
Institut für Informatik
Lehr- und Forschungseinheit
für Datenbanksysteme

Diplomarbeit

Using Sets of Feature Vectors
for Similarity Search

on Voxelized CAD Objects

Stefan Brecheisen

Aufgabensteller: Prof. Dr. Hans-Peter Kriegel
Betreuer: Martin Pfeifle
Abgabetermin: 21. Januar 2003

Erklärung

Hiermit versichere ich, daß ich diese Diplomarbeit selbständig verfaßt und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 21. Januar 2003

Stefan Brecheisen

Zusammenfassung

Der Begriff der Ähnlichkeitssuche gewinnt für moderne Datenbankanwendun-
gen, wie z.B. in den Bereichen Multimedia, Molekularbiologie, medizinische
Bildverarbeitung und vielen anderen, zunehmend an Bedeutung. Besonders
bei CAD-Anwendungen können geeignete Ähnlichkeitsmodelle und eine kla-
re Repräsentation der Ergebnisse dabei helfen, die Kosten für die Entwicklung
und Herstellung neuer Teile zu senken, indem bereits vorhandene Teile so weit
wie möglich wiederverwendet werden. Die meisten der bekannten Ähnlichkeits-
modelle basieren auf der Idee der Extraktion von Feature-Vektoren. Wir pas-
sen vier dieser Modelle für die Anwendung auf 3D-Voxeldaten an. Anhand des
vielversprechendsten dieser vier Modelle erklären wir, wie Mengen von Feature-
Vektoren anstelle von einzelnen Feature-Vektoren für effektivere und dennoch
effiziente Ähnlichkeitssuche benutzt werden können. Zunächst führen wir einen
intuitiven Distanzbegriff zwischen Mengen von Feature-Vektoren ein und be-
schreiben einen effizienten Algorithmus zur Distanzberechnung. Desweiteren
stellen wir eine Methode zur Beschleunigung der Anfragebearbeitung auf Da-
tenbanken, die Vektormengen enthalten, vor. Wir nutzen dazu die Strategie
der mehrstufigen Anfragebearbeitung. Die experimentelle Evaluierung wurde
mit Hilfe zweier Testdatenbanken durchgeführt, die von der Auto- und Flug-
zeugindustrie zur Verfügung gestellt wurden. Unsere Experimente zeigen, daß
unser neuer Ansatz zur Ähnlichkeitssuche in verhältnismäßig kurzer Zeit aus-
sagekräftigere Ergebnisse liefert als die bisherigen Verfahren. Zur Evaluierung
verwenden wir ein Verfahren zum hierarchischen Clustering. Dies ist eine neue
und effektive Methode, um Ähnlichkeitsmodelle zu analysieren und miteinander
zu vergleichen.

Abstract

Similarity search in database systems is becoming an increasingly important
task in modern application domains such as multimedia, molecular biology,
medical imaging and many others. Especially for CAD applications, suitable
similarity models and a clear representation of the results can help to reduce the
cost of developing and producing new parts by maximizing the reuse of existing
parts. Most of the existing similarity models are based on the paradigm of
feature vectors. We adapt four of these models to voxelized 3-D data. Based
on the most promising of these four models, we explain how sets of feature
vectors can be used for more effective and still efficient similarity search instead
of single feature vectors. We first introduce an intuitive distance measure on
sets of feature vectors together with an algorithm for its efficient computation.
Furthermore, we present a method for accelerating the processing of similarity
queries on vector set data by using a multi-step query processing strategy. The
experimental evaluation is based on two real world test data sets provided by
the car and aircraft industry and points out that our new similarity approach
yields more meaningful results in comparatively short time. This evaluation
is based on hierarchical clustering as a new and effective way to analyze and
compare similarity models.

CONTENTS

Contents

1 Introduction 3

2 Similarity Models for Voxelized CAD Objects 5
2.1 Related Work . 5

2.1.1 Feature-Based Similarity 5
2.1.2 Geometry-Based Similarity 8

2.2 Voxelized CAD Objects . 9
2.3 Shape Histograms . 11
2.4 Normalization . 12

2.4.1 Scaling Invariance . 13
2.4.2 Translation Invariance 14
2.4.3 Rotation Invariance . 15
2.4.4 Reflection Invariance . 15

2.5 Spatial Features . 16
2.5.1 The Volume Model . 16
2.5.2 The Solid-Angle Model 16
2.5.3 The Eigen Value Model 18

3 Cover Sequence Approximation 21
3.1 The Cover Sequence Model . 21
3.2 Approximation . 22
3.3 Feature Extraction . 23

4 Vector Set Representation 25
4.1 Motivation . 25
4.2 Distance Measures on Sets of Objects 28
4.3 The Minimal Matching Distance 29
4.4 The Kuhn-Munkres Algorithm 31

5 Efficient Query Processing on Vector Set Data 35
5.1 Query Types . 35

1

CONTENTS

5.1.1 Similarity Range Queries 36
5.1.2 k-Nearest Neighbor Queries 36

5.2 Multi-Step Query Processing . 37
5.3 A Filter Step for Vector Set Data 40
5.4 Implementation . 41

6 Experimental Evaluation 44
6.1 Data Sets . 44
6.2 Methods for Evaluating the Effectiveness of Similarity Models . 45

6.2.1 k-Nearest Neighbor Queries 45
6.2.2 Clustering . 46

6.3 The OPTICS Algorithm . 47
6.3.1 Density-Based Clustering 48
6.3.2 Reachability Plots and Parameters 52

6.4 Evaluation of the Effectiveness 55
6.5 Evaluation of the Efficiency . 62

7 Conclusions 64
7.1 Results . 64
7.2 Future Work . 65

List of Figures 68

List of Tables 69

List of Definitions 70

Bibliography 71

2

Chapter 1

Introduction

In the last ten years, an increasing number of database applications has emerged
for which efficient and effective support for similarity search is substantial. The
importance of similarity search grows in application areas such as multimedia,
medical imaging, molecular biology, computer aided engineering, marketing and
purchasing assistance, etc. [Jag91, AFS93, MG93, FBF+94, FRM94, ALSS95,
BKK97, BK97, Kei99]. Particularly, the task of finding similar shapes in 2-D
and 3-D becomes more and more important. Examples for new applications
that require the retrieval of similar 3-D objects include databases for molecular
biology, medical imaging and computer aided design.

Especially, the development, design, manufacturing and maintenance of
modern engineering products is a very expensive and complex task. Effective
similarity models are required for two- and three-dimensional CAD applica-
tions to cope with rapidly growing amounts of data. Shorter product cycles
and a greater diversity of models are becoming decisive, competitive factors in
the hard-fought automobile and aircraft market. These demands can only be
met if the engineers have an overview of already existing CAD parts. In this
diploma thesis, we introduce an effective and flexible similarity model for com-
plex 3-D CAD data, which helps to find and group similar parts. This model is
particularly suitable for voxelized data, which often occur in CAD applications.
It is not based on the traditional approach of describing one object by a single
feature vector but instead we map an object onto a set of feature vectors, i.e.
an object is described by a point set.

The remainder of this diploma thesis is organized as follows: In Chapter
2 we shortly review already existing spatial similarity models and provide a
classification of the techniques into feature-based models and direct geometric
models. Moreover we provide the basis for similarity models based on voxelized

3

CHAPTER 1. INTRODUCTION

CAD objects. We discuss the concepts of translation, rotation, reflection and
scaling invariances. In the rest of the chapter we adapt three known similarity
models to voxelized 3-D data. These three models are based on a complete
partitioning of the data space into disjoint cells. In Chapter 3 we introduce a
fourth similarity model which is based on a more flexible object-oriented par-
titioning approach in greater detail. We present a known algorithm for finding
good sequential descriptions of spatial objects using axis parallel rectangular
covers which we adapted for the use on 3-D data. Furthermore we show how to
transform these sequential descriptions into feature vectors. Based on the most
promising of our four models, we explain in Chapter 4 our new approach based
on sets of feature vectors. We introduce a distance measure on vector sets
suitable for similarity search together with a method to compute this distance
measure efficiently. Next, in Chapter 5, we address the issue of efficient query
processing in large databases. We use a multi-step query processing strategy
and show how to take advantage of already existing index structures. In Chap-
ter 6, we introduce hierarchical clustering as a new and effective way to analyze
similarity models. We show that our new approach efficiently generates more
significant results compared to the traditional approaches based on single fea-
ture vectors. The experiments are based on two real-world test data sets of
our industrial partners, a German car manufacturer and an American aircraft
producer. The diploma thesis concludes in Chapter 7 with a short summary of
our results and a few remarks on future work.

4

Chapter 2

Similarity Models for Voxelized
CAD Objects

2.1 Related Work

In recent years, considerable work on similarity search in database systems
has been published. Many of the previous approaches, however, deal with
one- or two-dimensional data, such as time series, digital images or polygonal
data, most of them do not support three-dimensional objects. In this section,
we discuss some competing approaches to establish similarity measures. We
provide a classification of the techniques into feature-based models and direct
geometric models.

2.1.1 Feature-Based Similarity

A widely used class of similarity models is based on the paradigm of feature
vectors. The basic idea is as follows: Using a feature transform, the objects are
mapped onto a feature vector in an appropriate multidimensional feature space.
The similarity of two objects is then defined as the proximity of their feature
vectors in the feature space: The closer their feature vectors are located, the
more similar two objects are considered.

Several reasons lead to the wide use of feature-based similarity models:
First, the more complex the objects are, the more difficult it may be to find an
appropriate similarity distance function. A second reason wherefore feature-
based similarity models are quite popular is that they may be easily tuned to fit
to specific applications. In general, this task is performed in close cooperation
with domain experts who specify appropriate features and adapt them to the

5

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

specific requirements. Since the existing techniques for query processing are
independent from the particular definition of the features, efficient support
may be provided without an in-depth insight into the application domain.

Examples where the paradigm of feature-based similarity has been suc-
cessfully applied to the retrieval of similar spatial objects include structural
features of 2-D contours [GM93, MG93, MG95], angular profiles of polygons
[BMH92], rectangular covers of regions [Jag91], algebraic moment invariants
[TC91, FBF+94], and 2-D section coding [Ber97, BKK97]. Non-geometric ap-
plications include similarity search on time series [AFS93, FRM94], and on
color histograms in image databases [NBE+93, FBF+94, HSE+95], among sev-
eral others.

Agrawal et al. present a method for similarity search in a sequence database
of one-dimensional data [AFS93]. The sequences are mapped onto points of a
low-dimensional feature space using a Discrete Fourier Transform, and then
a PAM is used for efficient retrieval. This technique was later generalized for
subsequence matching [FRM94], and searching in the presence of noise, scaling,
and translation [ALSS95]. However, it remains restricted to one-dimensional
sequence data.

Mehrotra and Gary suggest the use of boundary features for the retrieval
of shapes [MG93, GM93]. Here, a 2-D shape is represented by an ordered set
of surface points, and fixed-sized subsets of this representation are extracted as
shape features. All of these features are mapped to points in multidimensional
space which are stored using a Point Access Method (PAM). This method is
essentially limited to two dimensions.

Jagadish proposes a technique for the retrieval of similar shapes in two
dimensions [Jag91]. He derives an appropriate object description from a rec-
tilinear cover of an object, i.e. a cover consisting of axis-parallel rectangles.
The rectangles belonging to a single object are sorted by size, and the largest
ones serve as retrieval key for the shape of the object. This method can be
generalized to three dimensions by using covers of hyperrectangles, as we will
see in chapter 3.

Histograms as Feature Vectors

Histograms represent a quite general class of feature vectors which have been
successfully applied to several applications. For any arbitrary distribution of
objects, a histogram represents a more or less fine grained aggregation of the
information. The general idea is to completely partition the space of interest
into disjoint regions which are called cells, and to map every object onto a

6

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

Figure 2.1: Section coding of 2-D regions: a) Original space and object. b)
Corresponding histogram. c) Corresponding feature vector.

single bin or to distribute an object among a set of bins of the corresponding
histogram. Then a histogram can be transformed directly into a feature vector
by mapping each bin of the histogram onto one dimension (attribute) of the
feature vector. The histogram approach applies to geometric spaces as well as
to non-geometric spaces.

A popular example for the use of histograms to define the similarity of com-
plex objects is the color histogram approach which is a core component of the
QBIC system [NBE+93, FBF+94]. Among other techniques, color histograms
are used to encode the percentage of colors in an image [SH94, HSE+95]. Our
second example is taken from a spatial database application: The 2-D section
coding approach [Ber97, BK97] represents a particular histogram technique
that is used in the S3 system [BKK97] for the retrieval of similar mechanical
parts. For each object, the circumscribing circle is decomposed into a fixed
number of sectors around the center point. For each sector, the fraction of
the area is determined that is overlapped by the object. Altogether, the re-
sulting feature vector is a histogram over the 2-D, whose bins represent the
corresponding 2-D sectors. Figure 2.1 illustrates the technique by an example
with 8 sectors. This approach, however, is also limited to two dimensions since
a linear ordering of the boundary is required. In the 3-D, there is no canonical
linearization of the two-dimensional boundary of arbitrary solids.

In [KKS98, AKKS99] the retrieval of similar 3-D objects from a biomolecu-
lar database was investigated. The introduced models are based on 3-D shape
histograms, where three different approaches were used for space partitioning:
shell bins, section bins and combined bins (cf. Figure 2.2). Unfortunately, these
models are not inherently suitable for voxelized data which are axis-parallel.

7

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

2.1.2 Geometry-Based Similarity

A class of models that is to be distinguished from the feature-based techniques
are the similarity models that are defined by directly using the geometry. Two
objects are considered similar if they minimize a distance criterion that is
purely defined by the geometry of the objects. Examples include the simi-
larity retrieval of mechanical parts, the difference volume approach, and the
approximation-based similarity model for 3-D surface segments:

Rotational Symmetric Mechanical Parts. In [SKSH89], a method is pre-
sented to retrieve similar mechanical parts from a database. The similarity
criterion is defined in terms of tolerance areas which are specified around the
query object. All objects that fit into the tolerance area count for being similar.
Although the parts are 3-D, only their 2-D contour is taken into account for
the retrieval technique.

Difference Volume Approach. The difference volume or error volume of
spatial objects is a promising approach which has been already successfully
applied to medical images, for instance [Hig90, Vin91]. Furthermore, extensions
such as the combination with methods from mathematical morphology have
been investigated on a tumor database [KSF+96]. However, they considered
only 2-D images. A competing approach is is based on a new geometric index
structure as suggested in [Kei99]. The basic idea of this solution is to use the
concept of hierarchical approximations of the 3D objects to speed up the search
process.

Figure 2.2: Shells and sections as basic models for shape histograms. In each
of the 2-D examples, a single bin is marked.

8

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

Class
Definition of
Similarity Examples

feature-based
similarity

similarity is
proximity in the
feature space

• rectangular cover of regions [Jag91]
• algebraic moment invariants [TC91]
• 2-D contour features [GM93, MG95]
• angular profiles of polygons [BMH92]
• section coding [Ber97, BKK97]
• time series [AFS93, FRM94]
• color histograms [NBE+93, FBF+94, HSE+95]

geometric
similarity

similarity is
directly defined
by geometry

• symmetric mechanical parts [SKSH89]
• difference volume [Vin91, KSF+96, Kei99]
• 3-D surface segments [KSS97]

Table 2.1: Classification of complex similarity models.

Approximation-based Similarity of 3-D Surface Segments. The re-
trieval of similar 3-D surface segments is a task that supports the docking
search for proteins in biomolecular databases. Following the approximation-
based model, the similarity of 3-D surface segments is measured by their mutual
approximation error with respect to a given multi-parametric surface function
which serves as the underlying approximation model. To state it simply, two
segments are the more similar, the better they fit to the approximation of the
partner segment [KSS97].

Summary

In Table 2.1, we summarize our classification of similarity models into feature-
based approaches and direct geometry-based proposals. The list of examples
is by no means complete but provides an impression of the potentials of both
paradigms. In this work, we introduce effective similarity models for CAD
objects, which rely on the feature based histogram approach.

2.2 Voxelized CAD Objects

Engineering products can be regarded as a collection of individual, three-di-
mensional parts. Each of these parts may consist of a complex and an intricate
geometric shape with a very high precision. Accurate representations of CAD
surfaces are typically implemented by parametric bicubic surfaces, including

9

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

(a) Triangulated surface (b) Voxelized surface

Figure 2.3: Scan conversion on a triangulated surface.

Hermite, Bézier, and B-spline patches. For many operations, such as graphical
display or the efficient computation of surface intersections, these parametric
representations are too complex [MH99]. As a solution, approximative polygon
(e.g. triangle) meshes can be derived from the accurate surface representation.
These triangle meshes allow for an efficient and interactive display of com-
plex objects. In order to apply spatial indexing, often, a coarser, conservative
approximation of the parts, by means of voxels, is applied (cf. Figure 2.3).

A basic algorithm for the 3D scan-conversion of polygons into a voxel-based
occupancy map has been proposed by Kaufmann [Kau87]. Similarly to the well-
known 2D scan-conversion technique, the runtime complexity to voxelize a 3D
polygon is O(n), where n is the number of generated voxels. If we apply this
conversion to the given triangle mesh of a CAD object (cf. Figure 2.3(a)), a
conservative approximation of the part surface is produced (cf. Figure 2.3(b)).
In the following, we assume a uniform three-dimensional voxel grid covering
the global product space. The grid resolution determines the finest possible
granularity for the approximation of the objects. By means of space filling
curves, each cell of the grid can be encoded by a single integer number, and
thus an extended CAD object is represented by a set of integers.

10

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

2.3 Shape Histograms

Histograms are usually based on a complete partitioning of the data space into
disjoint cells which correspond to the bins of the histograms.

We divide the data space into axis parallel, equi-sized partitions (cf. Figure
2.4, which provides an illustration in 2-D). This kind of space partitioning is
especially suitable for voxelized data, as cells and voxels are of the same shape,
i.e. cells can be regarded as coarse voxels.

Each of these partitions is assigned to one or several bins in a histogram,
depending on the specific similarity model. By scaling the number of partitions,
the number of dimensions of the feature vector can be regulated (cf. Figure 2.4).
Obviously, the more partitions we use, the more smaller differences between the
objects become decisive.

By means of the resulting feature vectors, the similarity of two objects can
be defined as follows.

Definition 1 (feature-based object similarity)
Let O be the domain of the objects and F : O → Rd be a mapping of the objects
into the d-dimensional feature space. Furthermore, let dist : Rd×Rd → R be a
distance function between two d-dimensional feature vectors. Then a feature-
based object similarity function simdist : O ×O → R is defined as follows:

simdist(Obj1, Obj2) = dist(F (Obj1), F (Obj2)).

There exist a lot of distance functions which are suitable for similarity
search. In the literature, often the Lp-distance is used, as for instance the
Manhattan distance (p = 1) or the Euclidian distance (p = 2). Throughout

Figure 2.4: Space partitioning with 4 cells. The feature vector generated by
the volume model is depicted on the right hand side.

11

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

our experiments (cf. Chapter 6), the common Euclidian distance was used.

deuclid(~x, ~y) = ‖~x− ~y‖2 =

√√√√ d∑
i=1

(xi − yi)2

2.4 Normalization

For effective similarity search it is often required to meet invariance properties
with respect to a certain class of transformations, i.e. applying a transforma-
tion from this class to an object should have no influence on the result of the
similarity function. This leads to the following definition.

Definition 2 (invariance)
Let O be the domain of the objects and simdist : O × O → R be a feature-
based object similarity function. simdist is invariant with respect to a class
of transformations T , if for all objects Obj1, Obj2 ∈ O and all transformations
T ∈ T holds:

simdist(Obj1, Obj2) = simdist(T (Obj1), Obj2) = simdist(Obj1, T (Obj2))

Invariance can be achieved by applying appropriate transformations to the
objects in the database. This is called the normalization of data. Invariance
properties relevant for similarity search in CAD databases are scaling, trans-
lation, rotation and reflection invariances. It depends on the similarity model
as well as user choices which invariances have to be considered for a particular
application. Taking normalization into account, we get the following extended
similarity definition.

Definition 3 (extended feature-based object similarity)
Let O be the domain of the objects, F : O → Rd a mapping of the objects into
the d-dimensional feature space, and dist : Rd × Rd → R a distance function
between two d-dimensional feature vectors. Furthermore, let U be the set of
all user-dependent combinations of scaling, translation, rotation and reflection
transformations. Then a feature-based object similarity function simdist :
O ×O → R is defined as follows:

simdist(Obj1, Obj2) = min
T∈U

{dist(F (Obj1), F (T (Obj2)))}.

12

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

Note that we achieve invariance by taking the minimum of the distances
between Obj1 and all transformations of Obj2 with respect to U .

In the next four sections we discuss each of the aforementioned invariance
properties in more detail. In particular we describe the corresponding transfor-
mation matrices using homogeneous coordinates [Gri92, NS86], together with
their relevant parameters. To calculate these parameters we need the minimal
bounding box mbbo for each object o.

mbbo = (xmin, ymin, zmin, xmax, ymax, zmax)

The minimal bounding boxes have to be updated after each transformation in
order to obtain the parameters for the next matrix.

2.4.1 Scaling Invariance

The actual size of the different objects in a CAD database can vary from a few
millimeters to several meters. In order to compare the shape of the objects,
we scale them to a uniform size. That is, we fit each voxelized object into a
cubic voxel space with a predefined extension r in each of the three dimensions.
This can be achieved by applying the following transformation with appropiate
parameters sx, sy and sz.

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

We distinguish between two scaling methods.

• Proportional scaling: The objects are scaled proportionally with respect
to the three coordinate axes. The shape of the objects is preserved.
Using this method the scaling factors sx, sy and sz are equal and can be
determined like this:

sx = sy = sz =
r

∆mbbo

where ∆mbbo is the maximal extension of the minmal bounding box with
respect to the three coordinate axes.

∆mbbo = max{xmax − xmin, ymax − ymin, zmax − zmin}

13

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

• Non-proportional scaling: Here the extensions of the objects are adjusted
to the size of the voxel space independently for each of the coordinate
axes. This way the voxel space is used optimally, but the shape of the
objects is distorted. Small differences of the shape in dimensions with
low extension are amplified to a high degree. The scaling factors sx, sy

and sz result from the ratio of the extension of the voxel space and the
extension of the object for each dimension.

sx =
r

xmax − xmin

, sy =
r

ymax − ymin

, sz =
r

zmax − zmin

We store each object normalized with respect to proportional scaling in the
database. Furthermore, we store the scaling factor, so that we can (de)activate
scaling invariance depending on the user’s needs at runtime, as the actual size
of the parts may or may not exert influence on the similarity model.

2.4.2 Translation Invariance

CAD objects are designed and constructed in a standardized position, normal-
ized to the center of the coordinate system. So similarity models for CAD
data should recognize similar parts, independently of their spatial location.
The four, respectively five, tires of a car are similar, although they are located
differently.

Therefore we move each object to a uniform position in the voxel space, so
that the center of the minimal boundings box lies in the origin of the coordinate
system. The corresponding transformation matrix looks like this:

1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

The parameters tx, ty and tz are the coordinates of the center of the minimal
bounding box.

tx =
xmin + xmax

2
, ty =

ymin + ymax

2
, tz =

zmin + zmax

2

We store each object normalized with respect to translation in the database.

14

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

2.4.3 Rotation Invariance

In general, we can apply principal axis transformation in order to achieve in-
variance with respect to rotation. Here, the idea is to map the position of each
object in such a way that the principal axis of each object is parallel to the
coordinate system.

In the case of CAD applications, not all possible rotations are considered,
but only 90◦-rotations. This yields up to 24 different possible positions for each
object. The transformation matrices for 90◦-rotation around the X, Y and Z
axes are listed here:

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 ,

0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 ,

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

2.4.4 Reflection Invariance

Reflected parts, e.g. the right and left front door of a car, should be recognized
as similar as far as design is concerned. If we look at the production, reflected
parts are no longer similar and have to be treated differently.

To reflect an object with respect to the X, Y or Z axis, one of the following
transformation matrices can be used:

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

Taking 90◦-rotations as well as reflection into account, we may obtain up

to 24 · 2 = 48 varying positions. We could achieve 90◦-rotation and reflection
invariance by storing 48 different feature vectors for each object in the database
or by carrying out 48 different permutations of the query object at runtime. As
we want to decide at runtime whether we want to consider reflection invariance
or not, we chose the second variant.

To sum up, a similarity model for CAD data should take translation and
rotation invariances into account whereas reflection and scaling invariances have
to be tunable. Throughout our experiments, we considered invariance with
respect to scaling, translation, reflection, and 90◦-rotation.

15

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

2.5 Spatial Features

After partitioning the data space, we have to determine the spatial features of
the objects for each grid cell depending on the chosen model. In order to do
that we first have to introduce some notations:

The data space is partitioned in each dimension into p grid cells. Thus,
our histogram will consist of k · p3 bins where k ∈ N depends on the model
specifying the kind and number of features extracted from each cell. For a
given object o, let V o = {v ∈ V o

i | 1 ≤ i ≤ p3} be the set of voxels that
represents o where V o

i are the voxels covered by o in cell i. V̄ o ⊆ V o denotes
the set of voxels at the surface of the objects and V̇ o ⊆ V o denotes set of the
voxels inside the object, such that V̄ o ∪ V̇ o = V o and V̄ o ∩ V̇ o = ∅ holds.

Let fo be the computed feature vector of an object o. The i-th value of the
feature vector of object o is denoted by f

(i)
o .

Let r be the number of voxels of the dataspace in each dimension. In order
to ensure a unique assignment of the voxels to a grid cell, we assume that
r
p
∈ N.

2.5.1 The Volume Model

A simple and established approach to compare two objects is based on the
number of the object voxels |V o

i | in each cell i of the partitioning. In the
following, this model is refered to as the volume model. Each cell represents
one dimension in the feature vector of the object. The i-th dimension of the
feature vector (1 ≤ i ≤ p3) of object o can be computed by the normalized
number of voxels of o lying in cell i, formally:

f (i)
o =

|V o
i |

K
where K =

(
r

p

)3

Figure 2.4 illustrates the volume model for the 2-D case.

2.5.2 The Solid-Angle Model

The Solid-Angle method [Con86] measures the concavity and the convexity of
geometric surfaces. It is therefore a good candidate for adequately modelling
geometric shapes and has been used in different approaches to spatial similarity
modelling. In the following, we describe a model that combines the Solid-Angle
approach with our axis-parallel partitioning.

16

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

(a) (b)

Figure 2.5: (a) A sample object with different shapes at surface-points p1 and
p2. (b) Effect of the radius on the Solid-Angle value: The object can be modeled
more accurately when using radius r1 instead of radius r2.

Let Kc,r be a set of voxels that describes a 3-D voxelized sphere with central
voxel c and radius r. For each surface-voxel v̄ of an object o the so called Solid-
Angle value is computed as follows. The voxels of o which are inside Kv̄,r are
counted and divided by the size of Kv̄,r, i.e. the number of voxels of Kv̄,r. The
resulting measure is called the Solid-Angle value Sa(v̄, r) and can be computed
as follows:

Sa(v̄, r) =
|Kv̄,r ∩ V o |
|Kv̄,r |

where

Kv̄,r ∩ V o = {w ∈ Kv̄,r | ∃v ∈ V o : w.x = v.x ∧ w.y = v.y ∧ w.z = v.z}

A small Solid-Angle value Sa(v̄, r) indicates that an object is convex at voxel
v̄. Otherwise, a high value of Sa(v̄, r) denotes a concave shape of an object at
voxel v̄. Figure 2.5(a) illustrates this behavior.

The choice of the radius of the measurement sphere is a crucial parameter.
A particular radius could approximate a given object very well, whereas another
object is not really well approximated at this radius. This effect is visualized
in Figure 2.5(b).

The Solid-Angle values of the cells are transfered into the according his-
togram bins as described in the following. We distinguish between three differ-
ent types of cells:

17

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

Figure 2.6: Computation of the ellipsoids based on their eigen values

1. Cell i contains surface-voxels of object o, i.e. V̄ o
i 6= ∅. The mean of all

Sa-values of the surface-voxels is computed as the feature value of this
cell:

f (i)
o =

1

m

m∑
j=1

Sa(v̄ij , r) where V̄ o
i = {v̄i1 , . . . v̄im}

2. Cell i contains only inside-voxels of object o, i.e. V̄ o
i = ∅ and V o

i 6= ∅.
The feature value of this cell is set to 1 (i.e. f

(i)
o = 1).

3. Cell i contains no voxels of object o, i.e. V o
i = ∅. The value of the

according bin of the histogram is 0 (i.e. f
(i)
o = 0).

2.5.3 The Eigen Value Model

In the following, we introduce a new approach to extract local features which
is based on eigen values. The set of voxels of an object can be considered as a
set of points in the 3-D data space following a particular scattering. The Eigen
Value Model uses this scattering of the voxel sets in each cell of the partitioning
to distinguish the objects by computing the minimum bounding ellipsoid of the
voxel set.

A minimum bounding ellipsoid in the 3-D space can be described by three
vectors (cf. Figure 2.6). In order to compute these vectors, we consider each
voxel v of the object o as a Euclidian vector

~v o =

(
x
y
z

)

18

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

in the 3-D data space and apply principal axis transformation. To determine
the principal axis of the vectors in cell i, we first compute their centroid ~Co

i :

~Co
i =

 xC

yC

zC

 =
1

|V o
i |

|V o
i |∑

j=1

xj

|V o
i |∑

j=1

yj

|V o
i |∑

j=1

zj

After that, for each vector ~v o in cell i, the following translation is carried out:

~v o 7→ ~v o − ~Co
i

Based on these transformed vectors ~v o, the covariance matrix Covo
i for each

cell i can be computed as follows:

Covo
i =

1

|V o
i | − 1

|V o
i |∑

j=1

x2
j

|V o
i |∑

j=1

xjyj

|V o
i |∑

j=1

xjzj

|V o
i |∑

j=1

xjyj

|V o
i |∑

j=1

y2
j

|V o
i |∑

j=1

yjzj

|V o
i |∑

j=1

xjzj

|V o
i |∑

j=1

yjzj

|V o
i |∑

j=1

z2
j

The three eigen vectors ~e j

i (j = 1, 2, 3) of the matrix Covo
i correspond to

the vectors spanning the minimum bounding ellipsoid of the voxel set V o
i . The

eigen values λj
i represent the scaling factors for the eigen vectors (cf. Figure

2.7). Both eigen values and eigen vectors are determined by the following
equation:

Covo
i · ~e

j
i = λj

i ~e j
i

The interesting values that are inserted in the bins of the histogram are the
eigen values which describe the scattering along the principal axis of the voxel
set. These three values can be computed using the characteristic polynomial:

det(Covo
i − λj

i Id) = 0 for j = 1, 2, 3

19

CHAPTER 2. SIMILARITY MODELS FOR VOXELIZED CAD OBJECTS

Figure 2.7: Principal axis of a sample object.

Using this equation we obtain three eigen values which are sorted in de-
scending order in the vector ~λi. The highest value represents the variance
along the first principal axis, the second value represents the variance along
the second principal axis, and the third value represents the variance along the
third principal axis.

For each cell i of the partitioning we compute the vector ~λi of the three
eigen values as described right above and register it in the according bins of
the histogram:

f (i)
o = ~λi =

 λ1
i

λ2
i

λ3
i

Note that for p3 cells we obtain a feature vector with 3 · p3 dimensions.

20

Chapter 3

Cover Sequence Approximation

The three models described in Section 2.5 are based on a complete partition-
ing of the data space into disjoint cells. In this chapter, we adapt a known
model [Jag91, JB91] to voxelized 3-D data which is not restricted to this rigid
space partitioning but rather uses a more flexible object-oriented partitioning
approach. This model is in the following referred to as cover sequence model.

3.1 The Cover Sequence Model

As depicted in Figure 3.1(a) each edge of an object can be extended infinitely
in either direction, to obtain a grid of lines. Each rectangle in this grid is called
a grid primitive, and is located either entirely inside the object, or entirely
outside of the object. Furthermore, any pair of adjacent grid primitives must
also form a rectangle, respectively a cuboid in the 3-D data space. The basic
idea of this model is to find large clusters of grid primitives, called covers, which
approximate the object as good as possible [JB91]. These covers are organized
in a cover sequence which provides a sequential description of the object.

Let o be the object being approximated. The quality of a cover sequence
Sk of some length k ∈ N is measured by the symmetric volume difference Errk

between the object o and the sequence Sk (cf. Figure 3.1(b)). Formally, let the
covers be drawn from the set C of all possible rectangular covers. Then each
unit i of the cover sequence comprises a pair (Ci ∈ C, σi ∈ {+,−}), where “+”
represents set union and “−” represents set difference. The sequence after k
units is:

Sk = (((C0 σ1 C1) σ2 C2) . . . σk Ck)

where C0 is an initial empty cover at the zero point. The symmetric volume

21

CHAPTER 3. COVER SEQUENCE APPROXIMATION

(a) Grid primitives. (b) A cover sequence.

Figure 3.1: The cover sequence model.

difference after k units is:

Errk = | o XOR Sk |

Note that there exists some natural number N such that Sk = o and Errk = 0
for all k ≥ N . At this point an exact description of the object o has been
obtained.

3.2 Approximation

Jagadish and Bruckstein [JB91] suggest two algorithms for the retrieval of a
cover sequence Sk: a branch and bound algorithm with exponential runtime
complexity, and a greedy algorithm with polynomial runtime complexity which
tries to minimize Erri in each step i ≤ k. Throughout our experiments we
used this second algorithm.

Let us call a grid primitive black if it is in the object, and white if it is not.
Also, a grid primitive is in if it is included in the current description of the
object, and out if it is not. Thus, to start with, all grid primitives are either

22

CHAPTER 3. COVER SEQUENCE APPROXIMATION

out-black or out-white. At the end, when an exact description of the object is
obtained, all grid primitives are either in-black or out-white. The total volume
of the grid primitives that are out-black and those that are in-white gives the
error in the current description.

To speed up the retrieval of the cover sequence, not every possible cover
has to be considered in each step, but only those that are not dominated for
addition or subtraction. The notion of domination is defined as follows.

Cover X is said to dominate cover Y for addition iff X contains every out-
black grid primitive in Y , Y contains every out-white grid primitive in X, and
X − Y is either empty or has at least one out-black grid primitive. Cover X
is said to dominate cover Y for subtraction iff X contains every in-white grid
primitive in Y , Y contains every in-black grid primitive in X, and X − Y is
either empty or has at least one in-white grid primitive.

If cover X dominates cover Y for addition or subtraction, we are guaranteed
that the error at the current step is less if cover X is added or subtracted rather
than Y , and that the error will continue to be no greater for all future steps.

The important point is that it is possible, within time proportional to the
perimeter of the cover, to determine whether a cover can be dominated by
another cover, which is shown in [JB91]. This is faster than calculating the
symmetric volume difference for every cover, which takes time proportional to
the volume of the cover.

3.3 Feature Extraction

In [Jag91], Jagadish sketches how a 3-D cover sequence

Sk = (((C0 σ1 C1) σ2 C2) · · · σk Ck)

of an object o, can be transformed into a 6 · k-dimensional feature vector.
Thereby, each cover Ci+1 with 0 ≤ i ≤ k − 1 is mapped onto 6 values in the
feature vector fo in the following way:

f 6i+1
o = x-position of Ci

f 6i+2
o = y-position of Ci

f 6i+3
o = z-position of Ci

f 6i+4
o = x-extension of Ci

f 6i+5
o = y-extension of Ci

f 6i+6
o = z-extension of Ci

23

CHAPTER 3. COVER SEQUENCE APPROXIMATION

If an object o can be described by a sequence Sj with j < k covers and Errj =
0, we assign ((Sj σj+1 C0) · · · σk C0) to Sk. These dummy covers C0 do not
distort our similarity notion (cf. Definition 3), but guarantee that all feature
vectors are of the same dimensionality. Thus we can use spatial index structures
[BKK96, LJF94, BBJ+00] in order to accelerate similarity queries.

Initially, a cover C = (xL, yL, zL, xU , yU , zU) is given by the coordinates of
its corner points. Rather than use these coordinates directly, we apply a few
transformations to them. First, we obtain distinct position and size values.
The position of the box is given in terms of the mean of the L and U corner
points, i.e. the point

(
xL + xU

2
,
yL + yU

2
,
zL + zU

2
)

The size of the box is obtained as the difference between the L and U corner
points, i.e. the triple

(xU − xL, yU − yL, zU − zL)

Thus, we still have six values to store for each cover. However, after this
transformation they respresent the position and size of the cover rather than
the location of the corner points.

Second, the minimal bounding box mbbo of the approximated object o is
used to normalize the positions of the boxes. That is, the center of the bound-
ing box is placed at the origin, and all coordinates are taken with respect to this
origin. This transformation is represented by a shift, which is a triple of con-
stants that has to be subtracted from all the X, Y and Z coordinates respectivly
of the position values of the cover. The size values remain unaffected.

Third, the size of the minimal bounding box mbbo is used to normalize
the positions and sizes of the boxes. For this, the X, Y and Z extensions of
the bounding box are used to divide the X, Y and Z (both size and position)
parameters respectively of the cover. Further, we take the (natural) logarithms
of the normalized size values, thus making them “additive” like the position
values (no logs are reqired for the position values). Then the difference between
two size values provides information about the ratio between these size values.(

ln
a

b

)2

= (ln a− ln b)2 for a, b ∈ R+

This way common distance functions such as the Euclidian distance can be
used to measure the similarity of cover sequences.

24

Chapter 4

Vector Set Representation

4.1 Motivation

As described in Section 3.3 a data object is represented as a feature vector
which consists of values obtained from a cover sequence approximation. For
similarity queries this method yields a major problem. Always comparing the
two covers having the same ranking according to the symmetric volume dif-
ference, does not make sense in all cases. Two objects can be considered very
different, because of the order of their covers, although they are very similar
by intuition. The reason for this effect is that the order of the covers does not
guarantee that the most similar covers due to size and position will be stored in
the same dimensions. Especially for objects generating two or more covers hav-
ing almost the same volume, the intuitive notion of similarity can be seriously
disturbed. Thus, the possibility to match the covers of two compared objects
with more degrees of freedom, might offer a better similarity measure. Figure
4.1 displays a 2-dimensional example of a comparison between a query object
and a very similar database object. The first sequence (cf. Figure 4.1(a) repre-
sents the covers of the query object in the order given by the symmetric volume
difference. Let us note that the covers C2, C3 and C4 are not very similar to
the corresponding covers of the database object and therefore, the calculated
similarity is relatively weak. By rearranging the order of these covers the to-
tal distance between the query object and the database object is considerably
decreasing, which is displayed in Figure 4.1(b). Thus, the new order preserves
the similarity between the objects much better.

To overcome the problem, the author in [Jag91] proposes to generate several
good representations of the query object and then process a query for each of
the representations. Afterwards the union of the returned database objects is

25

CHAPTER 4. VECTOR SET REPRESENTATION

Figure 4.1: Examples demonstrating the advantage of free permutations.

26

CHAPTER 4. VECTOR SET REPRESENTATION

taken as a result. We can obtain different representations by permuting the
order of the found covers and choose the most “promising” orderings to create
the query vectors. Though, the method may offer reasonable results in many
cases, there is no guarantee that the ordering offering the minimum distance is
included within this selection. Thus, the whole similarity measure is dependent
on the criteria used to select the most “promising” orderings. Since there is no
well defined selection criterion known so far, the solution does not necessarily
offer a precisely defined similarity measure.

Another solution for the problem is to consider all possible permutations.
Since the distance between two objects can now be considered as the minimum
distance over all possible orderings, the distance is defined precisely this way.

Definition 4 (minimum Euclidian distance under permutation)
Let exch : N×N×R(k·d) → R(k·d) be a function, where exch(i, j, ~x) exchanges the
d successive components beginning with dimension i ·d+1 (0 ≤ i ≤ k−1) with
the d successive components beginning with dimension j ·d+1(0 ≤ j ≤ k−1) of

a vector ~x ∈ R(k·d). Let Exch : R(k·d) → 2R(k·d)
be the function, that generates

the set of all vectors that can be generated by applying exch(i, j, ~x) arbitrary
many times to a vector ~x using any combination for i and j.

Then the minimum Euclidian distance under permutation dπ-euclid: R(k·d)×
R(k·d) → R is defined as follows:

dπ-euclid(~x, ~y) = min
~z∈Exch(~y)

{deuclid(~x, ~z)}

With a growing number of describing covers k, the processing time of con-
sidering all possible permutations increases exponentially, since there are k!
many permutations. With computation cost rising this rapidly, it is obvious
that the description length k has to be kept low, which is not acceptable for
all applications.

To guarantee that the permutation with the minimal distance is used, our
approach does not work with one single feature vector, but with a set of feature
vectors in lower dimensions. By treating the data objects as sets of d-dimen-
sional feature vectors with a maximum cardinality of k, we introduce a new
model for representing data objects in similarity search systems, the so called
vector set model. Having obtained cover sequence approximations for our ob-
jects with a maximal length of k as described in Chapter 3, we represent each
object by a vector set X ⊂ Rd with |X| ≤ k.

The representation of extracted features as a set of vectors is a generalization
of the use of just one large feature vector. It is always possible to restrict the
model to a feature space, in which a data object will be completely represented

27

CHAPTER 4. VECTOR SET REPRESENTATION

by just one feature vector. But in our application the possibilities of vector
set representation allow us to model the dependencies between the extracted
features more precisely. As the development of conventional database systems
in the recent two decades has shown, the use of more sophisticated ways to
model data can enhance both the effectiveness and efficiency for applications
using large amounts of data. In our application the vector set representation is
able to avoid the problems that occur by storing a set of covers according to a
strict order. Therefore, it is possible to compare two objects more intuitively,
causing a relatively small rise of calculation cost compared to the distance
calculation in the one-vector model. Another advantage of our new approach is
the better storage utilization. It is not necessary to force objects into a common
size, if they are represented by sets of different cardinality. For our current
application there is no need for dummy covers to fill up the feature vectors. If
the quality of the approximation is optimal with less than the maximum number
of covers, only this smaller number of vectors has to be stored and loaded. In
the case of a one-vector representation avoiding dummies is not possible without
further modifications of the access structures used. Furthermore, we are able
to distinguish between the distance measure used on the feature vectors of a
set and the way we combine the resulting distances between the single feature
vectors. For example, this possibility might be useful when defining partial
similarity, where it is only necessary to compare the closest i < k vectors of a
set.

In the following sections, we will discuss the concept of vector set represen-
tation in detail, with the goal of providing a high quality distance measure for
vector-set-represented data and an algorithm for its efficient computation.

4.2 Distance Measures on Sets of Objects

There are already several distance measures proposed on sets of objects. Ideally
a distance measure has the properties of a metric.

Definition 5 (metric)
Given a nonempty set of objects O, a metric is a mapping d : O×O → R such
that for all x, y, z ∈ O:

1. d(x, y) ≥ 0 (definity)

2. d(x, y) = 0 ⇔ x = y (reflexivity)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

28

CHAPTER 4. VECTOR SET REPRESENTATION

In [EM97] the authors survey the following distance functions, which are
computable in polynomial time: the Hausdorff distance, the sum of minimal
distances, the (fair-)surjection distance and the link distance. The Hausdorff
distance is a metric, but does not seem to be suitable as a similarity measure,
because it relies too much on the extreme positions of the elements of both
sets. The last three distance measures are suitable for modelling similarity,
but are not metric. This circumstance makes them unattractive, since there
are only limited possibilities for processing similarity queries efficiently when
using a non-metric distance function. In [EM97] the authors also introduce a
method for expanding the distance measures into metrics, but as a side effect
the complexity of distance calculation becomes exponential. Furthermore, the
possibility to match several elements in one set to just one element in the com-
pared set, is questionable when comparing sets of covers like in our application.

4.3 The Minimal Matching Distance

A distance measure on vector sets that demonstrates to be suitable for defining
similarity in our application is based on the minimal weight perfect matching
of sets. This well known graph problem can be applied here. First, let us
introduce some notations.

Definition 6 (weighted complete bipartite graph)
A graph G = (V, E) consists of a (finite) set of vertices V and a set of edges
E ⊆ V × V . A weighted graph is a graph G = (V, E) together with a weight
function w : E → R. A bipartite graph is a graph G = (X ∪ Y,E) with
X ∩ Y = ∅ and E ⊆ X × Y . A bipartite graph G = (X ∪ Y), E) is called
complete if E = X × Y .

Definition 7 (perfect matching)
Given a bipartite graph G = (X ∪Y,E) a matching of X to Y is a set of edges
M ⊆ E such that no two edges in M share an endpoint, i.e.

∀(x1, y1), (x2, y2) ∈ M : x1 = x2 ⇔ y1 = y2.

A matching M of X to Y is maximal if there is no matching M ′ of X to Y
such that |M | < |M ′|. A maximal matching M of X to Y is called a complete
matching if |M | = min{|X|, |Y |}. In the case |X| = |Y | a complete matching
is also called a perfect matching.

29

CHAPTER 4. VECTOR SET REPRESENTATION

Definition 8 (minimal weight matching)
Given a weighted bipartite graph G = (X ∪ Y, E) with the weight function
w : E → R the weight w(M) of a matching M of X to Y is the sum of the
weights of the edges in M .

w(M) =
∑

(x,y)∈M

w(x, y)

A matching M of X to Y is a minimal weight matching if there is no matching
M ′ of X to Y such that w(M) > w(M ′).

In our application we build a complete bipartite graph G = (X ′∪Y ′, X ′×Y ′)
between two vector sets X, Y ⊂ Rd with |X|, |Y | ≤ k. We set X ′ = X × {1}
and Y ′ = Y × {2} in order to fulfill the property X ′ ∩ Y ′ = ∅. The weight of
each edge ((~x, 1), (~y, 2)) ∈ X ′ × Y ′ in this graph G is defined by the distance
dist(~x, ~y) between the vectors ~x ∈ X and ~y ∈ Y . For example the Euclidian
distance can be used here. A perfect matching is a subset M ⊆ X ′ × Y ′ that
connects each ~x ∈ X to exactly one ~y ∈ Y and vice versa. A minimal weight
perfect matching is a matching with maximum cardinality and a minimum
sum of weights of its edges. Since a perfect matching can only be found for sets
of equal cardinality, it is necessary to introduce weights for unmatched nodes
when defining a distance measure.

Definition 9 (enumeration of a set)
Let S be any finite set of arbitrary elements. Then π is a mapping that assigns
s ∈ S a unique number i ∈ {1, . . . |S|}. This is written as π(S) = (s1, . . . s|S|).
The set of all possible enumerations of S is named Π(S).

Definition 10 (minimal matching distance)
Let V ⊂ Rd and let dist : Rd × Rd → R be a distance function between two
d-dimensional feature vectors. Let X, Y ∈ 2V with |X| = m, X = {~x1, . . . ~xm},
|Y | = n, Y = {~y1, . . . ~yn}. Furthermore, let w : V → R be a weight function
for the unmatched elements. Then the minimal matching distance dw,dist

mm :
2V × 2V → R is defined as follows: If |X| = m ≥ n = |Y |, set

dw,dist
mm (X, Y) = min

π∈Π(X)

(
n∑

i=1

dist(~xπ(i), ~yi) +
m∑

l=n+1

w(~xπ(l))

)

Otherwise, set dw,dist
mm (X, Y) = dw,dist

mm (Y,X).

30

CHAPTER 4. VECTOR SET REPRESENTATION

The weight function w : V → R provides the penalty given to every unas-
signed element of the set having larger cardinality. Let us note that minimal
matching distance is a specialization of the netflow distance which is intro-
duced in [RB00]. The authors in [RB00] show that the netflow distance is a
metric and that it is computable in polynomial time. Therefore, we derive the
following lemma without further proof.

Lemma 1 Let V ⊂ Rd. The minimal matching distance dw,dist
mm : 2V × 2V → R

is a metric if the underlying distance function dist : Rd × Rd → R is a metric
and the weight function w : V → R meets the following conditions for all
~x, ~y ∈ V :

1. w(~x) > 0

2. w(~x) + w(~y) ≥ dist(~x, ~y)

The minimum Euclidian distance under permutation can be derived from
the minimal matching distance. By selecting the squared Euclidian distance
as distance measure on V and taking the squared Euclidian norm as weight
function, the distance value calculated by the minimal matching distance is
the same as the squared value of the minimum Euclidian distance under per-
mutation. This follows exactly from the definitions of both distance measures.
Let us note that it is necessary to extract the square root from this distance
value to preserve the metric character.

4.4 The Kuhn-Munkres Algorithm

Though it was shown in [RB00] that the netflow distance can be calculated in
polynomial time, it is not obvious how to achieve it. Since we are only interested
in the minimal matching distance, it is sufficient to calculate a minimal weight
perfect matching. Therefore, we apply the method proposed by Kuhn [Kuh55]
and Munkres [Mun57].

For the remainder of this section we assume that we are given a weighted
complete bipartite graph G = (X ∪ Y,X × Y) with the weight function w :
X × Y → R. As we can provide weights for unmatched elements, we assume
w.l.o.g. that X and Y have equal cardinality k.

The goal of the Kuhn-Munkres algorithm is to find a maximal weight match-
ing in G. To obtain a minimal weight matching the following trick can be used.
We replace the weight function w by the function w′ with w′(x, y) = −w(x, y)
and apply the algorithm to G and w′.

31

CHAPTER 4. VECTOR SET REPRESENTATION

Figure 4.2: An example of a feasible vertex labeling and an equality subgraph.

Definition 11 (M-alternating path)
Given a matching M of X to Y an edge (x, y) ∈ X × Y is called matched
if (x, y) ∈ M , unmatched otherwise. An M -alternating path starts with an
unmatched edge, then alternates between matched and unmatched edges and
ends with an unmatched edge.

If the edges of an M -alternating path are flipped in M , i.e. matched edges
become unmatched and vice versa, a matching M ′ is obtained with |M ′| =
|M |+ 1.

Definition 12 (feasible vertex labeling)
A feasible vertex labeling in G is a function l : X ∪ Y → R such that

∀x ∈ X, y ∈ Y : l(x) + l(y) ≥ w(x, y)

It is always possible to find a feasible vertex labeling. One way to do this
is to set l(y) = 0 for all y ∈ Y and for each x ∈ X take the maximum value in
the corresponding row of edge weights, i.e.

l(x) = maxy∈Y w(x, y) for x ∈ X
l(y) = 0 for y ∈ Y

An example of a feasible vertex labeling is depicted in Figure 4.2. If l is a
feasible labeling, we denote by Gl the subgraph of G which contains those edges
where l(x) + l(y) = w(x, y), together with the endpoints of these edges. This
graph Gl is called the equality subgraph for l. In Figure 4.2 the edges of Gl are
shaded. For S ⊆ X we denote by J(Gl, S) the set {y ∈ Y | x ∈ S∧ (x, y) ∈ Gl}
of all vertices in Y which are adjacent to the vertices in S.

32

CHAPTER 4. VECTOR SET REPRESENTATION

Lemma 2 If l is a feasible vertex labeling for G, and M is a perfect matching
of X to Y with M ⊆ Gl, then M is a maximal weight perfect matching of X
to Y .

Proof: We must show that no other complete matching can have weight
greater than M . Let any complete matching M ′ of X to Y be given. Then

w(M ′) =
∑

(x,y)∈M ′

w(x, y)

≤
∑

(x,y)∈M ′

(l(x) + l(y)) (feasibility of l)

=
∑

(x,y)∈M

(l(x) + l(y)) (all l(x), l(y) summed in either matching)

=
∑

(x,y)∈M

w(x, y) (since M ⊆ Gl)

= w(M)

�
Thus the problem of finding an maximal weight perfect matching is reduced

to the problem of finding a feasible vertex labeling whose equality subgraph
contains a perfect matching of X to Y . Using this result, the Kuhn-Munkres
algorithm (also known as the Hungarian method) works like this:

1. Start with an arbitrary feasible vertex labeling l, determine Gl, and
choose an arbitrary matching M in Gl.

2. If M is complete for G, then M is optimal. Stop. Otherwise, there is
some unmatched x ∈ X. Set S = {x} and T = ∅.

3. If J(Gl, S) 6= T , go to step 4. Otherwise, J(Gl, S) = T . Find

αl = min
x∈S,y∈Y \T

{l(x) + l(y)− w(x, y)}

and construct a new labeling l′ by

l′(v) =

l(v)− αl for v ∈ S
l(v) + αl for v ∈ T
l(v) otherwise

Note that αl > 0 and J(G′
l, S) 6= T . Replace l by l′ and Gl by G′

l.

33

CHAPTER 4. VECTOR SET REPRESENTATION

4. Choose a vertex y in J(Gl, S), not in T . If y is matched in M , say with
z ∈ X, replace S by S∪{z} and T by T∪{y}, and go to step 3. Otherwise,
there will be an M -alternating path from x to y, and we may use this
path to find a larger matching M ′ in Gl. Replace M by M ′ and go to
step 2.

When necessary, edges are added to the equality subgraph Gl by construct-
ing a new feasible labeling in step 3. This way a perfect matching will eventually
be found. Since there are at most k phases in which an M -alternating path is
constructed and each phase can be computed in O(k2) the all over complexity
of a distance calculation using the method of Kuhn and Munkres is O(k3) in
the worst case. Let us note that for larger numbers of k this is far better than
the previously mentioned method on k! many permutations.

34

Chapter 5

Efficient Query Processing on
Vector Set Data

Though we discussed the time for a single distance calculation between vector-
set-represented objects in Section 4.2, the problem of efficiently answering simi-
larity queries in large databases is still open. Since it is necessary here, to locate
the objects belonging to the result in comparably short time, the use of index
structures that avoid comparing a query object to the complete database is
mandatory. For one-vector-represented data objects there exists a wide variety
of index structures that are suitable for answering similarity queries efficiently
like the the TV-tree [LJF94], the X-tree [BKK96] or the IQ-tree [BBJ+00].
But unfortunately, those index structures cannot be used directly to retrieve
vector-set-represented objects.

To accelerate similarity queries on vector-set-represented objects, the sim-
plest approach is the use of more general access structures. Since the minimal
matching distance is a metric for the right choice of distance and weight func-
tion, the use of index structures for metric objects like the M-tree [CPZ97]
offers a good possibility here. Another approach is the use of the above men-
tioned high dimensional index structures, for querying subtasks of the complete
similarity query.

5.1 Query Types

There are two types of queries that are relevant with respect to similarity
search: similarity range queries and k-nearest neighbor queries (k-nn queries).
We provide formal definitions for these fundamental similarity query types.
Let O be the domain of the objects that may occur as database objects or

35

CHAPTER 5. EFFICIENT QUERY PROCESSING ON VECTOR SET DATA

query objects. Let simdist : O × O → R be a similarity distance function (cf.
Definition 3). By DB ⊆ O, let us denote an actual database.

5.1.1 Similarity Range Queries

We specify similarity range queries by a query object q and a range value ε,
and the answer set is defined to contain all the objects from the database that
have a distance to the query object q of less than or equal to ε:

Definition 13 (similarity range query)
For a query object q and a query range ε, the similarity range query returns
the set:

simq(ε) = {o ∈ DB | simdist(o, q) ≤ ε}

From a geometric point of view, the given distance function and the range
value ε define a region around the query object q. Thus, the similarity range
query reports all data objects which are contained in this region. Processing
range queries on a multidimensional access method is performed as follows: The
search algorithm starts from the root and then traverses the tree recursively.
At each directory node, the entries (Minimal Bounding Boxes) which intersect
the query region are identified and the search is directed downwards. At data
nodes, all objects which are contained in the query region are finally reported.

Note that for the similarity range query, the distance values of the resulting
objects is bounded by the query range ε, but the number of answers is previ-
ously unknown. The result may be empty if no object has a similarity distance
to the query object that is less or equal to the query range, and it may enclose
the overall database if no object has a distance to the query object that is
greater than the query range.

5.1.2 k-Nearest Neighbor Queries

Since similarity distance functions are quite abstract, the user must be expe-
rienced with typical similarity distances in order to specify useful similarity
range queries. This is the reason why k-nearest neighbor queries are becoming
more and more important for similarity search in large databases of complex
objects. The k-nearest neighbor query retrieves, for any query object, the k
most similar objects from the database and can be defined as follows:

Definition 14 (k-nearest neighbor query)
For a query object q ∈ O and a query parameter k, the k-nearest neighbor
query returns the set NNq(k) ⊆ DB that exactly contains k objects from the

36

CHAPTER 5. EFFICIENT QUERY PROCESSING ON VECTOR SET DATA

database, and for which the following condition holds:

∀o1 ∈ NNq(k), o2 ∈ DB \ NNq(k) : simdist(o1, q) ≤ simdist(o2, q)

Note that possibly several objects in the database exist which have the
same distance to the query object as the k-th object in the answer set. In this
case, the k-th object is a non-deterministic selection of one of those equally
distanced objects. An approach to process k-nearest neighbor queries available
from the literature is the similarity ranking algorithm proposed in [HS95] which
can easily be adapted to process k-nearest neighbor queries by ranking exactly
k data objects. The basic idea of this algorithm is to visit nodes in the order of
their minimum distance from the query object to any possible object inside a
node. The algorithm is generally designed for multidimensional access methods
that hierarchically manage page regions.

5.2 Multi-Step Query Processing

To speed up similarity search in presence of complex similarity distance func-
tions like our minimal matching distance, the use of a multi-step query process-
ing architecture is recommended. Following this paradigm, a feature distance
function (also called filter distance function) is employed that serves as a ap-
proximation of the complex object distance function. One or more filter steps
produce sets of candidates that are exactly evaluated in one or more subsequent
refinement steps. Refinement steps discard false positive candidates (false hits),
but do not reconstruct false negatives (false drops) that have been dismissed by
the filter step. Therefore, the crucial correctness requirement for any filter step
is to prevent false drops. In other words, no actual result may be dismissed
from the set of candidates. The lower-bounding property of filter and object
distance functions is a criterion to ensure the correctness of a filter step.

Definition 15 (lower-bounding property)
Let O be a set of objects. A feature distance function df and an object distance
function do fulfill the lower-bounding property if df underestimates do in any
case, i.e. for all objects o1, o2 ∈ O:

df (o1, o2) ≤ do(o1, o2)

An algorithm that obeys this principle has been developed for k-nearest
neighbor queries [SK98]. The algorithm is proven to be optimal, i.e. it pro-
duces only the minimum number of candidates. Thus, expensive evaluations

37

CHAPTER 5. EFFICIENT QUERY PROCESSING ON VECTOR SET DATA

Figure 5.1: Optimal multi-step k-nearest neighbor algorithm.

Figure 5.2: Optimal multi-step query processor for k-nearest neighbor search.

38

CHAPTER 5. EFFICIENT QUERY PROCESSING ON VECTOR SET DATA

Figure 5.3: Incremental ranking query processing on R-trees.

of unnecessary candidates are avoided. Figure 5.1 provides a pseudocode de-
scription of the procedure whereas in Figure 5.2, the algorithm is illustrated
schematically.

The algorithm has two basic components: By the incremental ranking query
on the underlying access method, candidates are iteratively generated in as-
cending order according to their feature distance df to the query object. The
second major component is the result list that manages the k nearest neighbors
of the query object q within the current candidate set, keeping step with the
candidate generation. The current k-th distance is held in dmax which is set to
infinity until the first k candidates are retrieved from the index and evaluated.
The termination is controlled by the refinement step in order to guarantee the
minimum number of candidates

For the incremental ranking query an algorithm derived from [HS95] is used.
Pseudocode is given in Figure 5.3. Incremental similarity ranking is a similarity
query type that corresponds to a give-me-more facility. After an initialization,
the ranked objects may be retrieved by a sequence of getnext calls. Formally,

39

CHAPTER 5. EFFICIENT QUERY PROCESSING ON VECTOR SET DATA

performing an incremental similarity ranking means the partial materialization
of a q-ranking which may be defined as follows.

Definition 16 (q-ranking)
Let O be a set of objects. Given a query object q ∈ O and a database DB ⊆ O
containing N = |DB| objects, a q-ranking of the database DB is a bijection
rankedq : IN → DB that maps the index set IN = {1, . . . N} dq-monotonously
onto the database DB, i.e. ascendingly ordered by the distance of the objects
to the query object q.

We simplify our notation by writing rankedq(i) = oi for the object oi that is
ranked to position i and denote the image of the index set Ik by rankedq(Ik) =
{o1, . . . ok}. Using this abbreviation, the dq-monotony appears as follows:

∀i, j ∈ IN : i < j ⇒ d(oi, q) ≤ d(oj, q)

When processing incremental similarity ranking queries, the object ok =
rankedq(k) is reported as response to the k-th getnext call. Note that the q-
ranking is not totally determined if some objects share the same distance to
the query object q.

5.3 A Filter Step for Vector Set Data

In the following we will introduce a filter step for query processing on vector-
set-represented data objects that is based on the relation between a set of
d-dimensional vectors and its extended centroid.

Definition 17 (extended centroid)
Let V ⊂ Rd and ~ω ∈ Rd \ V . Let X ∈ 2V be a vector set with |X| ≤ k and
X = {~x1, . . . ~x|X|} Then the extended centroid Ck,~ω(X) is defined as follows:

Ck,~ω(X) =

∑|X|
i=1 ~xi + (k − |X|) · ~ω

k

Note how the vector ~ω is used as a “dummy” vector to fill up vector sets
having a cardinality of less than k.

Lemma 3 Let V ⊂ Rd and ~ω ∈ Rd \ V . Let w~ω : V → R, w~ω(~x) = ‖~x− ~ω‖2,
be a weight function. Furthermore, let X, Y ∈ 2V , X = {~x1, . . . ~x|X|}, Y =
{~y1, . . . ~y|Y |} be two vector sets with |X|, |Y | ≤ k, let Ck,~ω(X), Ck,~ω(Y) be their

40

CHAPTER 5. EFFICIENT QUERY PROCESSING ON VECTOR SET DATA

extended centroids and let ddeuclid,w~ω
mm : 2V × 2V → R be the minimal match-

ing distance using w~ω as a weight function defined on V . Then the following
inequality holds:

k · ‖Ck,~ω(X)− Ck,~ω(Y)‖2 ≤ ddeuclid,w~ω
mm (X, Y)

Proof: Let π be the enumeration of the indices of X that groups the xi

to yi according to the minimum weight perfect matching. We assume w.l.o.g.
|X| = m ≥ n = |Y |.

k · ‖Ck,~ω(X)− Ck,~ω(Y)‖2

= k · ‖
∑m

i=1 ~xπ(i)+(k−m)·~ω
k

−
∑n

i=1 ~yi+(k−n)·~ω
k

‖2

= ‖
∑m

i=1 ~xπ(i) −
∑n

i=1 ~yi − (m− n) · ~ω‖2

= ‖
∑n

i=1 ~xπ(i) −
∑n

i=1 ~yi +
∑m

i=n+1 ~xπ(i) −
∑m

i=n+1 ~ω‖2

tri. ineq.
≤ ‖

∑n
i=1(~xπ(i) − ~yi)‖2 + ‖

∑m
i=n+1(~xπ(i) − ~ω)‖2

tri. ineq.
≤

∑n
i=1 ‖~xπ(i) − ~yi‖2 +

∑m
i=n+1 ‖~xπ(i) − ~ω‖2

=
∑n

i=1 ‖~xπ(i) − ~yi‖2 +
∑m

i=n+1 w~ω(~xπ(i))

= ddeuclid,w~ω
mm (X, Y)

�
The lemma proves that the Euclidian distance between the extended cen-

troids multiplied with the cardinality of the larger set is a lower bound (cf.
Definition 15) for the minimal matching distance under the named precon-
ditions. Therefore, when computing e.g. ε-range queries, we do not need to
examine objects whose extended centroids have a distance to the query object
q that is larger than ε/k. A good choice of ~ω for our application is ~0, since it
has the shortest average distance within the position and has no volume. Since
there are no covers having no volume in any data object, the conditions for the
metric character of minimum matching distance are satisfied.

5.4 Implementation

To implement the filter step, we store the extended centroids in a 6-dimen-
sional X-tree [BKK96]. The X-tree (eXtended node tree) is an index structure
supporting efficient query processing of high-dimensional data. The goal is to

41

CHAPTER 5. EFFICIENT QUERY PROCESSING ON VECTOR SET DATA

support not only point data but also extended spatial data and therefore, the
X-tree uses the concept of overlapping regions. It is crucial to avoid overlap in
the directory in order to improve the indexing of high-dimensional data. The
X-tree therefore avoids overlap whenever it is possible without allowing the
tree to degenerate; otherwise, the X-tree uses extended variable size directory
nodes, so-called supernodes. In addition to providing a directory organization
which is suitable for high-dimensional data, the X-tree uses the available main
memory more efficiently in comparison to using a cache.

The X-tree may be seen as a hybrid of a linear array-like and a hierarchical
directory. It is well established that in low dimensions the most efficient orga-
nization of the directory is a hierarchical organization. The reason is that the
selectivity in the directory is very high which means that, e.g. for point queries,
the number of required page accesses directly corresponds to the height of the
tree. This, however, is only true if there is no overlap between directory rect-
angles which is the case for a low dimensionality. It is also reasonable, that for
very high dimensionality a linear organization of the directory is more efficient.
The reason is that due to the high overlap, most of the directory if not the
whole directory has to be searched anyway. If the whole directory has to be
searched, a linearly organized directory needs less space and may be read much
faster from disk than a blockwise reading of the directory. For medium dimen-
sionality, an efficient organization of the directory would probably be partially
hierarchical and partially linear. The problem is to dynamically organize the
tree such that portions of the data which would produce high overlap are or-
ganized linearly and those which can be organized hierarchically without too
much overlap are dynamically organized in a hierarchical form. The algorithms
used in the X-tree are designed to automatically organize the directory as hi-
erarchical as possible, resulting in a very efficient hybrid organization of the
directory.

The overall structure of the X-tree is presented in Figure 5.4. The data
nodes of the X-tree contain rectilinear minimum bounding rectangles (MBRs)
together with pointers to the actual data objects, and the directory nodes con-
tain MBRs together with pointers to sub-MBRs. The X-tree consists of three
different types of nodes: data nodes, normal directory nodes, and supernodes.
Supernodes are large directory nodes of variable size (a multiple of the usual
block size). The basic goal of supernodes is to avoid splits in the directory
that would result in an inefficient directory structure. The alternative to using
larger node sizes are highly overlapping directory nodes which would require
to access most of the son nodes during the search process. This, however, is
more inefficient than linearly scanning the larger supernode. The X-tree only

42

CHAPTER 5. EFFICIENT QUERY PROCESSING ON VECTOR SET DATA

Figure 5.4: Structure of the X-tree.

consists of larger nodes where actually necessary. As a result, the structure of
the X-tree may be rather heterogeneous as indicated in Figure 5.4.

Since this index structure provides high performance for similarity queries,
it offers an efficient way to determine the keys of the candidate sets of feature
vectors during the filter step. Afterwards we load the vector sets themselves
to determine the membership of the object within the result. Since there exist
established algorithms for ε-range [KSF+96] and k-nearest neighbor queries
[SK98] using filter steps, the method is able to speed up both kinds of queries.

43

Chapter 6

Experimental Evaluation

In this chapter, we present the results of an exhaustive evaluation based on
nearest neighbor queries and clustering. We also show how the use of the
hierarchical clustering algorithm OPTICS (Ordering Points To Identify the
C lustering S tructure) [ABKS99] is applicable for a more objective evaluation
of similarity models than sample k-nearest neighbor queries.

6.1 Data Sets

We evaluated the three proposed models on the basis of two real-world datasets.
The first one – in the following refered to as Car Dataset – contains approx-
imately 200 CAD objects from a German car maufacturer. The Car Dataset
contains several groups of intuitively similar objects, e.g. a set of tires, doors,
fenders, engine blocks and kinematic envelopes of seats.

The second dataset contains 5,000 CAD objects from an American aircraft
producer and in the following is called Aircraft Dataset. This dataset contains
many small objects (e.g. nuts, bolts, etc.) and a few large ones (e.g. wings).

For the volume model and the solid-angle model, we used a raster resolu-
tion of r = 30. Thus, |V o| ranges from 1 to 303 = 27, 000 for each object o.
Furthermore, the data space is partitioned into p = 3 cells in each dimension.
We retrieve 33 = 27-dimensional feature vectors for the volume model and the
solid-angle model. The eigen value model yields feature vectors of dimension-
ality 3 · 33 = 81. Using the cover sequence model and the vector set model, the
data space of both datasets contains objects represented as voxel approxima-
tions using a raster resolution of r = 15. Here, |V o| ranges from 1 to 153 = 3375
for each object o. These values were optimized to the quality of the evaluation
results.

44

CHAPTER 6. EXPERIMENTAL EVALUATION

6.2 Methods for Evaluating the Effectiveness

of Similarity Models

In general, similarity models can be evaluated by computing k-nearest neighbor
queries. A drawback of this evaluation approach is that the quality measure
of the similarity model depends on the results of few similarity queries and,
therefore, on the choice of the query objects. A model may perfectly reflect
the intuitive similarity according to the chosen query objects and would be
evaluated as “good” although it produces disastrous results for other query
objects. As a consequence, the evaluation of similarity models with sample
k-nn queries is subjective and error-prone.

A better way to evaluate and compare several similarity models is to apply
a clustering algorithm. Clustering groups a set of objects into classes where
objects within one class are similar and objects of different classes are dissimilar
to each other. The result can be used to evaluate which model is best suited
for which kind of objects.

We evaluated our models using both approaches. In the following, we first
discuss the results of the evaluation based on k-nn queries (see Section 6.2.1).
In Section 6.2.2 we then evaluate our models using the hierachical clustering
algorithm OPTICS [ABKS99].

6.2.1 k-Nearest Neighbor Queries

The notion of k-nn queries has been defined in Section 5.1. We evaluated
the three models described in Section 2.5 using k-nn queries with k = 5. We
performed the 5-nn queries on the Car Dataset and evaluated the resulting
objects according to our intuitive notion of similarity.

The results of a 5-nn query for the volume model and the solid-angle model
are presented in Figure 6.1. We achieved satisfying results for each model
depending on the query object. For a tire, for example, the volume model
performs very well, yielding objects that are intuitively very similar to the
query object (cf. Figure 6.1(a)). Comparably good results are also produced
by the solid-angle model for a part of the fender (cf. Figure 6.1(b)).

Although all three models deliver rather accurate results for the chosen
query objects, we also see in Figure 6.1 that these results are delusive. Figure
6.1(c) shows a nearest neighbor query for an object which belongs to a cluster
(cf. Figure 6.9), i.e. there exist several similar parts to this object. The volume
model does not recognize this. Furthermore, there might be objects where a
nearest neighbor query does not yield any intuitively similar parts (cf. Figure

45

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.1: Results of sample 5-nn queries. The particular distances to the
query object are depicted below each object.

6.1(d)). Obviously, we should not discard a similarity model if the chosen
query object belongs to noise. This confirms the assumption that the method
of evaluating similarity models using several k-nn queries is subjective and
error-prone, due to its dependency on the choice of the query objects.

In the next section, we introduce hierarchical clustering in order to overcome
the above described difficulties.

6.2.2 Clustering

A more objective way to evaluate and compare several similarity models is to
apply a clustering algorithm. Clustering groups a set of objects into classes

46

CHAPTER 6. EXPERIMENTAL EVALUATION

where objects within one class are similar and objects of different classes are
dissimilar to each other. The result can be used to evaluate which model is best
suited for which kind of objects. In addition, using clustering the evaluation of
the models is based on the whole data set and not only on few sample objects.

For evaluation we used the density-based, hierarchical algorithm OPTICS
[ABKS99]. The algorithm is similar to hierarchical Single-Link clustering meth-
ods [JD88] and is an extension of the clustering algorithm DBSCAN [EKSX96].

We choose OPTICS due to the following reasons. First, OPTICS is – in
contrast to most other algorithms – relatively insensitive to its two input pa-
rameters. The authors in [ABKS99] state that the input parameters just have
to be big enough to retrieve good results. Second, OPTICS is a hierarchical
clustering method which yields more information about the cluster structure
than a method that computes a flat partitioning of the data (e.g. k-means
[McQ67]).

The output of OPTICS is a linear ordering of the database objects min-
imizing a binary relation called reachability which is in most cases equal to
the minimum distance of each database object to one of its predecessors in
the ordering. This idea is similar to the Single-Link method but instead of
a dendrogram, the resulting reachability-plot is much easier to analyse. The
reachability values can be plotted for each object of the cluster-ordering com-
puted by OPTICS. Valleys in this plot indicate clusters: objects having a small
reachability value are more similar to their predecessor objects than objects
having a higher reachability value.

The reachability plot generated by OPTICS can be cut at any level ε parallel
to the abscissa. It represents the density-based clusters according to the density
threshold ε: A consecutive subsequence of objects having a smaller reachability
value than ε belong to the same cluster. An example is presented in Figure
6.2: For a cut at the level ε1 we retrieve two clusters denoted as A and B.
Compared to this clustering, a cut at level ε2 would yield three clusters. The
cluster A is split into two smaller clusters denoted as A1 and A2 and cluster
B has decreased its size. Usually, for evaluation purposes, a good value for ε
would yield as many clusters as possible.

6.3 The OPTICS Algorithm

In this section we provide a detailed description of the clustering algorithm
OPTICS. The algorithm is based on the idea of density-based clustering. We
give formal definitions of the underlying concepts and discuss the effects of
parameter settings on the resulting cluster ordering.

47

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.2: Reachability plot (right) computed by OPTICS for a sample 2-D
dataset (left).

6.3.1 Density-Based Clustering

The key idea of density-based clustering is that for each object of a cluster the
neighborhood of a given radius ε has to contain at least a minimum number
of objects MinPts, i.e. the cardinality of the neighborhood has to exceed a
threshold. The formal definitions for this notion of a clustering are shortly
introduced in the following.

Definition 18 (directly density-reachable)
Object p is directly density-reachable from object q with regard to ε and
MinPts in a set of objects O if

1. p ∈ Nε(q)

2. |Nε(q)| ≥ MinPts

The condition |Nε(q) | ≥ MinPts is called the core object condition. If this
condition holds for an object p, then we call p a core object. Only from core
objects other objects can be directly density-reachable.

Definition 19 (density-reachable)
An object p is density-reachable from an object q with regard to ε and MinPts
in the set of objects O, if there is a chain of objects p1, . . . pn with p1 = q, pn = p,
such that pi ∈ O and pi+1 is directly density-reachable from pi with regard to
ε and MinPts.

48

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.3: Density-reachability and connectivity.

Density-reachability is the transitive hull of direct density-reachability. This
relation is not symmetric in general. Only core objects can be mutually density-
reachable.

Definition 20 (density-connected)
Object p is density-connected to object q with regard to ε and MinPts in
the set of objects O, if there is an object o ∈ O such that both p and q are
density-reachable from o with regard to ε and MinPts in O.

Density-connectivity is a symmetric relation. Figure 6.3 illustrates the defi-
nitions on a sample database of 2-dimensional points from a vector space. Note
that the above definitions only require a distance measure and will also apply
to data from a metric space.

A density-based cluster is now defined as a set of density-connected objects
which is maximal with regard to density-reachability and the noise is the set
of objects not contained in any cluster.

Definition 21 (cluster and noise)
Let O be a set of objects. A cluster C with regard to ε and MinPts in O is a
non-empty subset of O satisfying the following conditions:

1. Maximality: for all p, q ∈ O: if p ∈ C and q is density-reachable from p
with regard to ε and MinPts, then also q ∈ C.

2. Connectivity: for all p, q ∈ C: p is density-connected to q with regard to
ε and MinPts in O.

Every object not contained in any cluster is noise.

Note that a cluster contains not only core objects but also objects that do
not satisfy the core object condition. These objects – called border objects of

49

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.4: “Nested” density-based clusters.

the cluster – are, however, directly density-reachable from at least one core
object of the cluster (in contrast to noise objects).

The algorithm DBSCAN [EKSX96], which discovers the clusters and the
noise in a database according to the above definitions, is based on the fact that
a cluster is equivalent to the set of all objects in O which are density-reachable
from an arbitrary core object in the cluster (c.f. lemma 1 and 2 in [EKSX96]).
The retrieval of density-reachable objects is performed by iteratively collecting
directly density-reachable objects. DBSCAN checks the ε-neighborhood of each
point in the database. If the ε-neighborhood Nε(p) of a point p has more than
MinPts points, a new cluster C containing the objects in Nε(p) is created.
Then, the ε-neighborhood of all points q in C which have not yet been processed
is checked. If Nε(q) contains more than MinPts points, the neighbors of q
which are not already contained in C are added to the cluster and their ε-
neighborhood is checked in the next step. This procedure is repeated until no
new point can be added to the current cluster C.

To introduce the notion of a density-based cluster-ordering, we first make
the following observation: for a constant MinPts-value, density-based clusters
with respect to a higher density (i.e. a lower value for ε) are completely con-
tained in density-connected sets with respect to a lower density (i.e. a higher
value for ε). This fact is illustrated in Figure 6.4, where C1 and C2 are density-
based clusters with respect to ε2 < ε1 and C is a density-based cluster with
respect to ε1 completely containing the sets C1 and C2.

Consequently, the DBSCAN algorithm could be extended such that several
distance parameters are processed at the same time, i.e. the density-based
clusters with respect to different densities are constructed simultaneously. To
produce a consistent result, however, we would have to obey a specific order
in which objects are processed when expanding a cluster. We always have to
select an object which is density-reachable with respect to the lowest ε value

50

CHAPTER 6. EXPERIMENTAL EVALUATION

to guarantee that clusters with respect to higher density (i.e. smaller ε values)
are finished first.

OPTICS works in principle like such an extended DBSCAN algorithm for an
infinite number of distance parameters εi which are smaller than a generating
distance ε (i.e. 0 < εi ≤ ε). The only difference is that we do not assign
cluster memberships. Instead, we store the order in which the objects are
processed and the information which would be used by an extended DBSCAN
algorithm to assign cluster memberships (if this were at all possible for an
infinite number of parameters). This information consists of only two values
for each object: the core-distance and a reachability-distance, introduced in
the following definitions.

Definition 22 (core-distance)
Let p be an object from a database DB, let ε be a distance value, let Nε(p)
be the ε-neighborhood of p, let MinPts be a natural number and let MinPts-
distance(p) be the distance from p to its MinPts-th neighbor. Then, the
core-distance of p is defined as

core-distanceε,MinPts(p) ={
UNDEFINED, if |Nε(p)| < MinPts
MinPts-distance(p), otherwise

The core-distance of an object p is simply the smallest distance e′ between
p and an object in its ε-neighborhood such that p would be a core object with
respect to e′ if this neighbor is contained in Nε(p). Otherwise, the core-distance
is UNDEFINED.

Definition 23 (reachability-distance)
Let p and o be objects from a database DB, let Nε(o) be the ε-neighborhood
of o, and let MinPts be a natural number. Then the reachability-distance of
p with respect to o is defined as

reachability-distancee,MinPts(p, o) ={
UNDEFINED, if |Nε(o)| < MinPts
max(core-distance(o), distance(o, p)), otherwise

Intuitively, the reachability-distance of an object p with respect to an-
other object o is the smallest distance such that p is directly density-reachable
from o if o is a core object. In this case, the reachability-distance cannot be
smaller than the core-distance of o because for smaller distances no object is
directly density-reachable from o. Otherwise, if o is not a core object, even at

51

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.5: core-distance core(o), reachability distances r(p1, o), r(p2, o) for
MinPts = 4.

the generating distance ε, the reachability-distance of p with respect to o is
UNDEFINED. The reachability-distance of an object p depends on the core
object with respect to which it is calculated. Figure 6.5 illustrates the notions
of core-distance and reachability-distance.

6.3.2 Reachability Plots and Parameters

The OPTICS algorithm generates the augmented cluster-ordering consisting of
the ordering of the points, the reachability-values and the core-values. In the
following only the ordering and the reachability-values are needed. To simplify
the notation, we specify them formally.

Definition 24 (results of the OPTICS algorithm)
Let DB be a database containing n points. The OPTICS algorithm generates
an ordering of the points o : {1, . . . n} → DB and corresponding reachability-
values r : {1, . . . n} → R+

0 .

The cluster-ordering of a data set can be represented and understood graph-
ically. In principle, one can see the clustering structure of a data set if the
reachability-distance values r are plotted for each object in the cluster-ordering
o. Figure 6.2 depicts the reachability-plot for a very simple 2-dimensional data
set. Note that the visualization of the cluster-order is independent from the
dimension of the data set. For example, if the objects of a high-dimensional
data set are distributed similar to the distribution of the 2-dimensional data

52

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.6: Effects of parameter settings on the cluster ordering.

set depicted in figure 6.2 (i.e. there are three “Gaussian bumps” in the data
set), the reachability-plot would also look very similar.

A further advantage of cluster-ordering a data set compared to other clus-
tering methods is that the reachability-plot is rather insensitive to the input
parameters of the method, i.e. the generating distance ε and the value for
MinPts. Roughly speaking, the values have just to be “large” enough to yield
a good result. The concrete values are not crucial because there is a broad
range of possible values for which we always can see the clustering structure
of a data set when looking at the corresponding reachability-plot. Figure 6.6
shows the effects of different parameter settings on the reachability-plot for the
same data set used in figure 6.2. In the first plot we used a smaller generating
distance ε, for the second plot we set MinPts to the smallest possible value.
Although, these plots look different from the plot depicted in figure 6.2, the
overall clustering structure of the data set can be recognized in these plots as
well.

The generating distance ε influences the number of clustering-levels which
can be seen in the reachability-plot. The smaller we choose the value of ε, the
more objects may have an UNDEFINED reachability-distance. Therefore, we
may not see clusters of lower density, i.e. clusters where the core objects are

53

CHAPTER 6. EXPERIMENTAL EVALUATION

core objects only for distances larger than ε.
The optimal value for ε is the smallest value so that a density-based cluster-

ing of the database with respect to ε and MinPts consists of only one cluster
containing almost all points of the database. Then, the information of all
clustering levels will be contained in the reachability-plot.

However, there is a large range of values around this optimal value for which
the appearance of the reachability-plot will not change significantly. Therefore,
we can use rather simple heuristics to determine the value for ε, as we only
need to guarantee that the distance value will not be too small. For example,
we can use the expected k-nearest neighbor distance (for k = MinPts) under
the assumption that the objects are randomly distributed, i.e. under the as-
sumption that there are no clusters. This value can be determined analytically
for a data space DS containing N points. The distance is equal to the radius
r of a d-dimensional hypersphere S in DS where S contains exactly k points.
Under the assumption of a random distribution of the points, it holds that

V olumeS =
V olumeDS

N
· k

and the volume of a d-dimensional hypersphere S having a radius r is

V olumeS(r) =

√
πd

Γ(d
2

+ 1)
· rd

where Γ denotes the Gamma-function known from analysis, which interpolates
the factorial function.

Γ(x) :=

∞∫
0

tx−1e−t dt for x > 0

The radius r can be computed as

r =
d

√
V olumeDS · k · Γ(d

2
+ 1)

N ·
√

πd

The effect of the MinPts-value on the visualization of the cluster-ordering
can be seen in figure 6.6. The overall shape of the reachability-plot is very
similar for different MinPts values. However, for lower values the reachability-
plot looks more jagged and higher values for MinPts smoothen the curve.
Moreover, high values for MinPts will significantly weaken possible “single-
link” effects.

54

CHAPTER 6. EXPERIMENTAL EVALUATION

6.4 Evaluation of the Effectiveness

The reachability plots generated by OPTICS for all models are depicted in
Figure 6.7 and 6.8.

Obviously, the volume model performs rather ineffective. The plots com-
puted by OPTICS when applying the model on the Car Dataset and the Air-
craft Dataset are depicted in Figure 6.7(a) and 6.7(b). Both plots show a
minimum of structure indicating that the volume model cannot satisfyingly
represent the intuitive notion of similarity.

The solid-angle model performs slightly better. On the Car Dataset, OP-
TICS found three clusters denoted as A, B, and C in Figure 6.7(c). We ana-
lyzed these clusters by picking out some samples of the objects grouped in each
cluster. The result of this evaluation on the Car Dataset is presented in Figure
6.9. As it can be seen, the objects in clusters A and C are intuitively similar
but the objects in B are not. Furthermore, there are clusters of intuitively
similar objects (e.g. doors), which are not detected. Evaluating the solid-angle
model using the Aircraft Dataset we made similar observations. The reacha-
bility plot computed by OPTICS (cf. Figure 6.7(d)) yields a clustering with
a large number of hierarchical classes. But the analysis of the objects within
each cluster displays that intuitively dissimilar objects are treated as similar.
A further observation is the following: objects, that are intuitively similar, are
clustered in different groups. This suggests the conclusion that the solid-angle
model is also rather unsuitable as a similarity model for our real-world test
datasets.

In contrast to the volume model and the solid-angel model, the eigen value
model yields valuable results. The plots computed by OPTICS for the eigen
value Model are presented in Figure 6.7(e) and 6.7(f). On the Car Dataset
(cf. Figure 6.7(e)) OPTICS finds six clusters which are analysed in Figure
6.10. Each class consists of intuitive similar objects. Class A represents a large
number of small and thin objects (similar to the solid-angle Model – cf. Figure
6.9). Class B consists of fenders, class C represents doors, all objects in class
D are seats, class E consists of engine blocks and class F represents kinematic
envelopes of seats. Analysing the Aircraft Dataset with OPTICS based on the
eigen value Model yields affirmative results as well. The reachability plot (cf.
Figure 6.7(f)) depicts five clusters containing similar parts.

The plots computed by OPTICS for the cover sequence model and the vector
set model (cf. Figure 6.8) look even better than the plots computed for the eigen
value model. We will confirm this observation in the following, evaluating the
effectiveness of the cover sequence model compared to the vector set model.

55

CHAPTER 6. EXPERIMENTAL EVALUATION

(a) volume model on the car dataset (b) volume model on the aircraft dataset

(c) solid-angle model on the car dataset (d) solid-angle model on the aircraft
dataset

(e) eigen value model on the car dataset (f) eigen-value model on the aircraft
dataset

Figure 6.7: Reachability plots computed by OPTICS for the Car Dataset and
the Aircraft Dataset using the volume, solid-angle and eigen value model.

56

CHAPTER 6. EXPERIMENTAL EVALUATION

(a) cover sequence model (using 7 cov-
ers) on the Car Dataset

(b) cover sequence model (using 7 cov-
ers) on the Aircraft Dataset

(c) vector set model (using 3 covers) on
the Car Dataset

(d) vector set model (using 3 covers) on
the Aircraft Dataset

(e) vector set model (using 7 covers) on
the Car Dataset

(f) vector set model (using 7 covers) on
the Aircraft Dataset

Figure 6.8: Reachability plots computed by OPTICS for the Car Dataset and
the Aircraft Dataset using the cover sequence model and vector set model.

57

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.9: Classes found by OPTICS in the Car Dataset using the solid-angle
model (cf. Figure 6.7(c)).

We apply the vector set model using only 3 covers as well as 7 covers.
Comparing the vector set model with the cover sequence model on the Car

Dataset (cf. Figure 6.8(a),6.8(c), and 6.8(e)) we conclude, that the vector set
model is superior. All plots look similar on the first glance. When evaluating
the clusters (cf. Figure 6.11 and 6.12), it turned out that there are clusters
which are detected by both approaches and thus appear in both plots, e.g.
classes E in Figure 6.11 and 6.12. Nevertheless, we observed the following
three failures of the cover sequence model:

1. Meaningful hierarchies of clusters detected by the vector set model, e.g.
G1 and G2 in Figure 6.8(e) which are visualized in Figure 6.12 are lost in
the plot of the cover sequence model (Class G in Figure 6.8(a) evaluated
in Figure 6.11).

2. Some clusters found by the vector set model are not modeled using the
cover sequence model, e.g. cluster G in Figure 6.12.

3. Using the cover sequence model, objects that are intuitively not similar

58

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.10: Classes found by OPTICS in the Car Dataset using the eigen value
model (cf. Figure 6.7(e)).

59

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.11: Classes found by OPTICS in the Car Dataset using the cover
sequence model (cf. Figure 6.8(a)).

are clustered together in one class (e.g. class X in Figure 6.8(a) which is
evaluated in Figure 6.11). This is not the case when using the vector set
model.

A reason for the superior effectiveness of the vector set model compared to
the cover sequence model is the role of permutations of the covers. This is
supported by the observations which are depicted in Table 6.1. In more than
95% of all distance calculations during an OPTICS run there was at least one
permutation necessary to compute the minimal matching distance.

The plots in Figure 6.8(c) and 6.8(e) compare the influence of the num-
ber of covers used to generate the vector sets on the quality of the similarity

Nr. of covers permutations

3 68%
5 95%
7 99.0%
9 99.4%

Table 6.1: Percentage of proper permutations.

60

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.12: Classes found by OPTICS in the Car Dataset using the vector set
model with 7 covers (cf. Figure 6.8(e)).

61

CHAPTER 6. EXPERIMENTAL EVALUATION

model. An evaluation of the clusters yields the observation, that 7 covers are
necessary to model real-world CAD objects accurately. Using only 3 covers we
observed basicly the same three problems already noticed when applying the
cover sequence model.

All the results of the evaluation on the Car Dataset can also be observed
evaluating the models on the Aircraft Dataset. As a consequence, the eval-
uation shows that the vector set model outperforms the other models with
respect to effectiveness. Furthermore, we see that we need about 7 covers to
model similarity most accurately.

6.5 Evaluation of the Efficiency

The most effective results on our test datasets were generated with k = 7 covers,
entailing an average permutation rate of 99% (cf. Table 6.1). This leads to the
conclusion, that the cover sequence model can only compete with the vector
set model with respect to quality, if all permutations are taken into account.
Obviously, the vector set model using the minimal matching distance approach
is much more efficient than the cover sequence model (one-vector model) using
the minimum Euclidian distance under permutation.

To analyze the performance of the filter step, introduced in Chapter 5, we
evaluated k-nn queries, which are the most common query type in similarity
search systems. Since the Car Dataset consists of only some 200 objects, it is
not suitable for efficiency evaluation. Thus, we ran our efficiency experiments
on the Aircraft Dataset only. We took 100 random query objects from the
database and examined 10-nn queries. Our test machine was equipped with
an INTEL XEON 1.7 GHz processor and 2 GByte main memory. Since data
and access structures fitted easily into the main memory, we calculated the I/O
cost. One page access was counted as 8 ms and for the costs of reading one
byte we counted 200 µs. The results are shown in Table 6.2.

It turns out that the filter step yields a speed-up of factor 10 on the CPU
time, but suffers from a higher I/O-time. Nevertheless it provides a speed
up factor of about 2 for total time. Furthermore, Table 6.2 demonstrates
that the run time using the vector set model with filter step is in the same
order of magnitude as the one-vector model even without permutation. In our
experiments, the vector set approach even outperformed the one-vector model
in both CPU time and I/O time. Let us note that in our experiments we based
the implementation of the one-vector model on the X-tree [BKK96], which is
penalized by the simulation of I/O time. Since it does not take the idea of
page caches into account, an implementation of the one-vector model using the

62

CHAPTER 6. EXPERIMENTAL EVALUATION

Model CPU time I/O time total time

1-vector 142.82 2632.06 2774.88
vector set with filter 105.88 932.80 1038.68
vector set seq. scan 1025.32 806.40 1831.72

Table 6.2: Run times for sample 10-nn queries in seconds.

sequential scan exhibited slightly better performance for some combinations of
dimensionality and data set size, but the performance was still in the same
order of magnitude.

63

Chapter 7

Conclusions

7.1 Results

In this diploma thesis, we surveyed four feature transformations that are suit-
able for the use on voxelized CAD data: the volume model, the solid angle
model, the eigen value model and the cover sequence model. The cover se-
quence model generates a set of covers of a 3-dimensional object that can be
stored in a feature vector. In comparison to the other three models it offers a
better notion of similarity. A major problem of the cover sequence model is the
order in which the covers are stored within the feature vector. For calculating
the similarity of two objects the order realizing minimum distance offers a better
similarity measure, but is prohibitive in calculation cost. Our new approach to
represent an object as a set of feature vectors instead of a single feature vector
avoids this problem. Furthermore, it offers a more general approach for applica-
tions working with set-valued objects. Then we formally described the distance
measure on vector sets we used, called minimal matching distance. Minimal
matching distance is a metric and computable in O(k3). To demonstrate how
similarity queries can be answered efficiently, we introduced a highly selective
filter step that is able to speed up similarity queries by the use of spatial index
structures. To evaluate our system we used two CAD data sets. To demon-
strate the good notion of similarity provided by the combination of the cover
sequence model and the vector set representation, we introduced an algorithm
for hierarchical clustering called OPTICS as a comparably more objective way
to examine similarity measures. Since k-nearest neighbor queries are the most
common operation in similarity search systems, we evaluated the efficiency of
the filter step using 100 sample k-nearest neighbor queries. It turned out that
our new approach yields more meaningful results without sacrificing efficiency.

64

CHAPTER 7. CONCLUSIONS

7.2 Future Work

Since vector set representation provides many advantages for applications work-
ing with set-valued objects, it is desirable to develop a more general system for
managing vector-set-represented objects. With the more general system we
plan to examine various other applications for similarity search, such as the
retrieval of bio-molecular data and images. Another essential goal is the de-
velopment of fast and flexible algorithms for processing similarity queries on
vector set representations.

As shown above, the evaluation method based on hierarchical clustering
yields enormous advantages. Based on both our new evaluation procedure and
our effective similarity model, we sketch a prototype suitable for industrial
use, which helps the user to cope with rapidly growing amounts of data, and
helps thereby to reduce the cost of developing and producing new parts. This
prototype is called BOSS (Browsing OPTICS-Plots for S imilarity Search).

BOSS is an interactive data browsing tool which depicts the reachability
plot computed by OPTICS in a user friendly way together with appropriate
representatives of the clusters. This clear illustration supports the user in his
time-consuming task to find similar parts. From the industrial user’s point of
view, BOSS meets the following two requirements:

• The hierarchical clustering structure of the dataset is revealed at a glance.
The reachability plot is an intuitive visualisation of the clustering hier-
archy which helps to assign each object to its corresponding cluster or
to noise, respectively. Furthermore, the hierarchical representation of the
clusters by the reachability plot helps the user to get a quick overview
over all clusters and their relation to each other. As each entry in the
reachabiltity plot is assigned to one object, we can easily illustrate some
representatives of the clusters belonging to the current ε-value (cf. Figure
7.1).

• The user is not only interested in the shape and the number of the clusters,
but also in the specific parts building up a cluster. As for large clusters
it is rather difficult to depict all objects, BOSS also displays represen-
tatives of each cluster. These representatives are simply constructed by
superimposing all parts belonging to the regarded cluster. We can browse
through the hierarchy of the representatives in the same way as through
the OPTICS-Plots (cf. Figure 7.2).

BOSS helps to reduce the cost of developing and producing new parts by
maximizing the reuse of existing parts because it allows the user to browse

65

CHAPTER 7. CONCLUSIONS

(a) High density threshold ε

(b) Low density threshold ε

Figure 7.1: BOSS: Hierarchical OPTICS-Plots.

66

CHAPTER 7. CONCLUSIONS

Figure 7.2: BOSS: Hierarchically ordered representatives.

through the hierarchical structure of the clusters in a top-down way. Thus the
engineers get an overview of already existing parts and are able to navigate
their way through the diversity of existing variants of products, such as cars.

In our future work, we plan to advance our prototype, so that the informa-
tion contained in the representatives of the clusters is better perceivable. Such
a tool would greatly benefit the similarity evaluation technique presented in
this work.

67

LIST OF FIGURES

List of Figures

2.1 Section coding of 2-D regions: a) Original space and object. b)
Corresponding histogram. c) Corresponding feature vector. . . . 7

2.2 Shells and sections as basic models for shape histograms. In each
of the 2-D examples, a single bin is marked. 8

2.3 Scan conversion on a triangulated surface. 10
2.4 Space partitioning with 4 cells. The feature vector generated by

the volume model is depicted on the right hand side. 11
2.5 (a) A sample object with different shapes at surface-points p1

and p2. (b) Effect of the radius on the Solid-Angle value: The
object can be modeled more accurately when using radius r1

instead of radius r2. 17
2.6 Computation of the ellipsoids based on their eigen values 18
2.7 Principal axis of a sample object. 20

3.1 The cover sequence model. 22

4.1 Examples demonstrating the advantage of free permutations. . . 26
4.2 An example of a feasible vertex labeling and an equality subgraph. 32

5.1 Optimal multi-step k-nearest neighbor algorithm. 38
5.2 Optimal multi-step query processor for k-nearest neighbor search. 38
5.3 Incremental ranking query processing on R-trees. 39
5.4 Structure of the X-tree. 43

6.1 Results of sample 5-nn queries. The particular distances to the
query object are depicted below each object. 46

6.2 Reachability plot (right) computed by OPTICS for a sample 2-D
dataset (left). 48

6.3 Density-reachability and connectivity. 49
6.4 “Nested” density-based clusters. 50

68

LIST OF TABLES

6.5 core-distance core(o), reachability distances r(p1, o), r(p2, o) for
MinPts = 4. 52

6.6 Effects of parameter settings on the cluster ordering. 53
6.7 Reachability plots computed by OPTICS for the Car Dataset

and the Aircraft Dataset using the volume, solid-angle and eigen
value model. 56

6.8 Reachability plots computed by OPTICS for the Car Dataset
and the Aircraft Dataset using the cover sequence model and
vector set model. 57

6.9 Classes found by OPTICS in the Car Dataset using the solid-
angle model (cf. Figure 6.7(c)). 58

6.10 Classes found by OPTICS in the Car Dataset using the eigen
value model (cf. Figure 6.7(e)). 59

6.11 Classes found by OPTICS in the Car Dataset using the cover
sequence model (cf. Figure 6.8(a)). 60

6.12 Classes found by OPTICS in the Car Dataset using the vector
set model with 7 covers (cf. Figure 6.8(e)). 61

7.1 BOSS: Hierarchical OPTICS-Plots. 66
7.2 BOSS: Hierarchically ordered representatives. 67

List of Tables

2.1 Classification of complex similarity models. 9

6.1 Percentage of proper permutations. 60
6.2 Run times for sample 10-nn queries in seconds. 63

69

LIST OF DEFINITIONS

List of Definitions

Def. 1 (feature-based object similarity) 11
Def. 2 (invariance) . 12
Def. 3 (extended feature-based object similarity) 12
Def. 4 (minimum Euclidian distance under permutation) 27
Def. 5 (metric) . 28
Def. 6 (weighted complete bipartite graph) 29
Def. 7 (perfect matching) . 29
Def. 8 (minimal weight matching) . 29
Def. 9 (enumeration of a set) . 30
Def. 10 (minimal matching distance) . 30
Def. 11 (M -alternating path) . 31
Def. 12 (feasible vertex labeling) . 32
Def. 13 (similarity range query) . 36
Def. 14 (k-nearest neighbor query) . 36
Def. 15 (lower-bounding property) . 37
Def. 16 (q-ranking) . 40
Def. 17 (extended centroid) . 40
Def. 18 (directly density-reachable) . 48
Def. 19 (density-reachable) . 48
Def. 20 (density-connected) . 49
Def. 21 (cluster and noise) . 49
Def. 22 (core-distance) . 51
Def. 23 (reachability-distance) . 51
Def. 24 (results of the OPTICS algorithm) 52

70

Bibliography

[ABKS99] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OP-
TICS: Ordering Points to Identify the Clustering Structure. In Proc.
ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’99),
Philadelphia, PA, pages 49–60, 1999.

[AFS93] R. Agrawal, C. Faloutsos, and A. Swami. Efficient Similarity Search
in Sequence Databases. In Proc. 4th. Int. Conf. on Foundations
of Data Organization and Algorithms (FODO’93), Evanston, ILL,
volume 730 of Lecture Notes in Computer Science (LNCS), pages
69–84. Springer, 1993.

[AKKS99] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl. 3D
Shape Histograms for Similarity Search and Classification in Spatial
Databases. In Proc. 6th Int. Symposium on Large Spatial Databases
(SSD’99), Hong Kong, China, volume 1651 of Lecture Notes in Com-
puter Science (LNCS), pages 207–226. Springer, 1999.

[ALSS95] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim. Fast Similarity
Search in the Presence of Noise, Scaling, and Translation in Time-
Series Databases. In Proc. 21th Int. Conf. on Very Large Databases
(VLDB’95), pages 490–501, 1995.

[BBJ+00] S. Berchtold, C. Böhm, H. V. Jagadish, H.-P. Kriegel, and J. Sander.
Independent Quantization: An Index Compression Technique for
High-Dimensional Data Spaces. In Proc. Int. Conf. on Data En-
gineering (ICDE 2000), San Diego, CA, pages 577–588, 2000.

[Ber97] S. Berchtold. Geometry-based Search for Similar Mechanical Parts.
PhD thesis, Institute for Computer Science, University of Munich,
1997. (in German).

71

BIBLIOGRAPHY

[BK97] S. Berchtold and H.-P. Kriegel. S3: Similarity Search in CAD
Database Systems. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data (SIGMOD’97), Tucson, AZ, pages 564–567, 1997.

[BKK96] S. Berchtold, D. A. Keim, and H.-P Kriegel. The X-Tree: An In-
dex Structure for High-Dimensional Data. In Proc. 22th Int. Conf.
on Very Large Databases (VLDB’96), Bombay, India, pages 28–39,
1996.

[BKK97] S. Berchtold, D. A. Keim, and H.-P. Kriegel. Using Extended Feature
Objects for Partial Similarity Retrieval. VLDB Journal, 6(4):333–
348, 1997.

[BMH92] A. Badel, J. P. Mornon, and S. Hazout. Searching for Geomet-
ric Molecular Shape Complementarity using Bidimensional Surface
Profiles. Journal of Molecular Graphics, 10:205–211, 1992.

[Con86] M. L. Connolly. Shape Complementarity at the Hemoglobin a1b1
Subunit Interface. Biopolymers, 25:1229–1247, 1986.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces. In Proc. 23rd Int.
Conf. of Very Large Databases (VLDB’97), Athens, Greece, pages
426–435, 1997.

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Proc. 2nd Int. Conf. on Knowledge Discovery and Data
Mining (KDD’96), Portland, OR, pages 226–231, 1996.

[EM97] T. Eiter and H. Mannila. Distance Measures for Point Sets and
Their Computation. Acta Informatica, 34(2):103–133, 1997.

[FBF+94] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, et al. Efficient
and Effective Querying by Image Content. Journal of Intelligent
Information Systems, 3:231–262, 1994.

[FRM94] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast Sub-
sequence Matching in Time-Series Databases. In Proc. ACM SIG-
MOD Int. Conf. on Management of Data (SIGMOD’94), Minneapo-
lis, MN, pages 419–429, 1994.

72

BIBLIOGRAPHY

[GM93] J. E. Gary and R. Mehrotra. Similar Shape Retrieval using a Struc-
tural Feature Index. Information Systems, 18(7):525–537, 1993.

[Gri92] I. Grieger. Graphische Datenverarbeitung. Springer Verlag, 1992.

[Hig90] W. E. Higgins. Automatic Analysis of 3-D and 4-D Radiological
Images. grant application to the Department of Health and Human
Services, December 1990.

[HS95] G. R. Hjaltason and H. Samet. Ranking in Spatial Databases. In
Proc. 4th Int. Symposium on Large Spatial Databases (SSD’95),
volume 951 of Lecture Notes in Computer Science (LNCS), pages
83–95. Springer, 1995.

[HSE+95] J. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, and Niblack
W. Efficient Color Histogram indexing for Quadratic Form Dis-
tance Functions. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 17(7):729–736, 1995.

[Jag91] H. V. Jagadish. A Retrieval Technique for Similar Shapes. In Proc.
ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’91),
Denver, CO, pages 208–217, 1991.

[JB91] H. V. Jagadish and A. M. Bruckstein. On sequential shape descrip-
tions. Pattern Recognition, 1991.

[JD88] A. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-
Hall, 1988.

[Kau87] A. Kaufman. An Algorithm for 3D Scan-Conversion of Polygons.
In Proc. Eurographics, pages 197–208, 1987.

[Kei99] D. A. Keim. Efficient Geometry-based Similarity Search of 3D Spa-
tial Databases. In Proc. ACM SIGMOD Int. Conf. on Management
of Data (SIGMOD’99), Philadelphia, PA, pages 419–430, 1999.

[KKS98] G. Kastenmüller, H.-P. Kriegel, and T. Seidl. Similarity Search in
3D Protein Databases. In Proc. German Conf. on Bioinformatics
(GCB’98), Köln, Germany, 1998.

[KSF+96] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopa-
pas. Fast Nearest Neighbor Search in Medical Image Databases. In
Proc. 22th Int. Conf. on Very Large Databases (VLDB’96), Bombay,
India, pages 215–226, 1996.

73

BIBLIOGRAPHY

[KSS97] H.-P. Kriegel, T. Schmidt, and T. Seidl. 3D Similarity Search by
Shape Approximation. In Proc. 5th Int. Symposium on Large Spatial
Databases (SSD’97), Berlin, Germany, volume 1262 of Lecture Notes
in Computer Science (LNCS), pages 11–28. Springer, 1997.

[Kuh55] H. W. Kuhn. The Hungarian Method for the Assignment Problem.
Naval Research Logistics Quarterly, 2:83–97, 1955.

[LJF94] K.-I. Lin, H. V. Jagadish, and C. Faloutsos. The TV-Tree: An Index
Structure for High-Dimensional Data. VLDB Journal, 3(4):517–542,
1994.

[McQ67] J. McQueen. Some Methods for Classification and Analysis of Mul-
tivariate Observations. In 5th Berkeley Symp. Math. Statist. Prob.,
volume 1, pages 281–297, 1967.

[MG93] R. Mehrotra and J. E. Gary. Feature-Based Retrieval of Similar
Shapes. In Proc. 9th Int. Conf. on Data Engineering, Vienna, Aus-
tria, pages 108–115, 1993.

[MG95] R. Mehrotra and J. E. Gary. Feature-Index-Based Similar Shape
Retrieval. In Proc. 3rd Working Conf. on Visual Database Systems,
1995.

[MH99] T. Möller and E. Haines. Real-Time Rendering. A K Peters, Natick,
MA, 1999.

[Mun57] J. Munkres. Algorithms for the Assignment and Transportation
Problems. Journal of the SIAM, 6:32–38, 1957.

[NBE+93] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasmann,
D. Petkovic, P. Yanker, C. Faloutsos, and G. Taubin. The QBIC
Project: Querying Images by Content Using Color, Texture, and
Shape. In SPIE 1993 Int. Symposium on Electronic Imaging: Sci-
ence and Technology Conference 1908, Storage and Retrieval for
Image and Video Databases, San Jose, CA, 1993.

[NS86] W. M. Newman and R. F. Sproull. Grundzüge der interaktiven
Computergraphik. McGraw-Hill Book Company GmbH Hamburg,
1986.

74

BIBLIOGRAPHY

[RB00] J. Ramon and M. Bruynooghe. A Polynomial Time Computable
Metric Between Point Sets. Technical Report CW 301, Katholieke
Universiteit Leuven, Department of Computer Science, October
2000.

[SH94] H. Sawhney and J. Hafner. Efficient Color Histogram Indexing. In
Proc. Int. Conf. on Image Processing, pages 66–70, 1994.

[SK98] T. Seidl and H.-P. Kriegel. Optimal Multi-Step k-Nearest Neighbor
Search. In Proc. ACM SIGMOD Int. Conf. on Management of Data
(SIGMOD’98), Seattle, WA, pages 154–165, 1998.

[SKSH89] R. Schneider, H.-P. Kriegel, B. Seeger, and S. Heep. Geometry-
based Similarity Retrieval of Rotational Parts. In Proc. Int. Conf. on
Data and Knowledge Systems for Manufacturing and Engineering,
Gaithersburg, ML, pages 150–160, 1989.

[TC91] G. Taubin and D. B. Cooper. Recognition and Positioning of Rigid
Objects Using Algebraic Moment Invariants. Geometric Methods in
Computer Vision, 1570:175–186, 1991.

[Vin91] L. Vincent. New Trends in Morphological Algorithms. In SPIE
Proceedings on Non-linear Image Processing II, San Jose, CA, 1991.

75

	1 Introduction
	2 Similarity Models for Voxelized CAD Objects
	2.1 Related Work
	2.1.1 Feature-Based Similarity
	2.1.2 Geometry-Based Similarity

	2.2 Voxelized CAD Objects
	2.3 Shape Histograms
	2.4 Normalization
	2.4.1 Scaling Invariance
	2.4.2 Translation Invariance
	2.4.3 Rotation Invariance
	2.4.4 Reflection Invariance

	2.5 Spatial Features
	2.5.1 The Volume Model
	2.5.2 The Solid-Angle Model
	2.5.3 The Eigen Value Model

	3 Cover Sequence Approximation
	3.1 The Cover Sequence Model
	3.2 Approximation
	3.3 Feature Extraction

	4 Vector Set Representation
	4.1 Motivation
	4.2 Distance Measures on Sets of Objects
	4.3 The Minimal Matching Distance
	4.4 The Kuhn-Munkres Algorithm

	5 Efficient Query Processing on Vector Set Data
	5.1 Query Types
	5.1.1 Similarity Range Queries
	5.1.2 k-Nearest Neighbor Queries

	5.2 Multi-Step Query Processing
	5.3 A Filter Step for Vector Set Data
	5.4 Implementation

	6 Experimental Evaluation
	6.1 Data Sets
	6.2 Methods for Evaluating the Effectiveness of Similarity Models
	6.2.1 k-Nearest Neighbor Queries
	6.2.2 Clustering

	6.3 The OPTICS Algorithm
	6.3.1 Density-Based Clustering
	6.3.2 Reachability Plots and Parameters

	6.4 Evaluation of the Effectiveness
	6.5 Evaluation of the Efficiency

	7 Conclusions
	7.1 Results
	7.2 Future Work

	List of Figures
	List of Tables
	List of Definitions
	Bibliography

