management and Analytics 54

Big Data in Hadoop

Apache Hadoop - Google: The Data Challenge

Keynote Speech, Jeffrey Dean (Google), 2006, PACT’06:
Problems:
- 20+ billion web pages x 20KB = 400+ terabytes
- One computer can read 30-35 MB/sec from disk

-  four months to read the web
- takes even longer to ‘do’ something with the data
- But: same problem with 1000 machines, < 3 hours

MapReduce CACM’08 article:
- 100,000 MapReduce jobs executed in Google every day
- Total data processed > 20 PB per day

Big Data Management and Analytics 55

Big Data in Hadoop

Apache Hadoop

- open-source SW for reliable, scalable, distributed computing
- Some provided modules:

- Hadoop Common:
- common utilities for distributed filesystems and general I/O

(serialization, Java RPC, persistent data structures)

- Hadoop Distributed File System (HDFS):
- A distributed file system that provides high-throughput access to

application data

- Hadoop YARN:
- framework for job scheduling and cluster resource management

- Hadoop MapReduce:
- distributed data-processing model and execution environment

running on large clusters of commodity machines

Big Data Management and Analytics 56

Big Data in Hadoop

Apache Hadoop

- Tools within Hadoop
Tool Description

HBase Distributed, column-oriented database

Hive Distributed data warehouse

Pig Higher-level data flow language and parallel execution framework

ZooKeeper Distributed coordination service

Sqoop Tool for bulk data transfer between structured data stores and HDFS

Oozie Complex job workflow service

Chukwa System for collecting management data

Mahout Machine learning and data mining library

BigTop Packaging and testing

Avro serialization system for cross-language RPC and persistent data
storage

Big Data Management and Analytics 57

Big Data in Hadoop

Apache Hadoop - Common Use Cases

• Log Data Analysis
• most common: write once & read often

• Fraud Detection
• Risk Modeling
• Social Sentiment Analysis
• Image Classification
• Graph Analysis
• …

Big Data Management and Analytics 58

Big Data in Hadoop

Apache Hadoop - HDFS/MapReduce layer composition

Bringing it all together…

MapReduce tasks are divided
into trackers:

Master: JobTracker
Slave: TaskTracker

HDFS Tasks divided into nodes:
Master: NameNode
Slaves: DataNodes

Big Data Management and Analytics 59

Big Data in Hadoop

Apache Hadoop - HDFS/MapReduce layer composition

Bringing it all together…

JobTracker:
- coordinates all the jobs running on a system
- scheduling tasks to run on TaskTrackers
- keeps record of the overall progress of each job
- on Task failure: reschedule tasks on different TaskTracker

TaskTracker:
- execute tasks
- send progress reports to JobTracker

Big Data Management and Analytics 60

Big Data in Hadoop

Apache Hadoop - Workflow of MapReduce in Hadoop
1. Client submits an application request to the JobTracker
2. JobTracker determines processing resources to execute the entire

application, e.g. selection of TaskTrackers based on their
proximity to the data source

3. JobTracker identifies state of the slave nodes and queues all map
tasks and reduce tasks for execution

4. When processing slots become available on slave nodes, map
tasks are deployed

5. JobTracker monitors task progress. On failure, the task is restarted
on next available slot.

6. When map tasks have finished, reduce tasks process the interim
results sets

7. The result set is returned to the client application

Big Data Management and Analytics 61

Big Data in Hadoop

Apache Hadoop - MapReduce in Hadoop

Source: https://www.ibm.com/developerworks/cloud/library/cl-openstack-deployhadoop/

DFS: e.g. Hadoop
Distributed File
System (HDFS)

Big Data Management and Analytics 62

https://www.ibm.com/developerworks/cloud/library/cl-openstack-deployhadoop/

Big Data in Hadoop

Apache Hadoop - Limitations of MapReduce

- MapReduce is a successful batch-oriented programming
model

- Increasing demand for additional processing modes:
- Graph Analysis
- Stream data processing
- Text Analysis
- Demand is growing for real-time and ad-hoc analysis
-  Analysts with specific queries including only subsets of

data and need an instant response

 Solution of the Hadoop/MapReduce-World: YARN
Big Data Management and Analytics 63

Big Data in Hadoop

Apache Hadoop - MapReduce 2.0 or YARN

- YARN: Yet Another Resource Negotiator
- idea: split up the two major functionalities of the JobTracker

(resource management and job scheduling/monitoring), into
separate daemons:

- ResourceManager
- ApplicationMaster

- MasterNode runs the ResourceManager and on each slave runs a
NodeManager  Data-computation framework.

- ApplicationMaster works with the NodeManager(s) to execute and
monitor the tasks

Big Data Management and Analytics 64

Big Data in Hadoop

Apache Hadoop - Workflow of MapReduce 2.0 or YARN

General workflow of a YARN application:
1. Client submits application to Resource Manager
2. ResourceManager asks any NodeManager to create an

ApplicationMaster which registers with the Resource Manager
3. ApplicationMaster determines how many resources are

needed and requested the necessary resources from the
ResourceManager

4. ResourceManager accepts the requests and queues it up
5. As the requests resources become available on slave nodes,

the ResourceManager grants the ApplicationMaster
requirements for containers on specific slave nodes

Big Data Management and Analytics 65

Big Data in Hadoop

Apache Hadoop - MapReduce 2.0 or YARN

Source: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Big Data Management and Analytics 66

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

