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Abstract

The management of complex spatial objects in many non-standard database appli-

cations, such as computer-aided design (CAD), imposes new requirements on spatial

database systems, in particular on efficient query processing. In the past two decades

various index structures have been proposed to support this process. Recently, there

has been an increasing awareness that it is indispensable to integrate these index

structures into fully-fledged database systems. 

In this master thesis a new spatial index is introduced, which supports the intersect

predicate on a data type TSpatialObject. This new access method, called X-RI-tree,

can easily be implemented on top of an object-relational database management sys-

tem, exploiting its extensible indexing framework. Thus, fundamental services of

underlying commercial database systems can be fully reused, including transactions,

concurrency control, and recovery.

The X-RI-tree is a multi step index for grey interval sequences, which can be

generated out of spatial objects via space filling curves. Each of these grey intervals

consists of an interval hull, aggregated information of the grey interval, and a detailed

attached black interval sequence. This structure is reflected in the query process,

which is based on three consecutive filter steps. In a first filter step, all overlapping

pairs of grey database and query intervals are determined, by means of a slightly

altered RI-tree. In a second filter step a so called fast grey test is used to determine

intersecting intervals without examining the attached interval sequences. In a last

third filter step, an expensive BLOB test is carried out, scrutinizing the attached inter-

val sequences. 

Both the RI-tree and the X-RI-tree were implemented on top of an Oracle Server

Release 8.1.7, using PL/SQL for the computational main memory based program-

ming. The experimental evaluation, which was based on two real world test data sets,

has pointed up that a well parameterized X-RI-tree outperforms the optimized ver-

sion of the RI-tree approximately by an order of magnitude with respect to use of

secondary storage, main memory session footprint, and overall query response time. 



Abstract (in Deutsch)

Die Verwaltung komplexer räumlicher Objekte, wie sie beispielsweise im CAD-

Bereich auftreten, stellt neue Anforderungen an räumliche Datenbanksysteme und

besonders an die räumliche Anfragebearbeitung. In den letzten zwei Jahrzehnten

wurden verschiedenartige Indexstrukturen zur Unterstützung solcher Anfragen ent-

wickelt. In jüngster Zeit, rückte die Wichtigkeit der Integration dieser Indexstruktu-

ren in vorhandene Datenbanksysteme immer mehr ins Bewusstsein.

In dieser Diplomarbeit wird eine neue Indexstruktur vorgestellt, die das intersect-

Prädikat auf einem räumlichen Datentyp TSpatialObject unterstützt. Diese neue Zu-

griffsmethode, die wir X-RI-Baum nennen, kann sehr leicht in gängige objekt-relatio-

nale Datenbanksysteme integriert werden, so dass zentrale Datenbankdienste wie

Transaktionen, kontrollierte Nebenläufigkeit und Wiederanlauf in Einklang mit der

Benutzung des X-RI-Baum stehen. 

Der X-RI-Baum ist ein mehrstufiger Index für graue Intervallsequenzen, die

durch raumfüllende Kurven aus räumlichen Objekten gewonnen werden können. Je-

des dieser grauen Intervalle besteht aus einer Intervallhülle, aggregierter Information

über das graue Intervall und einer detaillierten schwarzen Intervallsequenz. Die

Struktur der grauen Intervalle wird in der Anfragebearbeitung widergespiegelt, die

auf drei Filterschritten basiert. In einem ersten Filterschritt werden alle Paare sich

überlappender grauer Intervalle mit Hilfe des RI-Baumes ermittelt. Im zweiten

Schritt wird ein Schnelltest durchgeführt, der ohne zusätzliche I/O-Zugriffe aus-

kommt. In einem teuren dritten Filterschritt werden die schwarzen Intervallsequen-

zen ausgewertet. 

Sowohl der RI-Baum als auch der X-RI-Baum wurden in PL/SQL implementiert

und in einen Oracle Server Release 8.1.7 integriert. Die experimentelle Auswertung

basierte auf zwei Echttestdatenmengen und hat aufgezeigt, dass das Sekundärspei-

cherplatzverhalten, der Hauptspeicherbedarf und die gesamte Anfragezeit ungefähr

um eine Größenordnung beim X-RI-Baum besser sind als beim RI-Baum.
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Chapter 1
Introduction

1.1 Virtual Engineering

For a long time industrial practice in automotive, aerospace, and other manufac-

turing industries involves the creation of a number of physical product models. Dur-

ing the product development phase, both the product and the process are verified on

the basis of physical mock-up (PMU). However, hardware checks cause tremendous

time delays. Moreover, a late hardware verification very often leads to respectively

late design changes, which are cost intensive (cf. figure 1). 

Nowadays, the different industries

do not have to build real test models

anymore. The real models currently

required for automobile develop-

ment, for instance, are being dis-

pensed with new digital mock-up

(DMU) methods, which combine all

digital data from CAD, CAE and

CAM, including the results from

simulations and animations. This

new approach, called virtual engineering, means that the development period in auto-

motive construction can sharply be reduced. Shorter product cycles and a greater

diversity of models are becoming decisive competitive factors in the hard-fought

Figure 1: Digital mock-up (DMU) [IWB 01] 
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automobile market. These demands can only be met by digitalization of the manufac-

turer’s whole development process and within the entire component supplier chain.

The thereby incurred huge amounts of data, have to be managed somehow.

1.2 Spatial Databases

Database systems (DBS) are designed to manage and analyze huge amounts of

persistent data, offering important advantages compared to a file-based organization.

DBSs provide logical and physical data independence, transactions, concurrency

control, integrity checking, recovery, security, standardization, and distribution

[Dat 99]. 

One of the most promising data models for DBSs is the object-relational one. It

provides two substantial advantages. First, the practical impact of ORDBMSs (ob-

ject-relational database management systems) is very strong, as object-relational

functionality has been added to most commercially available relational database

servers, including Oracle [Doh 98], IBM DB2 [CCN+ 99], and Informix IDS/UDO

[Bro 01]. Secondly, its extensibility is a necessary prerequisite for the seamless em-

bedding of spatial data types and geometric predicates, which is vital for virtual en-

gineering. Defining spatial data types and spatial predicates on top of any off-the-

shelf ORDBMS enables us to ask queries like (cf. figure 2):

  • Determine all spatial objects intersecting a given rectilinear box volume (box vol-

ume query).

  • Find all objects that intersect an arbitrary query object (collision query).

Figure 2: Spatial queries on a Spatial Database System 

a) Box volume query b) Collision query
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Furthermore, integrating these spatial features into an ORDBMS, allows us to

combine structural queries as, for instance, “retrieve all documents, that refer to the

current version of the jet engine”, with the evaluation of geometric predicates. To put

it another way, ORDBMSs allow us to combine easily Engineering Data Manage-

ment systems (EDM) with spatial database systems. 

According to Güting [Güt 94]1spatial database systems, could be defined in the

following way: 

  • A spatial database system is a database system.

  • It offers spatial data types (SDTs) in its data model and query language.

  • It supports spatial data types in its implementation, providing at least spatial in-

dexing and efficient algorithms for spatial joins.

This definition points up, that a spatial database system, is a fully-fledged database

system, with additional modules for handling spatial data. The extensibility interfac-

es of most ORDBMSs, including Oracle [Ora 99a] [SMS+ 00], IBM DB2 [IBM 99]

[CCF+ 99], or Informix IDS/UDO [Inf 98] [BSSJ 99], enable us to integrate spatial

requirements into off-the-shelf object-relational database systems. 

In this work we focus on building a spatial index, supporting the intersect2 predi-

cate on a data type TSpatialObject3. This enables us to efficiently process collision

and box volume queries, as depicted in figure 2. We do not claim, having build a new

spatial database system, knowing that we fall short of presenting efficient algorithms

for other spatial relationships and for spatial joins. Nevertheless, this diploma thesis

can be used as a starting point and a guideline to build an efficient spatial database

system on top of an ORDBMS.

1 [Güt 94] can be used as an introductory paper into the area of spatial database systems. Furthermore,
we recommend  [GG 98] to the reader, in which an overview of multidimensional access methods can be
found. Finally, [Sam 90a] and [Sam90 b] can serve as a starting point for the general area of spatial data
structures.
2 In [GG 98] it is mentioned that the intersection operator is one of the most important operators, and
that it plays a crucial role in virtually all the other cases [GR 94].
3 This data type is equal to a more general data type TOIS (Type of Object Interval Sequence), indicat-
ing that our approach is suitable for all domain objects, which can be represented by an interval
sequence. Throughout this thesis the two data types are used interchangeable.
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1.3 Spatially Extended CAD Objects

Engineering products can be regarded as a collection of individual, three-dimen-

sional parts. Each of these parts may consist of a complex and an intricate geometric

shape with a very high precision. In order to cope with the demands of accurate

geometric modeling, highly specialized CAD applications are employed. In subsec-

tion 1.3.1, we talk about triangle meshes, a very accurate and widely spread represen-

tation form of CAD objects. In subsection 1.3.2 a coarser, conservative approxima-

tion of the parts, by means of voxels, will be discussed. These voxels can be grouped

together to Object Interval Sequences1, which build the foundation of this work.

1.3.1  Triangle meshes

Accurate representations of CAD surfaces are typically implemented by paramet-

ric bicubic surfaces, including Hermite, Bézier, and B-spline patches. For many op-

erations, such as graphical display or the efficient computation of surface intersec-

tions, these parametric representations are too complex [MH 99]. As a solution,

approximative polygon (e.g. triangle) meshes can be derived from the accurate sur-

face representation. These triangle meshes allow for an efficient and interactive dis-

play of complex objects, for instance by means of VRML encoded files, and serve as

an ideal input for the computation of spatial interference. 

1.3.2  Object Interval Sequences

In order to employ spatial indexing on CAD databases, the geometry of each sin-

gle CAD part can be transformed into an interval sequence by means of voxelization.

In [Pöt 01] different ways are described to achieve this voxelization, suitable for

both solid and surface modeling. In this work we only consider representations of

solid objects, which are already voxelized. Therefore, we do not have to take a closer

look at the algorithms creating voxelized sets, but rather take their result as a starting

point.

1 In [Pöt 01], Pötke described in detail how these three different object representations are linked
together and how they can be used to build a well functioning system for the Database Integration of

Virtual Engineering (DIVE) for existing Engineering Data Management systems (EDM).
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1.3.2.1  Mapping Extended Objects to Interval Sequences

Voxels coarsely approximate spatial objects. The voxels correspond to cells of a

grid, covering the complete data space. The grid resolution determines the finest

possible granularity for the approximation of the objects. By means of space filling

curves, each cell of the grid can be encoded by a single integer number, and thus an

extended object is represented by a set of integers. A lot of these space filling curves

achieve good spatial clustering properties. Therefore, cells in close spatial proximity

are encoded by similar integers or, putting it another way, contiguous integers encode

cells in close spatial neighborhood. Examples for space filling curves include Hil-

bert-, Z-, and the lexicographic-order, depicted in figure 3. The Hilbert-order gener-

ates the last intervals per object [Jag 90] [FR 89] but unfortunately, it is the most

complex linear order. Taking redundancy and complexity into consideration, the Z-

order seems to be the best solution. Therefore, it will be used throughout the rest of

this thesis. 

Voxels can be grouped together to Object Interval Sequences, so that an extended

object can be represented by some continuous ranges of numbers. The three shortly

discussed representation forms of objects are depicted in figure 4.

Hilbert-order Z-order

Figure 3: Examples of space-filling curves in the two-dimensional case

Figure 4: Conversion pipeline from triangulated surfaces to interval sequences

a) Triangle mesh b) Voxel set c) Interval sequence

lexicographic order
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1.3.2.2  Controlling Accuracy and Redundancy

The resolution of the underlying grid of the data space, i.e. the granularity, is deci-

sive for the mapping of spatial objects to their corresponding interval sequences. On

the one hand, refining the resolution approximates the object more accurate, but on

the other hand, the redundancy increases. Gaede pointed out in [Gae 95] that the

number of tiles and intervals exponentially depends on the granularity. 

Replicating techniques based on the Linear Quadtree [TH 81] [OM 88] [Ora 99c]

[RS 99] [FFS 00] decompose spatial objects into tiles which correspond to constraint

segments on a space filling curve. In contrast, intervals are not confined to these tile

boundaries, and therefore, yield a significantly lower redundancy, as shown in

figure 5a.

Apart from the sketched granularity bound approximation [Gae 95], we need other

concepts, allowing us to vary the resolution between insertion and query time as well

as between different objects. Orenstein [Ore 89] introduced the error-bound and size-

bound approximation approaches, embracing these problems.

These approaches are based on a recursive subdivision procedure, that stops if the

desired redundancy (size-bound) or the desired maximum approximation error (er-

ror-bound) is reached. Figure 5b and 5c illustrate the size and error-bound approxi-

mation of a polygon into variable-sized tiles (top row) and into Z-ordered interval

sequences (bottom row). Interval sequences yield either about half of the approxima-

60 tiles

41 intervals

+14% error

+14% error
20 intervals
+26% error

20 tiles
+61% error

+30% error

+30% error
30 tiles

Figure 5: Decomposition of a spatial object 
Top row: into Z-tiles, bottom row: into Z-ordered interval sequences;

a) granularity-bound, b) size-bound, and c) error-bound approach 

a) b) c)
17 intervals
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tion error or half of the redundancy dependent on the desired approach compared to

Quadtree tiling.

Kriegel, Pötke, and Seidl adapted in [KPS 01a] the algorithms of [Ore 89] by

integrating the management of generated intervals into the recursive spatial decom-

position. The algorithm returns the sorted interval sequence for a given d-dimension-

al spatial object (cf. figure 6). Starting with a single interval, encoding the entire data

space, non-empty tiles are subdivided recursively, following the chosen space-filling

curve. Depending on the desired approximation type, the recursion is terminated by

a size-bound or an error-bound criterion. 

Furthermore, there exists an alternative approach proceeding bottom-up, iterative-

ly closing small gaps between intervals. For a size-bound approximation, this algo-

rithm stops if the maximum redundancy has been reached. The error-bound approach

minimizes the redundancy, by allowing only gaps larger than a MAXGAP parameter

between the different intervals, grouping all other intervals together to “grey inter-

vals”.

function decompose (object, bound) → sequence of intervals;
begin

Sequence result = 〈  [0..2h–1] 〉;
PriorityQueue tiles = 〈(∞, entire_space)〉;
while not bound exceeded   /* size bound or error bound */

and not tiles.empty() do   /* granularity bound */
tile = tiles.dequeueGreatest ();
if tile ∩ object is empty then

remove the cell codes of tile from result;
elsif | tile | > 1 then

split tile into {tile1, …, tilen};

for i = 1..n do tiles.enqueue(|tilei – object|, tilei);

end if;
end do;
return result;

end decompose;

Figure 6: Recursive decomposition of a spatial object into an interval sequence
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1.4 Processing Spatial Queries

In this section we review some general ideas about the spatial query process as

presented in the literature. In the first two subsections we point out the difference

between two- and multi-step query processing. In subsection 1.4.3 we look at the

topic of complexity versus redundancy. The new spatial access method, developed

throughout this thesis, combines multi-step query processing with a balanced ratio

between complexity and redundancy, which itself is essential for efficient query pro-

cessing [SK 93]. 

1.4.1  Two-Step Query Processing

As already mentioned, we can transform spatially extended objects to object inter-

val sequences. In the next section we will introduce an existing spatial access meth-

od, the RI-tree1, enabling us to efficiently process interval intersection queries. As

intervals, like minimum bounding rectangles2, only approximate objects, a second

step is needed to pinpoint whether two objects intersect or not.

Gaede describes this two-step strategy for the query process in the following way

(cf. [Gae 95]):

  • Filter step: By using a spatial access method (e.g. RI-tree, R-tree etc.) based on

approximated geometries (e.g. intervals, MBRs...) one obtains a set of candidate

objects. With this step one eliminates most objects that do not satisfy the query,

however some false hits are usually included.

  • Refinement step: To identify false hits in the candidate set, it is necessary to fetch

the qualifying objects into main memory and perform a (computationally expen-

sive) test on the accurate geometry.

In this thesis we only focus on the filter step. In order to refine collision and box

volume queries, a fine-grained spatial interference detection of the candidate set can

be implemented, as for instance done in the DIVE system (cf. [KMPS 01a],

[KMPS 01b]) .

1 Patent pending [KPS 00b].
2 We could also approximate our spatial object with a minimum bounding rectangle (MBR), and use the R-tree
(cf. [Gut 84]) or some variant of it as a spatial access method.
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1.4.2  Multi-Step Query Processing

In [BKKS 94]1 the filter step was replaced by two filter steps leading to a three step

approach for the intersection problem (cf. figure 7). 

  • In a first filter step the minimum bounding rectangles of the objects are evaluated

returning a set of candidates. This step can be efficiently supported by spatial ac-

cess methods such as the R*-tree [BKSS 90]. 

  • In the second filter step, more accurate approximations are exploited for filtering

out elements (false hits) from the candidate set. Moreover, answers can already be

identified using conservative as well as progressive approximations (e.g. mini-

mum bounding 5-corners and maximum enclosed rectangles)  without accessing

the exact representation of the spatial objects.  Two different techniques are pre-

sented in [BKKS 94]:

The false area test: The difference between the area of an object obj and the

area of its conservative approximation is called the false area (denoted by

faAppr(obj)). For two intersecting polygonal objects obj1 and obj2 the following

property holds:

Appr(obj1) ∩ Appr(obj2) > faAppr(obj1) + faAppr(obj2) ⇒ obj1 ∩ obj2 ≠ ∅

To put it in words, if the area of the intersection of the approximations is larger

than the sum of the false areas of the objects, it follows that the objects intersect.

1 Jensen certifies this paper as being particularly beautiful and content-rich [Jen 99]. 

candidates

SAM

candidates

false hits

response set

processing of
spatial queries

$

multi-step

exact geometry
processor

geometry
filter

hits false hits

Figure 7: Multi-step query processing



Chapter 1 Introduction

High resolution indexing for CAD databases 10

Progressive approximations: In addition to conservative approximations, pro-

gressive approximations (cf. figure 8) are adequate for identifying hits. A polyg-

onal object is progressively approximated if the point set of the approximation is

a subset of the point set of the object. If two progressive approximations inter-

sect, it follows that the objects intersect.

  • Eventually, in the third step, all remaining members of the candidate set are exam-

ined. This step requires access to the exact representation of the spatial objects.

In this thesis we introduce three filter steps based on object interval sequences,

akin to the above steps. This yields a four step approach for query processing, i.e.

three filter steps and one refinement step. Our second filter step is quite similar to the

false area test, but can easily be enlarged to cope with progressive approximations as

well (cf. subsection 6.1.3)1. 

We want to shortly discuss two more papers, taking advantage of an introduced

second filter step. A variant of both is applied in the second filter step of our new

access method.

In [ZS 98] a polygon approximation, called four-color raster signature (4CRS), is

introduced.  Each polygon contains  cells, each one having two bits of informa-

tion to indicate whether a cell is empty, weak, strong or full (cf. figure 9). In the

1  Unfortunately, progressive approximations are very expensive to compute, especially for maximum enclosed
approximations [BKKS 94].

object conservative progressive

Figure 8: Conservative and progressive approximations

m n×

Weak: the cell contains an intersection of 50 %
or less with the polygon

Empty: the cell does not intersect the polygon

Strong: the cell contains an intersection of more 
than 50 % with the polygon

Full: the cell is fully occupied by the polygon

Weak: the cell contains an intersection of 50 %
or less with the polygon

Empty: the cell does not intersect the polygon

Strong: the cell contains an intersection of more 
than 50 % with the polygon

Full: the cell is fully occupied by the polygon

Figure 9: Four-color raster signature
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second filter step the false area test is applied to each pair of superimposed cells. If

they have each more than 50% of the polygon’s area it is obvious that the polygons

intersect each other.

In [HJR 97] it is deployed, that some configurations of boundaries imply that poly-
gons must intersect. An example of such a situation is depicted in figure 10.

1.4.3  Complexity versus Redundancy

Most approaches for multi-step query processing are based on a first filter step,

which itself uses minimum bounding rectangles to approximate the objects. This

approach reveals strong disadvantages caused by the coarse approximation [SK 93].

These drawbacks are avoided by object decomposition techniques introduced in

[KHS 91]. Object decomposition techniques use a set of simple components repre-

senting a complex spatial object. However, the number of components, called redun-

dancy, results in a storage and query processing overhead. According to [SK 93] the

point at issue is: 

Which degree of redundancy is best suitable for efficient spatial query processing? 

In the experiments, presented in chapter 4, it is shown that an answer to this ques-

tion is crucial for the efficiency of our new spatial access method.

1.5 The Relational Interval Tree

The efficient management of interval data represents a core requirement for many

spatial database applications1. The RI-tree, developed by Kriegel, Pötke, and Seidl,

is a relational storage structure for interval data (lower, upper), built on top of the

Figure 10: Polygon boundary test

This combination of boundary points imply that the two polygons intersect This combination of boundary points imply that the two polygons intersect 
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SQL layer of any ORDBMS. With the Relational Interval Tree (RI-tree), an efficient

access method has been proposed to process interval intersection queries. By design,

it follows the concept of Edelsbrunner’s main-memory interval tree [Ede 80] and

guarantees the optimal complexity for storage space and for I/O operations when

updating or querying large sets of intervals.

1.5.1  Relational Storage and Extensible Indexing

The RI-tree strictly follows the paradigm of relational storage structures since its

implementation is purely built on procedural and declarative SQL but does not as-

sume any lower level interfaces to the database system. In particular, built-in index

structures are used as they are, and no intrusive augmentation or modification of the

database kernel is required.

On top of its pure relational implementation, the RI-tree is ready for immediate

object-relational wrapping. It fits particularly well to the extensible indexing frame-

works, which were already proposed in [Sto 86]. These frameworks, which are pro-

vided by the latest object-relational database systems, enable developers to extend

the set of built-in index structures by custom access methods in order to support user-

defined data types and predicates without weakening the reliability of the entire sys-

tem.

1.5.2  Dynamic Data Structure

The structure of an RI-tree consists of a binary tree of height h which covers the

range [1, 2h–1] of potential interval bounds. It is called the virtual backbone of the

RI-tree since it is not materialized but only the root value 2h–1 is stored persistently

in a metadata table. Traversals of the virtual backbone are performed purely arithmet-

ically by starting at the root value and proceeding in positive or negative steps of

decreasing length 2h–i, thus reaching any desired value of the data space in O(h) CPU

time and without causing any I/O operation.

Upon insertion, an interval is registered at the highest node that is contained in the

interval. For the relational storage of intervals, the value of that node is used as an

artificial key. The resulting relational schema, called intervals or Range table, con-

1 A variety of methods has been published concerning interval management in databases, most of them
addressing temporal applications [TCG+ 93] [MTT 00]. In [KPS 00a] a survey of interval handling in
general is given.
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tains the attributes (node, lower, upper, id) and is supported by two composite index-

es (node, lower, id) and (node, upper, id), called lower- and upperIndex. An interval

is represented by exactly one entry in the Range table and in each of the two indexes,

and therefore, O(n/b) disk blocks of size b suffice to store n intervals. For inserting or

deleting intervals, the node values are determined arithmetically, and updating the

indexes requires O(logb n) I/O operations per interval.

The illustration in figure 11 provides an example for the RI-tree. Let us assume the

intervals (2,13) for Mary, (4,23) for John, (10,21) for Bob, and (21,30) for Ann

(cf. figure 11a). The virtual backbone is rooted at 16 and covers the data space from

1 to 31 (cf. figure 11b). The intervals are registered at the nodes 8, 16, and 24 which

are the highest nodes hit by the intervals. The interval (2,13) for Mary is represented

by one entry in the table intervals (8, 2, 13, Mary) and the entries (8, 2, Mary) in the

lowerIndex and (8, 13, Mary) in the upperIndex since 8 is the registration node, and

2 and 13 are the lower and upper bound, respectively (cf. figure 11c and 11d). 

1.5.3  Intersection Query Processing

To minimize barrier crossings between the procedural runtime environment and

the declarative SQL layer, an interval intersection query (lower, upper) is processed

in two steps. The procedural query preparation step descends the virtual backbone

John
Mary

Bob
Ann

2M 13M

4J

10B 23J

21B

lowerIndex (node, lower, id):

upperIndex (node, upper, id):

8, 2, Mary 16, 4, John 16, 10, Bob

8, 13, Mary 16, 21, Bob 16, 23, John

Figure 11: Example for an RI-tree   
a) four sample intervals, b) virtual backbone and registration positions of the intervals, 
c) resulting table intervals, d) resulting relational indexes lowerIndex and upperIndex 

30A21A

24, 30, Ann

24, 21, Ann

root = 16

248

4 12 20 28

2 6 10 14 18 22 26 30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

a)

b)

d)

intervals (node, lower,upper, id):

c)

8, 2, 13, Mary 16, 4, 23, John 16, 10, 21, Bob 24, 21, 30, Ann
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from the root node down to lower and to upper, respectively. The traversal is per-

formed arithmetically, and the visited nodes are collected in two main-memory ta-

bles, leftNodes and rightNodes, as follows: nodes to the left of lower may contain

intervals which overlap lower and are inserted into leftNodes. Analogously, nodes to

the right of upper may contain intervals which overlap upper and are inserted into

rightNodes. Whereas these nodes are taken from the paths, the set of all nodes be-

tween lower and upper belongs to the so-called inner query which is represented by

a single range query on the node values. All intervals registered at nodes from the

inner query are guaranteed to intersect the query and, therefore, will be reported

without any further comparison. The query preparation step is purely based on main

memory and requires no I/O operations.

In the subsequent declarative query processing step, the transient tables are joined

with the intervals table by a single, three-fold SQL statement (cf. figure 12). The

upper bound of each interval registered at nodes in leftNodes is compared to lower,

and the lower bounds of intervals stemming from rightNodes are compared to upper.

The inner query corresponds to a simple range scan over the intervals with nodes in

(lower, upper). The SQL query requires O(h·logbn + r/b) I/Os to report r results from

an RI-tree of height h since the output from the relational indexes is fully blocked for

each join partner.

1.5.4  Optimizations

The naive approach of the RI-tree, produces a lot of unnecessary join partners. In

this subsection we shortly introduce optimization rules for the RI-tree, which are

especially useful for object interval sequences, e.g. spatial queries (for further elabo-

rations cf. [KPS 01a] or [Pöt 01]).

SELECT id FROM intervals i, :leftNodes q
WHERE i.node = q.node AND i.upper >= :lower // left queries

UNION ALL
SELECT id FROM intervals i, :rightNodes q

WHERE i.node = q.node AND i.lower <= :upper // right queries
UNION ALL
SELECT id FROM intervals i  //inner queries

WHERE i.node BETWEEN :lower AND :upper;

Figure 12: SQL statement for interval intersection queries
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1.5.4.1  Gap optimization

The naive approach of the RI-tree, disregards the important fact that the intervals

of an interval sequence represent the same object. As a major disadvantage, many

overlapping queries are generated. This redundancy causes an unnecessary high

main memory footprint for the transient query tables, an overhead of query time, and

lots of duplicates in the result set, which have to be eliminated. The basic idea is to

avoid the generation of redundant queries, rather than to discard the respective que-

ries after their generation.

In the example, depicted in figure 13, the root node (128) is queried by three right

queries. An interval registered at the root node is reported three times if its lower

bound is less or equal to 52, and twice if its lower bound is greater than 52 but not

greater than 85. The right query of the rightmost interval suffices to report all result-
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ing intervals from node 128, and discarding the other queries prevent the generation

of duplicates without yielding false dismissals.

Node 64 is also queried three times. A registered interval is reported at least once

— due to the inner query — and up to three times if its lower bound is less or equal

to 52 and its upper bound is greater or equal to 87. Here, the inner query of the second

interval suffices to produce the complete result. Analogously, the nodes 32, 48, 52,

56, 80, 84, 88, and 96 are queried twice and may produce duplicates.

In [KPS 01a] it is asserted and proved, that for a sorted interval sequence

q = 〈q1, …, qn〉  with intervals qi = (loweri, upperi), the result of an intersection query

is complete if for each qi, query generation is restricted to nodes n with upperi–1 < n <
loweri+1 where upper0 = –∞ and lowern+1 = ∞.

1.5.4.2  Integrating Inner Queries

As an example, consider the interval (43, 52) in figure 13 which yields the inner

query ‘node BETWEEN 43 AND 52’ or, rewritten, ‘node BETWEEN 43 AND 52

AND upper ≥ 43’. The left query at node 42 translates to ‘node = 42 AND upper ≥ 43’

or, rewritten, ‘node BETWEEN 42 AND 42 AND upper ≥ 43’. The left query range

(42, 42) is immediately adjacent to the inner query range (43, 52). Thus, merging

both queries to the single range query ‘node BETWEEN 42 AND 53 AND upper ≥
43’ saves one (cached) B+-tree lookup without producing any redundancy. Generally

spoken, if one interval bound is odd, the outer adjacent node is even and, thus, is

reached earlier when descending the tree. The inner query may be merged with the

closest corresponding left or right query. If both interval bounds are odd, the algo-

rithm arbitrarily chooses the adjacent left node or right node. Only if both interval

bounds are even, the inner query cannot be merged with an adjacent query. 

The exploitation of this observation typically avoids the generation of 75% of the

inner queries.

Figure 13 illustrates the effect of these two optimization rules to our example.

Having originally generated 24 queries, now only 9 queries are produced.

1.5.5  Final Optimized Algorithm

The presented optimizations are orthogonal and may be integrated into the naive

algorithm independent from each other. When descending from the root to the inter-

val bounds, single queries beyond the adjacent gaps are suppressed, and inner queries

may be combined with adjacent left or right queries. The resulting left and right
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queries are collected in two transient tables, leftNodes (from, to, lower) and right-

Nodes (from, to, upper), indicating the single nodes (if from = to) or the range of

nodes (if from < to) to be scanned, and the lower or the upper bound of the individual

query interval. Query processing itself is performed by a single two-fold SQL state-

ment as depicted in Figure 14.

1.5.6  Concluding remark

For a more detailed elaboration of the RI-tree have a closer look at [Pöt 01] or

[KPS 01a]. We use this final version of the RI-tree as a starting point for a new access

method, called X-RI-tree, which will be developed throughout this thesis. The X-RI-

tree is an enhancement of the RI-tree, suitable for high resolution CAD databases. In

order to understand the X-RI-tree, you have to be acquainted with the basics of the

RI-tree, as introduced in this section.

1.6 Problem Formulation

This work was mainly motivated by the need of two of our industrial partners, a

German car manufacturer and an American plane producer, dealing both with high

resolution CAD data. Gaede pointed out that the number of intervals, representing a

spatially extended object, exponentially depends on the granularity of the grid ap-

proximation [Gae 95]. Furthermore, the extensive analysis given in [MJFS 96] and

[FJM 97] shows, that the asymptotic redundancy of an interval-based decomposition

is proportional to the surface of the approximated object. Thus, in the case of high

resolution huge parts (e.g. wings of an airplane), the number of intervals can become

very large. In order to support the process of virtual engineering, an efficient access

SELECT id FROM intervals i, :leftNodes left
WHERE i.node BETWEEN left.from AND left.to

AND i.upper >= left.lower  // using upperIndex
UNION
SELECT id FROM intervals i, :rightNodes right

WHERE i.node BETWEEN right.from AND right.to
AND i.lower <= right.upper  // using lowerIndex

Figure 14: Final SQL statement for interval sequence queries
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method for spatial objects is needed. The best known access method, which is also

suitable for a multi user environment, is the RI-tree (cf. [KPS 00a] [Pöt 01]). But

unfortunately, it does not fully meet the industrial demands:

  • First, processing collision and box volume queries in interactive time is no longer

possible, because of the high redundancy (i.e. large amount of intervals for each

object) and the high resolution (i.e. high virtual primary structure of the RI-tree). 

  • Secondly, a lot of secondary disk storage space is occupied, as for each interval a

new entry in the intervals table and the corresponding upper- and lowerIndexes is

spend.

  • Third, the main memory session footprint may become very high because of the

enormous amount of transient join partners, generated during the procedural query

preparation step. 

In this thesis a new access method for spatially extended objects is developed,

which adopts the positive properties of the RI-tree, as for instance its easy implemen-

tation on top of any ORDBMS. Furthermore the main memory session footprint, the

overall response time, and the amount of occupied secondary disk space are reduced.

This new index, called X-RI-tree, is an enhancement of the RI-tree. The X-RI-tree

supports the intersect predicate on a spatial data type TOIS (Type of Object Interval

Sequence). Its evaluation is based on two real-world test data sets CAR and PLANE

(cf. figure 15), demonstrating that this index is suitable for industrial use.

approx. 10.000 parts

approx. 10 million intervals

resolution: 42 bit (0 .. 4.398.046.511.103)

data space: [0 inch .. 3276,8 inch]3

voxel side length: 0,2 inch

b)

Figure 15: High resolution CAD test data sets    
a) CAR, b) PLANE 

approx. 200 parts

approx. 7 million intervals

resolution: 33 bit (0 .. 8.589.934.591)

data space: [0 m .. 6,144m]3

voxel side length: 3 mm

a)
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1.7 Method of Resolution

The basic idea of the X-RI-tree consists in grouping black intervals of the original

RI-tree together to larger grey intervals and attach the corresponding black object

interval sequence to the grey intervals. Furthermore, we enhance the upper- and low-

erIndexes of the RI-tree with aggregated information of the grey intervals. 

Figure 16 illustrates the query process of interval intersection queries. It consists

of three consecutive filter steps, which are closely linked to the three parts of a grey

interval.

Figure 17 shows how an object A is stored in the RI-tree and in the X-RI-tree. The

grey interval with the hull (13,19) is once stored in the intervals table of the X-RI-tree

whereas three entries in the intervals table of the RI-tree are necessary. Likewise, the

X-RI-tree has less entries in the upper- and lowerIndex. Furthermore, the grey inter-

vals are situated closer to the root of the tree.

different parts of 
a grey interval

different filter steps 
of the query process

short explanation

the hull
(lgrey , ugrey)

first filter step:
RI-tree

In the first filter step all interlacing
(i.e. intersecting) grey query and
database intervals are detected by
means of a slightly altered RI-tree,
which evaluates the hulls of the
intervals (lgrey , ugrey). 

the ADT TAIS 
(Type of Aggregated 
Interval Sequence)

second filter step:
fast grey test

By means of aggregated informa-
tion of the grey intervals, the fast
grey test tries to figure out, whether
two interlacing intervals really
intersect. It applies the “false area
test” [BKK 94] and the “boundary
test” [HJR 97] to grey intervals.

the ADT TIS 
(Type of Interval 
Sequence)

third filter step:
BLOB test

In the third filter step the attached
interval sequences, stored in a
BLOB (Binary Large OBject), are
carefully investigated.

Figure 16: The different parts of a grey interval with the correspondent filter steps
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1.8 Outline of this work

After this first introductory chapter, we will concentrate on the X-RI-tree in the

following three chapters. The X-RI-tree is a new relational access method for object

interval sequences. Chapter 2 introduces grey intervals and how they can be integrat-

ed into an ORDBMS. Chapter 3 discusses in great detail the process of intersection

queries of grey object interval sequences, by means of the X-RI-tree. We will explain

at full length the three different filter steps of the X-RI-tree and the way they are

linked together. In chapter 4 the experimental results of our new relational access

method are presented and compared to the RI-tree. This evaluation is based on the

δ=5/6

n=2 ...

Figure 17: Storing one object interval sequence in the (X-)RI-tree
a) black / grey object interval sequence, b) RI-tree / X-RI-tree,     

c) intervals tables, d) upper- and lowerIndexes 

b)

10 20 30 a) 1 

32

d)

intervals (node, lower, upper, id, AIS, IS):c)

...
(grey) object interval sequence
object A and its corresponding

intervals (node, lower, upper, id): 

24,23,30,A,AIS3,IS3

16,16,A

(X-)RI-tree

4,3,7,A

8,3,8,A,AIS1,IS1 16,13,19,A,AIS2,IS2
(X-RI-tree)

(RI-tree)
8,8,8,A 13,13,13,A 16,16,16,A 19,19,19,A 24,23,30,A

8,3,A,AIS1 16,13,A,AIS2 24,23,A,AIS3

4,3,A 8,8,A 13,13,A 19,19,A 24,23,A

(3,7)

(8,8)
TISTAIS

(13,13)

(16,16)

(19,19)
TISTAIS

TISTAIS

(23,30)

lowerIndex (node, lower, id, AIS):

lowerIndex (node, lower, id): 

(X-RI-tree)

(RI-tree)

16,16,A4,7,A 8,8,A 13,13,A 19,19,A 24,30,A

upperIndex (node, upper, id, AIS):

upperIndex (node, upper, id): 

(X-RI-tree)

(RI-tree)

16,13,19,A,AIS2,IS2

8,8,A,AIS1 16,19,A,AIS2 24,30,A,AIS3

TOIS

δ=3/7

n=3 ... δ=1

n=1 ...
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two test data sets, shown in figure 15. We will see that in all relevant areas the X-RI-

tree outperforms the RI-tree approximately by an order of magnitude. Chapter 5 con-

siders extensibility interfaces of ORDBMSs and shows, how the X-RI-tree can be

integrated into an off-the-shelf ORDBMS, by means of these frameworks. In the last

chapter we will resume our work. Furthermore, we will present a list of open prob-

lems and shortly sketch possible methods of resolution. 



Chapter 2
Storage of Spatial Objects 
in an ORDBMS

The mapping of a spatial object by means of a space filling curve into a sequence

of intervals, ends up with a huge number of very small intervals. Not only are the

intervals very small, but also the gaps between them tend to be so. In order to mini-

mize the number of intervals, which have to be stored in the RI-tree, we close these

small gaps between intervals of the same (spatial) object. As we do not want to loose

any information, we attach to each of these newly created grey intervals a black

interval sequence.

The above indicated approach is introduced in this chapter. The presented tech-

nique perfectly fits into the well known error-bound approach and furthermore can

easily be embedded into modern ORDBMSs by means of their extensible indexing

frameworks (cf. chapter 5). 

We call this new spatial indexing method Extended Relational Interval Tree (X-

RI-tree), as it is based on the original RI-tree. Like the RI-tree, the X-RI-tree effi-

ciently supports interval intersection queries, i.e. reporting all intervals from the da-

tabase that intersect a given query interval. The X-RI-tree inherits most of the prop-

erties of its ancestor the RI-tree. Both implement the paradigm of relational access

methods and exploit the availability, robustness and high performance of built-in

index structures in existing systems. 
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In the next chapter we concentrate on the query process based on the X-RI-tree,

whereas in this chapter we focus on the storage properties of our new approach. In

section 2.1, we define the terms grey and black intervals as well as attached black

interval sequence. Additionally to these definitions, in section 2.2 spatial objects and

grey intervals are modelled with UML. In section 2.3 we discuss, how an interval

sequence can be efficiently stored in a BLOB. In section 2.4 the model of section 2.2

is integrated in an off-the-shelf ORDBMS. We describe in detail the ADTs TAIS and

TIS. Then, the structure of the necessary database tables and their corresponding

indexes are presented. Section 2.5 and 2.6 might be skipped as they are not necessary

for the basic understanding of the X-RI-tree, but have a rather accessory character. In

section 2.5 the reader’s attention is drawn to the way how insert, delete and update

statements are handled, and in section 2.6 the term transformed database is intro-

duced. This term is helpful for chapter 4, where we show by means of experiments in

what way the original databases (RI-tree) differ from transformed databases (X-RI-

tree).

2.1 Grey Intervals

As shown in [KPS 00a], [KPS 01a] and [Pöt 01] the RI-tree outperforms compet-

ing dynamic interval access methods by a factor of 5 for query response time and

more than 40 for physical disk accesses. Furthermore, it needs only O(n/b) disk

blocks of size b to store n intervals. Although this is the optimum analytical storage

complexity, it seems rather wasteful to spend one row in the table intervals of the RI-

tree for each short interval. As there are a lot of application problems where the

corresponding objects can be modelled as interval sequences, consisting of very

small intervals and small gaps, it seems worth investigating, whether it is not better

to group small intervals, together to longer grey intervals. We can find such applica-

tions in a lot of different areas. They may occur as transaction time and valid time

ranges in temporal databases [SOL 94] [Ram 97] [BÖ 98] or as line segments on a

space-filling curve in spatial applications [FR 89] [BKK 99].

All the definitions and other basics necessary for the understanding of the X-RI-

tree are introduced in this section. We start with the definition of a black interval and

a black interval sequence. 
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Definition 1 (black interval)

Let  be a domain of boundary points. The closed interval Iblack = (l, u) ∈ B2

is called a black interval, iff l ≤ u. It represents all elements x ∈ B, where l ≤ x ≤ u.

The number of represented elements x ∈ B is called the length of the interval Lblack ,

i.e. Lblack =  u-l+1. The values l and u are the lower and upper bound of Iblack ,

respectively. The interval Iblack is called degenerated or point, iff l = u.

Although it is possible to define the boundary points of the black intervals as real

numbers [Pöt 01], we confine them to natural numbers as this answers our purpose.

The definition of a black interval is straightforward and self-explaining. Note, the

length of a point, according to our definition, equals one.

Definition 2 (black interval sequence) 

Let  be a domain of black intervals with boundaries out of

. A sequence Sblack = <s1, …, sn> of black intervals si ∈ D is called a black

interval sequence with cardinality n, iff the following condition holds: 

Note that we define a black1 interval sequence as an ordered set of intervals, where

there exists at least one natural number m between two intervals (li , ui) and (li+1 , ui+1),

with ui < m < li+1. This is done because otherwise the two intervals could be joined

to a longer one.

A black interval sequence naturally corresponds to one object. Although this is not

included in definition 2, we silently assume it. Thus we could also speak of a black

object interval sequence. Note that we allow one object consisting of several black

interval sequences, but we do not allow, that a black interval sequence represents

several application domain objects. 

Definition 3 (grey interval with an attached black interval sequence) 

Let  be a domain of black intervals with boundaries out of

. Let Sblack = <s1, …, sn> be a black interval sequence with si ∈ D, s1=(l1 , u1)

and sn=(ln , un). Then, the tuple Igrey = ((lgrey , ugrey) , Sblack) is called a grey interval

with the attached black interval sequence Sblack , iff lgrey = l1 and ugrey = un. The

values lgrey and ugrey are the lower and upper bound of Igrey respectively.

1 If it is clear from the context, we omit the word black.

B IN⊆

D l u,( ) B
2∈ l u≤{ }=

B IN⊆

i 1 … n 1–, ,{ } . ui 1+ li 1+<( ).∈∀

D l u,( ) B
2∈ l u≤{ }=

B IN⊆
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Lgrey = ugrey - lgrey+1 is called the length of the grey interval. Furthermore, we call

 and  the number of black and

white cells of the grey interval.

In a grey interval, not only black intervals are included but also the gaps between

them. If we are only interested in the upper and lower bounds of Ιgrey , but not in the

exact structure of Sblack , we also write a little bit sloppy Igrey = (lgrey , ugrey). If the

cardinality of Sblack is 1, Nwhite is equal to 0. In this case Igrey = ((lgrey , ugrey), <s1>)

is also called a black interval.

Note that at the beginning and at the end of a grey interval gaps are not allowed.

Similar to Definition 2 we could easily define grey interval sequences and according

to the remark following this definition, we could also speak of grey object interval

sequences. 

We are now defining the average density of a grey interval dgrey . It is defined as

the ratio of the sum of the lengths of all black intervals attached to Igrey to the length

of Igrey .

Definition 4 (density of a grey interval) 

Let Sblack = <s1, …, sn> be a black interval sequence with cardinality n. Let

Ιgrey = ((l1,un) , Sblack) be the corresponding grey interval. Then the density of a grey

interval dgrey is defined as follows:

Correspondingly, to the error-bound-approach we now define a maximum gap

parameter of a grey interval, called MAXGAP. This parameter assures that the maxi-

mum gap between two black intervals of Igrey is smaller or equal to the value of

MAXGAP.

Definition 5 (maximum gap parameter) 

Let Sblack = <s1, …, sn> be a black interval sequence with cardinality n > 1. Let

Ιgrey = ((l1,un) , Sblack) be the corresponding grey interval. Then the maximum gap

parameter MAXGAP of a grey interval is defined as follows:

If n = 1, then 0 is assigned to MAXGAP.

NBlack Lii 1=

n∑ 0>= Nwhite Lgrey Lii 1=

n∑–= 0≥

dgrey

Li

i 1…n=
∑
Lgrey

---------------------
NBlack

NBlack Nwhite+
------------------------------------= =

MAXGAP max li 1+ ui– 1– i 1…n 1–∈( ){ }=
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We also speak of a maximum gap parameter MAXGAPobject of a (spatial) object,

meaning that all the maximum gap parameters MAXGAP(interval) of the grey inter-

vals, belonging to this object are smaller or equal to MAXGAPobject . Similarly, we

speak of a MAXGAPdatabase parameter, meaning that all the maximum gap parame-

ters MAXGAPobjects of all objects in the database are smaller or equal to the MAX-

GAPdatabase parameter. If it is clear from the context, we omit the indices and use

only the term MAXGAP parameter, or even shorter only M. In Figure 18 all the de-

fined terms and their connections to each other are depicted for clarification.

We can assess dgrey by means of the following theorem.

Theorem 1 (density of a grey interval)

The density dgrey of a grey interval Igrey with a defined maximum gap parameter M

can be estimated in the following way: 

Figure 18: Grey object interval sequence

a voxelized
“real world” object

black object interval sequence

 grey object interval sequence 

Lblack=4 Lblack=1 

1 10 20  40 50 30 

dgrey = 5/6

Lgrey = 6

dgrey = 3/7

Lgrey = 7

dgrey = 1

Lgrey = 8

dgrey = 2/5

Lgrey = 5

dgrey = 1

Lgrey = 1

1 10 20 30 40 50 

MAXGAPobject = 2 

 

is transformed 
via a space filling curve into a
black object interval sequence

MAXGAP = 1 MAXGAP = 2 MAXGAP = 2MAXGAP = 0 MAXGAP = 0

1
1 M+
-------------- dgrey 1≤ ≤
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Proof. According to definition 4, dgrey is smaller or equal to one. On the other

hand, the minimum density is achieved if the n intervals of the attached black interval

sequence are points and all gaps between them are of length M.

In this case, dgrey = n/(n+M·(n-1)) = 1/(1+M·(n-1)/n) ≥ 1/(1+M) holds as well.

2.2 Modelling Grey Intervals

In this section the grey object interval sequences, defined in the last section, are

modelled with UML. 

As depicted in figure19, a spatial object consists of an ordered collection of grey

intervals. The grey intervals themselves are made up of three different objects and

offer two methods for testing intersection and interlacing, which are scrutinized in

Figure 19: Modelling of a Spatial Object

used in 
second  filter step

...

*

ID : integer

intersects (A SpatialObject) : Boolean

interlaces (A SpatialObject) : Boolean

{ordered}
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CntTestedElements: number
...

used in 
second  filter step

...

*

ID : integer

intersects (A SpatialObject) : Boolean
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chapter 3. Each of the three objects of a grey interval is linked directly to one of the

three filter steps in the query process (cf. figure 19). 

  • The ADT TInterval is the hull of the grey interval, used in the first filter step.

  • The ADT TAggregatedIntervalSequence (TAIS) contains aggregated information

of the attached interval sequence. It has to comprise the density of the attached in-

terval sequence. Other information like the cardinality, the actual MAXGAPinterval

value, the coordinates of the bounding box of the grey interval, etc. might be use-

ful, but can be omitted. The ADT TAIS could easily be enlarged by such informa-

tion and may thereby improve the effectiveness of the second filter step.

  • The ADT TIntervalSequence (TIS) provides only a method fetch (A TInterval,

N number): TIntervalList, purveying an ordered list of black intervals. This list

contains maximum N elements, starting with the black interval closest to A.lower.

If less than N black intervals are included in the range (A.lower, A.upper) the car-

dinality of the list is smaller than N, otherwise it is equal to N. There are no addi-

tional attributes assigned to this abstract data type, because different implementa-

tions need different attributes.

We can distinguish three main kinds of implementations. 

First, if the grey interval is actually a black interval no additional attributes have

to be stored (cf. class TEmptyIS). 

In the second case, represented by the classes TBitOrientedIS and TOffsetOrient-

edIS, the attached black interval sequence is stored in a BLOB. This approach is

useful for intricate spatial objects, and is discussed in detail in the next section. 

In case of dynamically created query objects or simple database objects, like

boxes (TBoxOrientedIS) or circles (TCircleOrientedIS), we can use another

approach, which does not materialize the attached interval sequence but rather

creates it on demand during the fetch-operations. In order to do that, only little

information, like box coordinates or the central point plus radius are necessary.

In this work, we pursue this idea only in case of dynamically created box volume

queries (cf. section 3.7), but as already mentioned it would be useful for simple

database objects as well.
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2.3 Storing an Interval Sequence in a BLOB

In this section, we discuss how the attached interval sequence of a grey interval

can be efficiently materialized and stored in a BLOB. We introduce two different

approaches the bit-oriented and the offset-oriented one, which are applied in the two

classes TOffsetOrientedIS and TBitOrientedIS (cf. figure 19). Furthermore, it is

shown in which cases each of them uses less secondary disk space, leading us to

central theorems for the efficient storage of attached black interval sequences. 

2.3.1  Introduction

As it is the main task of the RI-tree to store black intervals and to efficiently

support their access, it is the main task of the X-RI-tree to do the same with grey

intervals, while using a minimum of secondary storage space (cf. design goals of

section 1.6). The RI-tree spends for each (small) interval of a black object interval

sequence one record in the intervals1 table. Additionally, two index entries in the

lower- and upperIndex are created for each interval.

Grouping n black intervals together to a grey interval saves (n-1) entries in the

intervals table plus 2·(n-1) entries in the indexes. But what we have to do additional-

ly, is storing the attached interval sequence of the grey interval. 

As already mentioned O(n/b) is the optimum complexity class for storing n inter-

vals. Furthermore, there is no redundancy included in a black object interval se-

quence, so that we have to store all the information included in this sequence in order

to deliver error-free results, with respect to the voxel representation (cf. section 1.3). 

We now present an approach of organizing the attached interval sequence, that

saves disk space without loosing any information. 

2.3.2  Bit-Oriented Approach

A very important observation is, that an object interval sequence consists of a

large number of very short intervals (e.g. points) which are connected by short gaps.

1 In the case of the RI-tree, this table is also called Range table and in the case of the X-RI-tree it is 
called XRange table.
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Experiments suggest that both the number of intervals and the number of gaps of a

specific length x are exponentially distributed (cf. section 4.3). 

This motivates the bit-oriented approach illustrated in figure 20a. We represent

each voxel of the data space, which is covered by a grey interval by one bit in its

BLOB. Obviously this approach works well for short intervals with short gaps. In-

stead of storing e.g. 5 black intervals (10,10) (12,12) (14,14) (16,16) (18,18) of one

object, we store only the hull (10,18) and the sequence (101010101) in the attached

BLOB. On the other hand, this approach is extremely bad, if the grey intervals in-

clude very long intervals or gaps. For example, grouping the two intervals (10,200)

and (400,450) together, results in the hull (10,450) and in an attached BLOB, in

which 441 bits are stored. Thus the size of the attached BLOB is always equal to

(ugrey - lgrey+1) bits, i.e. O (Lgrey).

Figure 20: Storing the attached interval sequence in a BLOB
a) bit-oriented, b) offset-oriented (bit (1) and byte (2))  
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2.3.3  Offset-Oriented Approach

In the offset-oriented approach (cf. figure 20b) we process the boundary values of

the black intervals belonging to an attached black interval sequence. If the attached

interval sequence Sblack  of a grey interval Igrey is of cardinality n, we store the values

u1-lgrey , l2-lgrey , u2-lgrey , ..., l(n-1)-lgrey , u(n-1)-lgrey , ln-lgrey sequentially in a BLOB.

Each of these 1+2·(n-2) +1 = 2·(n-1) values is smaller than Lgrey . Thus only

 bits are needed for storing one value (  bits in the

example of figure 20).

In the offset-oriented approach the size of the BLOB does not depend linearly on

Lgrey but logarithmic and additionally it depends linearly on the cardinality n of the

attached interval sequence, i.e. we have a space complexity of . 

The offset-oriented-bit and the offset-oriented-byte approach differ in the fact that

the offset-oriented-bit approach only uses the calculated number  of bits

for expressing one boundary value, whereas the offset-oriented-byte approach al-

ways uses full bytes, i.e.  bits. Thus the offset-oriented-byte

approach allows a more comfortable access to the different values in the BLOB.

A final remark: instead of using the offset-oriented approach, we could have orga-

nized the attached interval sequence by means of run-length-coding. The result is in

the same storage space complexity class but the process of accessing the BLOB at a

desired offset is only possible by scanning the BLOB from the beginning, whereas

our approach allows bipartitioning the BLOB and so a logarithmic access time is

guaranteed (cf. chapter 3).

2.3.4  Discussion

In this subsection, we first discuss the differences between the two offset-oriented

approaches and then compare both to the bit-oriented approach.

Theorem 2 (offset-oriented approach (storage))

Let Sblack = <s1, …, sn> be a black interval sequence of cardinality n, which belongs

to a grey interval Igrey = ((lgrey , ugrey) , Sblack) of length Lgrey . Then, the offset-

oriented-bit approach always needs less or equal secondary disk space compared to

the offset-oriented-byte approach for storing Sblack .

L2 greylog 42 3–( )2log 6=

O(n L2 greylog× )

L2 greylog

8 L2 greylog( ) 8÷×
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Proof. As outlined in subsection 2.3.3, the offset-oriented approaches need

 bits for storing Sblack where X denotes the number of bits needed for

storing one boundary value. In the case of the offset-oriented-byte approach X equals

 and in the case of the offset-oriented-bit approach X equals

.

Let  be equal to n+q with .

As

holds, the theorem is true.

Obviously it is sometimes better to use the bit-oriented approach which needs

O(Lgrey) bits and sometimes the offset-oriented one is better, needing

 bits. Fortunately, it can be decided which one is preferable for each

grey interval, dependent on the length of the grey interval and the cardinality of the

attached interval sequence.

Theorem 3 (bit-oriented approach versus offset-oriented approach (storage))

Let Sblack = <s1, …, sn> be a black interval sequence of cardinality n, which belongs

to a grey interval Igrey = ((lgrey , ugrey) , Sblack) of length Lgrey . Let X be equal to

 in the offset-oriented-byte approach and equal to 

in the offset-oriented-bit approach. Then, the bit-oriented approach needs less sec-

ondary disk space compared to the offset-oriented approaches for storing Sblack if the

following formula holds:

Proof. The bit -oriented approach needs Lgrey bits for storing the attached interval

sequence Sblack in a BLOB. As outlined in the theorem above X bits are needed for

storing one interval boundary in the case of the offset-oriented approaches. As we

have to store 1 + 2·(n-2)+1 = 2·(n-1) of these boundary values, the theorem holds. 

Based on this last theorem, we can decide for each grey interval whether the offset-

or the bit-oriented approach needs less secondary storage. We call this the final ap-

proach. In section 4.3 the experimental results of the bit-oriented, offset-oriented and

the final-approach are compared to each other and to the RI-tree.

2 n 1–( )× X×

8 L2 greylog( ) 8÷×
L2 greylog

L2 greylog( ) 8÷ n IN 0 q 1<≤,∈

L2 greylog = 8 n q+( ) =8n 8q+ 8n 8 q =8 n q++≤ =8 L2 greylog( ) 8÷

O(n L2 greylog× )

8 L2 greylog( ) 8÷× L2 greylog

Lgrey 2 n 1–( )× X( )×<
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2.4 Implementation of Grey Intervals

As in a lot of CAD-databases the data space is fixed, we are assuming a constant

data space, which is known in advance. Nevertheless, all methods which are intro-

duced in [Pöt 01] for handling dynamic data spaces can be applied to the X-RI-tree as

well.

The RI-tree is an efficient implementation of Edelsbrunner’s interval tree

[Ede 80], [PS 93] on top of any relational database system. In this section it is shown

how the model of grey intervals (cf. section 2.2) can be integrated into an ORDBMS,

thus meeting one of the design goals of section 1.6. In the first two subsections, we

discuss the implementation of the abstract data types TIS and TAIS. Finally, we intro-

duce the database schema, which uses these two abstract data types.

2.4.1  The Abstract Data Type TIS

As polymorphism is an inherent part of most ORDBMSs, we can implement the

abstract data type TIS straightforward (cf. figure 21).  After having defined the ab-

stract supertype TIS, the specific subtypes can be derived. 

Figure 21: Implementation of the ADT TIS

CREATE TYPE TIS AS OBJECT
( NOT INSTANTIABLE FUNCTION 

Fetch (Area TInterval, N number) RETURN TIntervalList;
) NOT INSTANTIABLE NOT FINAL;

CREATE TYPE TEmptyIS  UNDER TIS 
( FUNCTION Fetch (Area TInterval, N number) RETURN TIntervalList ); 

CREATE TYPE TBitOrientedIS  UNDER TIS
( IS BLOB,
  FUNCTION Fetch (Area TInterval, N number) RETURN TIntervalList ); 

CREATE TYPE TOffsetOrientedIS  UNDER TIS
( IS BLOB,
  FUNCTION Fetch (Area TInterval, N number) RETURN TIntervalList );

CREATE TYPE TBoxOrientedIS  UNDER TIS 
( x1y1z1 TPoint,

x2y2z2 TPoint,
  FUNCTION Fetch (Area TInterval, N number) RETURN TIntervalList );

...
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2.4.2  The Abstract Data Type TAIS

The ADT TAIS is kept rather simple. It consists only of one attribute Density and

no additional methods. As already mentioned, it could be enlarged by other values, if

required.

2.4.3  Database Schema

We can now include the two abstract data types TAIS and TIS into the table inter-

vals. Figure 23 compares the necessary table and index creation statements for the X-

RI-tree and the RI-tree to each other. In the case of the X-RI-tree, the table intervals

is augmented by the two ADTs TIS and TAIS. 

The ADT TAIS is also included into the upper- and lowerIndex so that until the

third filter step, we do not have to access the table intervals at all, but can confine

ourselves to the corresponding indexes. For the same reason both boundary values of the

grey interval, and the attribute ID are incorporated into the indexes1.

RI-tree
CREATE TABLE intervals (node int, lower int, upper int, id int);
CREATE INDEX lowerIndex ON intervals (node, lower, id);
CREATE INDEX upperIndex ON intervals (node, upper, id);

X-RI-tree
CREATE TABLE intervals (node int, lower int, upper int, id int, AIS TAIS, IS TIS);
CREATE INDEX lowerIndex ON intervals (node, lower, upper, id, AIS);
CREATE INDEX upperIndex ON intervals (node, upper, lower, id, AIS);

Figure 23: SQL statements to instantiate an (X-)RI-tree with secondary indexes

1 We resigned from introducing the TInterval-object for the sake of comparability to the RI-tree.

Figure 22: Implementation oriented ADT TAIS

CREATE TYPE TAIS AS OBJECT(
// attributes

Density  number
// if necessary further attributes like MAXGAPinterval, cardinality etc. could be included as well

);
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2.5 Insert-, Delete- and Update-Statements

2.5.1  Determination of the Fork Node

As already mentioned the primary structure of the X-RI-tree is managed purely

virtually. Let [1, 2h–1] be the entire range of the data space. In this case, the root node

is set to 2h–1 [KPS 01a] . Let (l, u) be an interval, which has to be inserted. First, we

have to determine the fork node of the interval. The fork node is the topmost node w

for which l ≤ w ≤ u holds (cf. figure 24). The computation of the fork node can be

done by recursive traversing the virtual backbone via bisection. No I/O access is

necessary, but only simple integer arithmetic, i.e. bit-shift-operations. 

2.5.2  Insert and Delete

The X-RI-tree has basically the same behavior as the RI-tree with respect to the

DML-statements insert and delete. The I/O complexity for the search in the index

(B+-directory) is O(logbn), where n denotes the number of (grey) intervals stored in

the database. 

Keep in mind, that inserting or deleting one interval in the X-RI-tree is equivalent

with inserting or deleting several intervals in the RI-tree. For example, if you group

in average M black intervals together to one grey interval of length Lgrey , you get an

I/O complexity of O(Mlogbn+M) for inserting these M intervals in the RI-tree,

whereas you get a complexity of O(logb(n/M)+(min(Lgrey , 2(M-1)log2Lgrey)/b)) in

the X-RI-Tree. The first factor in this sum is due to the fact that you have to search

once in the B+-tree, the second factor describes the number of disk accesses neces-

sary to store the M intervals in the BLOB. Not only do you always need less space to

Figure 24: Fork node of an interval in the virtual backbone

fork

root

upperlower
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store an attached interval sequence of cardinality M in the X-RI-tree compared to

storing these M intervals in the RI-tree (cf. subsection 4.3.3), but you also need less

disk accesses for index lookups. 

2.5.3  Update

The X-RI-tree has basically the same behavior as the RI-tree with respect to the

update-statement. The I/O complexity for the search in the index (B+-tree) is

O (logbn), where n denotes the number of (grey) intervals stored in the database. 

Note that updating one grey interval in the X-RI-tree, can be equivalent to i insert,

j delete and k update statements in the RI-tree. Thus it is rather difficult to compare

the update operations in both trees to each other. Nonetheless, you can assert, that the

number of I/0 accesses for searching in the B+-tree, which is the underlying operation

of all the DML-statements discussed in this section, is smaller in the case of the X-

RI-tree. This is due to the fact, that less intervals are stored in the X-RI-tree. There-

fore the height of the corresponding B+-directory can at least be as high as the one of

the RI-tree (cf. section 4.3).

2.6 Transformed Database

2.6.1  Transformation Function

In the previous sections we have introduced the X-RI-tree. We have seen, that an

instance of it can be described like an instance of the RI-tree by a five tuple

(intervals, lowerIndex, upperIndex, root, MAXGAPdatabase). We will call an instance

of the RI-tree an original database Dori. Grouping black intervals of an original

database Dori together to grey intervals, leads to a transformed database

Dtrans = f (Dori). The function f (i.e. algorithm) is called the transformation function1. 

A few obvious remarks concerning Dtrans = f ( Dori ):

• Of course, only intervals of the same object (same id value in the table intervals)
can be grouped together. 

• The number of records for each object stored in the intervals table is smaller in
Dtrans than in Dori . 

1 We use Dori(trans) interchangeable for an instance of a database as well as for the domain of the func-
tion f.
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• We use the X-RI-tree for storing Dtrans and the RI-tree for storing Dori .

• There exist a lot of transformation functions, some of them are introduced in
figure 25. 

FMAXGAP is the function, we implicitly applied up to now and the only one we

want to investigate in more detail in this thesis. Nevertheless, the other functions

might be useful, especially because some of them seamlessly fit into the size-bound

approach [Ore 89]. As already mentioned FMAXGAP can be regarded as a generaliza-

tion of the error-bound approach.

Function Explanation

Fident: The two database Dori and Dtrans are identical. Never-

theless, Dori is connected to the RI-tree and Dtrans to

the X-RI-tree.

FN1Step:

We allow only N (grey) intervals for each object. This
is a kind of size-bound approach on the first filter step.
Of course the maximum number N of intervals is not
enough for a deterministic behavior of f. Additionally
we ask for a maximum average density of each grey
object interval sequence.

FN2Step:
We allow only grey intervals with a maximum cardi-
nality of N. This is a kind of size-bound approach on
the second filter step. Additionally we ask for a maxi-
mum average density of each grey object interval
sequence.

FMAXGAP:

We allow only grey intervals with a maximum gap of
M between two black intervals of the attached black
interval sequence. Furthermore, we demand that the
grey intervals start and end with a black interval. Addi-
tionaly, the cardinality of an attached black interval-
sequence is maximum with respect to the above men-
tioned restriction. 
Note that if M is zero this function is equal to Fident. 

Figure 25: Transformation functions

Dori Dtrans→

Dori N× Dtrans→

Dori N× Dtrans→

Dori M× Dtrans→
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2.6.2  Characteristica of a Database

The term characteristica of a database denotes all the properties of an original or

transformed database, including the distribution, length, density and number of all

(grey) intervals and their corresponding fork nodes. 

This informal description can hardly be investigated, as it is not measurable and

includes a lot of different aspects. In order to receive a quantitative measure, the

following definition is introduced, although it only partly comprises the informal

description. 

Definition 6 (characteristica of a database). 
Let Dori(trans) be an original (or transformed) database. Let N denote the number of

intervals in the database. Let L denote the average interval length of a grey interval.

Let D denote the average density of a grey interval. Then denotes the

characteristica  of a database Dori(trans) and is defined as follows:

CDori trans( )

CDori trans( )
N D× L×=



Chapter 3
Intersection of Spatial Objects 
in an ORDBMS

In the last chapter we introduced grey intervals and how we can store them in an

ORDBMS. In this chapter we focus on the process of interval intersection queries. In

section 3.1 we define the terms interval interlacing and interval intersection. We then

point out, in what cases we can tell, whether two interlacing grey intervals intersect

each other or not, without accessing the attached interval sequence, stored in the

BLOB. This test is only based on information, which are integrated in the upper- and

lowerIndexes. We further introduce two different probability models, enabling us to

predict the probability, whether interlacing intervals intersect. In section 3.2 we

shortly survey the complete query process which consists of three consecutive filter

steps. In section 3.3 we discuss the first step, which is based on the original RI-tree.

In section 3.4 we introduce the so called fast grey test, which is a pure cpu test,

yielding no additional I/O accesses. In section 3.5 it is shown how this second filter

step is linked to the third one, which is discussed in section 3.6. In section 3.7 we

point out, that the concept of grey intervals is especially useful for dynamically cre-

ated query objects. We close this chapter by applying the optimization rules of the RI-

tree of subsection 1.5.4 to the X-RI-tree.
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3.1 Intersection of Interlacing Intervals

3.1.1  Introduction

In this section we introduce the two terms intersect and interlace and try to figure

out, when two interlacing intervals intersect each other. Of course we could perform

this task by examining the BLOBs, but we will confine ourselves to the following

information, available in the upper- and lowerIndexes:

• upper and lower bound of the interval
• density of the interval dgrey (i.e. number of black (Nblack) and white (Nwhite) cells 

of the interval)

What is discussed in this section forms a necessary prerequisite for the under-

standing of the query behavior of the X-RI-tree, which will be explained in detail in

the following sections of this chapter. 

3.1.2  Definitions

We will use the term interlace for the intersection of the hull of two grey intervals,

whereas we will use intersect, if the attached interval sequences of two interlacing

grey intervals intersect. For the intersection of two grey intervals it is a necessity that

they interlace. Note that in SQL:1999, which provides the Period as basic interval

data type, the corresponding operator for intersection is called “overlap” [Sno 00].

Definition 7 (interval interlacing) 

Let , let  and  be two intervals. In the

following, we say that τ and κ interlace (or, alternatively, τ interlaces κ), iff

. 

We call  the lower bound of the interlacing area

and  the upper bound of the interlacing area.

Note that we defined interval interlacing in such a way that we can use it for the

hulls of grey intervals as well as for black intervals of attached black interval se-

quences.

Definition 8 (interval intersection) 

Let  and  be two (grey) intervals of

cardinality and , which interlace each other. These two intervals intersect

each other, iff  so that si interlaces sj.

lτ uτ lκ uκ,,, IN∈ τ lτ uτ,( )= κ lκ uκ,( )=

lτ uκ≤( ) lκ uτ≤( )∧
linterlace max lτ ,lκ( )=

uinterlace min uτ ,uκ( )=

τ lτ uτ,( ) Sτ,( )= κ lκ uκ,( ) Sκ,( )=

nτ nκ

i 1…nτ∈∃( ) j 1…nκ∈∃( )
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In figure 26 the relation between the two above definitions is depicted. 

3.1.3  Intersection

3.1.3.1  Introduction

As we will see later on, it is very advantageous, not having to access the attached

interval sequence of an interval, in order to decide whether two interlacing intervals

intersect each other or not. If we can decide this, only based on the information

introduced in subsection 3.1.1, we can omit the third filter step. In this subsection we

will discuss what grey and black1 intervals have to look like, so that we can test them

successfully in a fast second filter step. 

3.1.3.2  Two Black Intervals

If two black intervals interlace, they necessarily intersect as well. This is the stan-

dard case in the RI-tree, where we do not have any attached interval sequences. But

we will find this situation in the X-RI-tree as well, although less frequently. 

3.1.3.3  Black and Grey Intervals

In this case, the situation is a little bit more complicated than in the last subsubsec-

tion. But we will still see that in almost any cases where a black interval

Iblack = (lblack , ublack) interlaces a grey interval Igrey = (lgrey , ugrey), it intersects it as

well. If any of the three conditions depicted in table 1 holds, then Iblack and Igrey

intersect each other.

1 Recall that we call grey intervals Igrey = ((lgrey , ugrey) , <s1>) also black intervals.

Figure 26: Interval interlacing and intersection
a) no interlacing, b) interlacing but no intersection, c) intersection 

a)
 

The two intervals

do not interlace

and do not intersect

The two intervals

interlace 

but do not intersect

The two intervals

interlace 

and intersect

b) c)
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Note that the third case in table 1 is the generalization of the intersection test

between two black intervals. Furthermore, it is a special case of the situation dis-

cussed in the next subsubsection.

3.1.3.4  Two Grey Intervals

Of course, two grey intervals Igrey = (lgrey , ugrey) and I’grey = (l’grey , u’grey) which

interlace do not have to intersect. Fortunately, there are two cases where we can assert

that they intersect without examining in detail the attached interval sequences of the

XRange table. The two cases are illustrated in table 2.

condition explanation figure
If the black interval is longer
than the MAXGAPdatabase

parameter, the two intervals
intersect because the maximum
gap between two black intervals
of the attached interval
sequence of Igrey is smaller than
MAXGAP.

linterlace = lblack 
and

uinterlace = ugrey

or

linterlace = lgrey 
and

uinterlace = ublack

If one of the two conditions
depicted in the cell on the left
holds, the black and grey inter-
val intersect. This is due to the
fact, that the grey intervals end
and start with black intervals.
We do not allow grey intervals
starting or ending with a “gap”
(cf. definition 3)

If the number of the white cells
Nwhite of a grey interval is

smaller than the length of the
interlacing area, then the grey
and the black interval necessar-
ily intersect. Note, this is the
reason why two black intervals
which interlace each other also
intersect each other (Nwhite of a

black interval is 0)

Table 1: Intersection between an interlacing black and grey interval

Lblack MAXGAP>

smaller than
MAXGAP

MAXGAP
larger than

uinterlace=ugreylinterlace=lblack

linterlace=lgrey uinterlace=ublack

Nwhite

<

Linterlace

Nwhiteuinterlace - linterlace+1 >
+
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3.1.4  No intersection

There are only two situations, depicted in table 3, where we can assert that two

interlacing intervals do not intersect.

condition explanation figure
ugrey = u’grey 

or

lgrey = l’grey 

or

lgrey = u’grey 

If one of the three conditions
depicted in the cell on the left
holds, the two grey intervals
intersect (grey intervals start
and end with black intervals). 

This test is similar to the poly-
gon boundary test in [HJR 97].

N’white + Nwhite 

< 
Linterlace

If the sum of the number of the
“white cells” of two grey inter-
vals N’white + Nwhite is smaller

than the length of the interlacing
area, then the two intervals nec-
essarily intersect. This is the
generalization of the third case
of table 1.

This test is similar to the false
area test in [BKSS 94].

Table 2: Intersection between two interlacing grey intervals

condition explanation figure

Nblack = 2
and 

lgrey < l’grey 
and

ugrey > u’grey 

If Igrey consists only of two

black cells, and I’grey is totally

“included” in Igrey then we

know that the two intervals can-
not intersect each other,
although they interlace.

Nblack = 2
and 

N’black = 2

and 

If both grey intervals consist
only of two black cells and, fur-
thermore, have distinct interval
bounds, then the two intervals
certainly do not intersect.

Table 3: No intersection between two interlacing grey intervals

l’grey = ugrey

u’grey = ugrey

l’grey = lgrey

Lgrey

L’grey

Linterlace

+

N’white+Nwhite

u’grey < ugrey

Lgrey

L’grey

lgrey < l’grey

Nblack = 2

lgrey l’grey ugrey u’grey≠ ≠ ≠

u’grey = ugrey

Lgrey

L’grey

l’grey = lgrey

Nblack = 2

N’black = 2
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3.1.5  Probability models

3.1.5.1  Introduction

As we have seen in the foregoing subsection we can pinpoint from time to time,

based on a few information, whether two interlacing intervals intersect or not. Nev-

ertheless, there will be a lot of cases where we cannot do that. But it is still helpful, if

we can predicate how probable an intersection might be. 

Since we want to integrate this probability model into the SQL statement of the

first filter step, its computation should be rather cheap. This is the reason why we

introduce two models. The first one models the problem a little bit better, but unfor-

tunately it is very expensive to compute. On the other hand, the second one is easy to

compute and also meets our needs.

The two probability models differ in whether “drawn elements are put back into

the bucket or not”. The first one, which assumes, that they are not put back, equals

the sweepstake-model, whereas the second one is equal to the coin-toss experiment,

i.e. it is a Bernoulli experiment.

Both models assume that the black and white cells are equally distributed1.

3.1.5.2  First Probability Model

In this subsection we introduce our first probability model and mention a few

reasons, why it is not suitable for our needs. The probability for a successful intersec-

tion test is computed in the same way as you compute for instance the probability,

that you tip no number right out of seven in the very popular sweepstake game “7 out

of 49”.

  • Consider two grey intervals Igrey (with a density dgrey) and I’grey (with a density

d’grey) which interlace at a length L. As we assume that the black cells of both grey

intervals are equally distributed, we can conclude that  black cells

of Igrey are included in the interlacing area and likewise  black

cells from I’grey . We now compute the probability P for a successful intersection

in the following way:

1 We neglect the fact, that the grey intervals represent (parts of) spatial objects and that in this case the
white and black cells of the grey intervals tend to form groups.

N dgrey L×=

N’ d’grey L×=
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• Computing factorials fac(n) is a rather expensive operation. Straightforward
algorithms are based on the following definition fac(n)=n · fac(n-1), taking O(n)

time1. 
Furthermore, a lot of database systems do not provide the fac-operator as a built-

in function. Therefore, we have to simulate it with a loop-Operator, executing the

multiplication inside the loop. This loop-operator has to be embedded into a user-

defined function, which has to be called within the SQL statement of the first

filter step. As shown by M. Kornacker in [Kor 99], the calling of a user defined

function out of an SQL statement is a very expensive operation, which should be

avoided.

To avoid high computational costs for the determination of n!, you could use

approximations of the factorials, like stirlings formula: . 

This expression can be computed more efficiently, as you can compute an in

O(log n) time, based on the following definition . 

Another way to reduce the runtime for the computation of P is to simplify the

model, rather than approximating the result of a complex model. We pursue this

approach in our second probability model. 

1 We assume that the multiplication is a basic operation.

P 1
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3.1.5.3  Second Probability Model

Our second model is based on the following steps:

  • Consider two grey intervals Igrey and I’grey with their corresponding densities dgrey

and d’grey , which interlace at a length L. 

  • Let x be one of the cells in the interlacing area. The probability that this cell is cov-

ered by a black cell of Igrey and a black cell of I’grey is . The

probability, that either x or an other cell y is covered by black intervals from Igrey

and I’grey is . Thus the

probability that Igrey and I’grey share at least one black cell can be computed as fol-

lows1: 

  • The last representation of P enables us, to tell something about the intersection

probability of two intervals without putting too much effort in its computation. P

can be computed efficiently without calling a user-defined function, using itself a

loop-operator. Instead, we can confine ourselves to built-in functions, which are

provided by off-the-shelf DBMSs:

We will use this model and not the first one for further considerations.

1 This formula can easily be proved by induction on the interlacing length L.

algorithm ComputeP
begin

return := floor (1 - power ( 1 - (dgrey ·  d’grey) , 

least (ugrey , u’grey) - greatest (lgrey , l’grey) + 1 )) ;

end ComputeP;

Figure 29: Algorithm for the computation of P (second probability model)

Px d’grey dgrey×=

P d’grey dgrey× 1 d’grey dgrey×–( ) d’grey dgrey××+=

 

P dgreyd’grey 1 dgreyd’grey–( )ν

ν 0=

L 1–

∑=

P dgreyd’grey

1 1 dgreyd’grey–( )–
L

1 1 dgreyd’grey–( )–
----------------------------------------------------------=

P 1 1 dgreyd’grey–( )L–=

Figure 28: Computation of P (second probability model)
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3.2 General Survey of the Query Process

The general query processing flow of the X-RI-tree consists of three major steps. 

• In a first step we use the slightly modified RI-tree to determine all interlacing
pairs of grey database and query object intervals. These interval pairs are
ordered by database ID and probability P, introduced in the last section.

• In a second step we perform the so called fast grey test to determine intersecting
intervals without examining the attached interval sequences. This test is based
on the cases discussed in table 1 to 3.

• Finally, we carry out the expensive BLOB test, scrutinizing the attached interval
sequences. 

We could stop the query process after each of these three steps.

• Stopping after the first step yields an error-bound result, according to the MAX-
GAPdatabase parameter.

• Stopping after the second step results in a result set, which might not be com-
plete, but nonetheless correct. If you are only interested in questions like “Does
my query object intersect at least x database objects” you might be able to leave
out the third filter step completely. 

• Stopping after the third step delivers an error-free complete result, with respect
to the voxel set representation of the objects.

 Figure 30 depicts the complete query processing flow, including a short example

for clarification. In this example our database consists out of five objects A, B, C, D,

and E, and a query object Q consisting of two grey intervals. Each of the database

objects is composed out of one to four grey intervals with their corresponding at-

tached interval sequences. 

In a first step we determine all pairs of interlacing grey database and query inter-

vals (e.g. A1Q1, A3Q2, A2Q1, B3Q1, ...). These pairs are ordered by database ID and

decreasing probability P for a further successful intersection test. This first filter step

is entirely based on the upper- and lowerIndex of the XRange table. At this point we

could stop the query process, telling that object A,B,C, and D intersect our query

object Q with a maximum error of MAXGAP/2. 
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Figure 30: General Survey of the Query Process

Hi: database objects intersecting the query object (Hit).

Mi: database objects not intersecting the query object (Miss).

Ci: pairs of query and database intervals, which might be tested in step i (Candidates).

Ti: pairs of query and database intervals, which have actually been tested in step i (Tests).

$i: costs for testing one interval pair in step i.

SQI (LQI) : Structure (List) of Query Intervals.

SN (LN) :   Structure (List) of left- and rightNodes.

SC2 (LC2):  Structure (List) of Candidates for the 2nd filter step.

SC3 (LC3):  Structure (List) of Candidates for the 3rd filter step.

transient tables

 deleted in the second filter step

deleted in the third filter step

Our goal is to receive the result set  with minimal costs: H2 H3∪ $i Ti×

1.. 3=

∑
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In a second, main memory based filter step, we consider all these pairs (i.e. candi-

date set C2) grouped by database ID. We test them until the first successful test occurs

or until there are no more pairs of this ID to test. This test is based on the reflections

discussed in section 3.1. If the test yields neither a positive nor a negative result, we

subjoin this pair to C3, the candidate set of the third filter step (e.g. A1Q1, A3Q2,

B3Q1, B2Q1,C1Q1). On the other hand, if the test is successful we add the database ID

to the final result set (e.g. A, C) and delete all pairs belonging to the same ID out of

C2 (e.g. C2Q2,C3Q2) and C3 (e.g. A1Q1, A3Q2, C1Q1). In the case of the X-RI-tree

with a MAXGAP parameter equal to zero, the hits in this step (i.e. H2) form the

complete result set. 

In a third step we pinpoint whether the remaining interval pairs intersect or not.

This is done by accessing the BLOBs stored in the XRange table. If a test is successful

(e.g. B3Q1), we stop examining other pairs belonging to the same ID (e.g. B2Q1) and

add the corresponding object ID to the result set (e.g. B).

As you can see the number of tested pairs T2 and T3 is always equal or less than the

number of pairs in C2 and C3. For a good runtime behavior it is essential that T2 and

T3 are small. Filter step two as well as filter step three obey the algorithm of figure 31,

aiming at the decreasing of the ratio between T2/C2 and T3/C3.

We will see in the following sections, dealing with filter step two and three, how

this algorithm is put into practice.

algorithm TestCandidates (C Candidates, R ResultSet)
begin

TestSet T := C;
while not T.IsEmpty() do

Element e := T.first();
if SuccessfulTest (e) then

R := R+{e};
T := T-{e’|e.id=e’.id};

else
T := T-{e};

end if;
end while;

end TestCandidates.

Figure 31: Algorithm TestCandidates
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3.3 First Filter Step

3.3.1  Introduction

Basically, the first filter step can be seen as the application of the RI-tree to the

transformed database. Note, that this step can be done without accessing the XRange

table. It is entirely based on the upper-and lowerIndex.

In a preliminary step, the virtual backbone has to be traversed in order to collect all

possible fork nodes of those intervals, which might interlace the query interval. Con-

cerning this, the RI-tree and the X-RI-tree do not differ. After this preliminary step,

which is implemented in a procedural runtime environment such as PL/SQL, we pass

one single SQL query to the SQL engine. Thus, the first filter step is a cursor-driven-

operation [Pöt 01].

3.3.2  Ranking

In the steps succeeding this first filter step, we have to examine whether two inter-

lacing intervals intersect or not. In order to determine whether an object in the data-

base intersects the query object, we may have to accomplish several interval intersec-

tion tests. As we can stop after the first succesful one (with respect to the same

database ID) (cf. algorithm of figure 31), it is beneficial to do those tests first, which

have the highest probability of being successful. In the example, depicted in

figure 32, the database object with the ID n interlaces the query interval q qn times.

Figure 32: Ranking of the first filter step
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But already the first test is successful, so the qn-1 other intersection tests have not to

be carried out. The same holds for the ID m where we also have to test only once.

Note, that if the candidate set for the second filter step C2 had been in a different

order, we would have carried out more intersection tests. Therefore, it is important,

that C2 is ordered in an advantageous way. What this exactly means, has already been

discussed in section 3.1. We order the candidate set C2 according to the second pro-

bability model introduced in 3.1.5. In order to put this idea into practice, we enlarge

the transient tables left- and rightNodes. 

3.3.3  Structure of the transient tables left- and rightNodes

In the final approach for the RI-tree, both transient tables leftNodes (from, to, low-

er) and rightNodes (from, to, upper) contain information about the nodes of the vir-

tual backbone (from and to) and about one boundary value of the query interval (low-

er, upper). As we need more information belonging to the query interval in order to

rank the results of the first filter step in a proper way, we augment both transient

tables so that they obey the relational schema: 

Note, that the four last entries of the transient table left- and rightNodes are equal

to the entries in the transient input query table LQI introduced in section 3.6. We

introduced redundancy in the left- and rightNodes table in order to omit an additional

join with LQI in the first filter step. This join would be based on the Q_ref attribute,

which points to exactly one grey interval in LQI, i.e. refers to one grey interval of the

complete spatial query object.

SN= {
N_from  number,  
N_to number,  
Q_ref integer,  
Q_lower number,  
Q_upper number,  
Q_AIS TAIS

 }

Figure 33: Structure of the transient table left- & rightNodes
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3.3.4  One step only

Obviously, we could stop the query process after the first filter step, accepting an

error corresponding to the MAXGAP parameter. Therefore, it might be wise to choose

the MAXGAP parameter not only based on storage space requirement reasoning , but

also on facts like “A lot of application-queries are satisfied, if the maximum error,

does not exceed MAXGAP/2”. Thus the set C2 forms an error bound result set, which

meets the needs of many application queries.

In figure 34 the final SQL statement for the first filter step and the corresponding

execution-plan are shown, provided we omit the second filter step.

3.3.5  Final SQL command for the first filter step

If we continue the query process after the first step, the corresponding SQL state-

ment has to be enlarged. The necessary changes are depicted in figure 35. Note, that

we do not call a stored procedure to do the ranking but only use built-in functions of

ordinary ORDBMS. The execution plan belonging to this SQL statement is the same

as the one shown in figure 34, as we do not select fields from the XRange table, which

are not included in the corresponding indexes.

Figure 34: Interval intersection query (first step only)
a) SQL statement, and b) execution plan 

SELECT id FROM intervals i, :leftNodes left
WHERE i.node BETWEEN left.n_from AND left.n_to

AND i.upper >= left.q_lower // inner query and left queries
UNION ALL
SELECT id FROM intervals i, :rightNodes right
WHERE i.node BETWEEN right.n_from AND right.n_to

AND i.lower <= right.q_upper; // right queries

a)

SELECT STATEMENT
UNION-ALL

NESTED LOOPS
COLLECTION ITERATOR
INDEX RANGE SCAN lowerIndex

NESTED LOOPS
COLLECTION ITERATOR
INDEX RANGE SCAN upperIndex

b)
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3.4 Second Filter Step

In this section we put into practice what we discussed in section 3.1. But first, we

shortly address ourselves to the structure of the result set of the first filter step, i.e. the

candidate set of the second step.

3.4.1  Structure of the candidate set of the second filter step SC2

As already mentioned, it is not enough that the first filter step delivers the object

IDs of those objects interlacing the query interval. We need additional information

for the second step, which has to be provided by the first one. This information is

collected in SC2 (Structure of Candidates for step 2), shown in figure 36. The first two

fields DB_id and DB_row reference ROWs in the XRange table, i.e. in the database.

The next field Q_ref points to an entry in LQI, so that we can join both the XRANGE

table and LQI in the third filter step. The next six fields DB_lower, DB_upper,

DB_density, Q_lower, Q_upper and Q_density are used to determine in the second

filter step, whether the query and database interval intersect without examining the

Figure 35: Final SQL statement of the first filter step

SELECT 
DB_id, DB_row, Q_ref,

         DB_lower, DB_upper, DB_density, Q_lower, Q_upper, Q_density 
FROM
( 

SELECT 
floor (1-power(1-(i.AIS.density · left.Q_AIS.density ), 

least(i.upper,left.Q_upper) -greatest (i.lower,left.Q_lower) +1 )) as Q_DB_rank,
i.id as DB_id , i.rowID as DB_row, left.Q_ref as Q_ref,
i.lower as DB_lower, i.upper as DB_upper, i.AIS.density as DB_density,
left.Q_lower as Q_lower,  left.Q_upper as Q_upper, left.Q_AIS.density as Q_density
FROM intervals i, :leftNodes left
WHERE i.node BETWEEN left.N_from AND left.N_to
AND i.upper >= left.Q_lower // left and inner queries
UNION ALL
SELECT 
floor (1-power(1-(i.AIS.density · right.Q_AIS.density ), 

least(i.upper,right.Q_upper) -greatest (i.lower,right.Q_lower) +1 )) as Q_DB_rank,
i.id as DB_id , i.rowID as DB_row,right.Q_ref as Q_ref ,
i.lower as DB_lower, i.upper as DB_upper, i.AIS.density as DB_density,
right.Q_lower as Q_lower, right.Q_upper as Q_upper, right.Q_AIS.density as Q_density
FROM intervals i, :rightNodes right
WHERE i.node BETWEEN right.N_from AND right.N_to
AND i.lower <= right.Q_upper //right queries

)
ORDER BY DB_id, Q_DB_rank desc
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corresponding BLOBs. Note, that we do not collect the results from the first filter

step in a transient table, but process them right away. In the remainder of this work,

we will use the notion LC2 (List of Candidates for the 2nd filter step) for both the

“entire result set of the first step” and for a “cursor running through this set”.

3.4.2  Algorithm

In the second filter step we perform the fast grey test for each entry in LC2, i.e. for

each pair of interlacing intervals, until no more intervals are available or a pair of the

same database ID has already been tested positive. This is done, by calling the func-

tion SecondFilterStep (cf. figure 37), which tests, whether the database interval and

the query interval intersect. This test is based only on the upper and lower bounds of

SC2= {

DB_id  integer,  // necessary for 3rd filter step

DB_row varchar,  // necessary for 3rd filter step

Q_ref integer,  // necessary for 3rd filter step

DB_lower number,  // necessary for 2nd filter step

DB_upper number,  // necessary for 2nd filter step

DB_density number,  // necessary for 2nd filter step

Q_lower number,  // necessary for 2nd filter step

Q_upper number,  // necessary for 2nd filter step

Q_density number  // necessary for 2nd filter step
 }

Figure 36: Structure of the candidate set for the second filter step SC2

 

Figure 37: Procedure SecondFilterStep  

function SecondFilterStep (DB_lower, DB_upper, DB_density,
 Q_lower, Q_upper, Q_density) : integer;

begin
if the query and database interval intersect (cf. subsection 3.1.3) then 

return 1
else if the query and database interval do not intersect (cf. subsection 3.1.4) then

return 2
else 

return 3
end if;

end SecondFilterStep;
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the intervals and their density. Note, that based on this information you can calculate

the number of black cells and decide whether the interval is black or grey. 

3.5 Connection between the Second and the Third Filter Step

3.5.1  Introduction

In this section we explain the connection between the second and the third filter

step. The two steps do not strictly follow each other in the temporal flow of the query

process, but take turns. They alternate because otherwise the transient table LC3

could become very large and in its aftermath the main memory footprint could not be

controlled. In this section we will introduce a concept which solves this problem.

3.5.2  The LC3MAX parameter

The algorithm depicted in figure 38 illustrates the general connection between the

second and the third filter step. We introduce a user defined boundary LC3MAX,

which allows us, to control the main memory footprint. If the number of records in

the transient table LC3 exceeds this value, we perform the third filter step. The disad-

vantage of this construction is, that we cannot predict in advance, how many SQL

statements have to be executed in the third step because this depends on the number

of generated candidates by the two preceding steps. On the other hand, we do control

the main memory footprint and make thereby the X-RI-tree fit for a multi-user-envi-

ronment.

If we detect, that a database object intersects our query object, we can leave out all

following tests belonging to this database object. Owing to the fact that the result set

of the first filter step is ordered by DB_id we only have to keep in mind the last

successfully tested database ID and not a list of already successfully tested objects in

order to skip tests. Furthermore, LC2 is ordered by Q_DB_rank (=probability value

for the intersection of query and database interval). This ordering was mainly de-

signed to meet the needs of the third filter step, but it is also beneficial for the second

step.
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3.6 Third Filter Step

3.6.1  Introduction

In the second filter step there might be a lot of interval pairs for which we cannot

decide by means of the fast grey test, whether they intersect or not. In contrast, in the

third filter step we can do that for all interval pairs, by scrutinizing the attached

interval sequences. These sequences might be materialized and stored in a BLOB, or

being generated during the fetch-calls of the ADT TIS.

algorithm SecondAndThirdFilterStep
begin

LastFoundDBID := -1; // variable used for skipping tests

ResultSet := {}; // result set

LC3 := {}; // Candidates for the third step

execute FirstFilterStep ;
while LC2 not empty do

// all information of the current candidate in LC2 is assigned to local variables, needed for filter step two and three

LC2.fetch into (DB_id, DB_row, Q_ref,

 DB_lower, DB_upper, DB_density, 
 Q_lower, Q_upper, Q_density)

if DB_id <> LastFoundDBID then
result_of_2_filter_step := SecondFilterStep ( DB_lower, DB_upper, DB_density, 

Q_lower, Q_upper, Q_density) ;
if result_of_2_filter_step =1 then

ResultSet := ResultSet + {DB_id};
LastFoundDBID := DB_id;
Delete all records in LC3 with ID = DB_id; // we do not have to examine these records in

// filterstep 3, because we already determined that DB_ID
// intersects our query object.

else if result_of_2_filter_step =2 then
do nothing;

else // add it to the candidate list of the third step

LC3 := LC3 + {(DB_id, DB_row, Q_ref)};

if LC3.count > LC3MAX then // we control the main memory footprint

execute ThirdFilterStep;
ResultSet := ResultSet +{results of third step};
LC3:= {};

end if;
end if;

end while;
// all results from the first step are processed
// we have to check whether there are some more candidates for the third step and if necessary execute the corresponding statement
if not LC3.IsEmpty() then

execute ThirdFilterStep; 
ResultSet := ResultSet +{results of third step}

end if;
end SecondAndThirdFilterStep;

Figure 38: Connection between second and third step  
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In this section, we will first shortly discuss the structure of LQI and LC3, which are

used in the SQL statement, executed in the third step. Furthermore, we will empha-

size how the algorithm TestCandidates of figure 31 is implemented. Additionally, we

will talk about how we can efficiently access materialized black interval sequences

which are stored in a BLOB.

3.6.2  Structure of the transient table of query intervals LQI

The original RI-tree does not have to store any information about the query inter-

val. The entire information consists of the values of the lower and upper bound of the

interval. This information is completely used in the preliminary procedural step by

filling the transient tables left- and rightNodes. 

In the case of the X-RI-tree the query interval consists also of an attached interval

sequence, stored in a BLOB. In the third filter step we have to access this informa-

tion. We therefore store a grey query interval in SQI (Structure of Query Interval),

depicted in figure 39. 

Note, that in the case of query objects consisting of several intervals, we just use

the corresponding transient table LQI (List of Query Intervals), where the field Q_ref

is used as an identifier of the different grey query intervals. The boundary values

Q_lower and Q_upper allow us to compute the exact interlacing area, so that we can

concisely examine the BLOB.

3.6.3  Structure of the candidate set of the third filter step SC3

This structure is rather simple. It consists of the first three fields of SC2, which are

just passed through in the second filter step (cf. figure 40). 

We need these fields in the third step in order to join the transient query input table

LQI and the XRange table of the database.

SQI = {
Q_ref integer,
Q_lower number,
Q_upper number, 
Q_AIS TAIS,
Q_IS TIS

 }

Figure 39: Structure of Query Interval SQI



Chapter 3 Intersection of Spatial Objects in an ORDBMS

High resolution indexing for CAD databases 58

3.6.4  SQL statement

As already mentioned, there can be several records of LC3, belonging to the same

(database) ID. For each of these IDs we have to decide whether there exists one

record in LC3 intersecting the corresponding query interval. If we have found one, we

do not have to examine the other records belonging to this ID. As the records of LC3

are ordered by ID plus additional criteria, we can keep in mind the last ID intersecting

the query interval and skip all the other tests belonging to this database ID. Thus we

can adjust the “TestCandidates” algorithm of figure 31 ending up with an algorithm

depicted in figure 41. Note, the adjusted algorithm does not delete the candidates

SC3 = {

DB_id  integer,  
DB_row varchar,  
Q_ref integer

}

Figure 40: Structure of the candidate set of the third filter step SC3

Figure 41: Third filter step
a) algorithm, b) SQL statement, and c) execution plan 

a)

b)

algorithm ThirdFilterStep;
begin

LastFoundDBID := - 1;
LC3.first;

Result := {};
for i :=1 to LC3.count() do

if LC3[i].DB_id <> LastFoundDBID then

if IntersectionTest(query interval of LC3[i],database interval of LC3[i]) then

Result := Result + LC3[i].DB_id;

LastFoundDBID := LC3[i].DB_id;

end if;
end if;

end for;
end ThirdFilterStep;

select distinct (id) from intervals i,: LC3 c, :LQI q

where skipID(c.DB_id) = 0 //optional, can be omitted as it is included in the IntersectionTest procedure as well

and i.rowID = c.DB_row and q.Q_ref=c.Q_ref
and IntersectionTest (i.lower, i.upper, i.IS, q.lower, q.upper, q.IS, i.ID)=1

c) SELECT STATEMENT
NESTED LOOPS

NESTED LOOPS
COLLECTION ITERATOR PICKLER FETCH
TABLE ACCESS BY USER ROWID

COLLECTION ITERATOR PICKLER FETCH
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which are not tested but just ignores them. The SQL statement putting this algorithm

into practice and the corresponding execution plan are depicted together in the same

figure. Note, the SQL statement only works according to the described algorithm, if

the three different predicates of the where-clause are evaluated in the order they are

written down. The function skipID corresponds to the first if-statement of the algo-

rithm. If a former record of LC3, with the same database ID as the actual one, has

already intersected one of the query intervals, skipID delivers 1 and the other two

predicates of the where statement are not evaluated. If skipID = 0, the intersection test

is carried out. If the IntersectionTest is successful, LastFoundDBID is set to the cur-

rent ID of LC3. This is done in the IntersectionTest procedure. As we cannot assume,

that the query optimizer evaluates the predicates of the where-clause in the order they

have been written down, we include the skipping also into the IntersectionTest pro-

cedure. In this case the BLOBs are accessed, as they are passed as parameters to the

stored procedure, but their content is not scrutinized, because the first thing done in

the stored procedure IntersectionTest, is to test whether the parameter value ID, is

equal to the latest successfully tested database ID (cf. figure 42). This version is of

course slightly slower, but the declarativity of SQL is maintained.

3.6.5  Stored procedure IntersectionTest 

In order to decide whether two interlacing intervals I1=((l1,u1),S1) and

I2=((l2,u2),S2) intersect each other or not, we have to carefully examine their attached

interval sequences S1 and S2 . This is done in the procedure IntersectionTest as shown

in figure 42. First, the fetch-methods of the abstract data types DB_IS and Q_IS are

invoked. The resulting two interval lists are compared to each other in order to find

out whether they contain interlacing black intervals. If this is the case, the two grey

intervals intersect and the procedure stops. If one interval list has been tested until its

end, the fetch-method of the corresponding TIS object is called again and the test

proceeds. If an interval list is empty the procedure stops and the two grey interlacing

intervals do not intersect. 

Note, that if an intersection is detected, the IntersectionTest procedure does not

have to test all intervals of the interlacing area but can stop as soon as an intersection

is detected. This is the reason, why the loop-operator has been included into the

IntersectionTest procedure. It allows us to fetch small portions of intervals of the

interlacing area. Thus unnecessary disk accesses can be avoided. In the experiments,
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presented in the next chapter, we did not exploit this feature. The fetch-method was

always invoked with a second parameter equal to MAXINT.

The algorithm of figure 42 can be applied to all subtypes of the ADT TIS. In the

next subsubsection we survey the subtypes TBitOrientedIS and TOffsetOrientedIS

which materialize the black interval sequences and store it in a BLOB.

3.6.5.1  Accessing an Interval Sequence in a BLOB

As shown in theorem 3, we can pinpoint for each black interval sequence whether

the offset-oriented approach or the bit-oriented approach is preferable. 

Obviously, the number of bytes needed for the storage of a black interval sequence

correlates with the number of disk accesses which are needed for reading the com-

plete interval sequence. 

algorithm IntesectionTest ( DB_lower number, DB_upper number , DB_IS TIS ,
Q_lower number, Q_upper number, Q_IS TIS, DB_ID integer);

const N = MAXINT; // number of intervals per fetch;

begin
if LastFoundDBID = DB_ID then 

result := 0
else

l_interlace := max (DB_lower, Q_lower);
u_interlace := min (DB_upper, Q_upper);
InterlaceArea := TInterval(l_interlace,u_interlace);
// we fetch maximum N intervals from the interlacing area.
DB_IntervalList := DB_IS.fetch (InterlaceArea, N); 
Q_IntervalList := Q_IS.fetch (InterlaceArea, N);
TestFinshed := false;
while not TestFinished do

result := DB_IntervalList.intersects(Q_IntervalList); // parallel run through the lists

if result = 0 then // either DB_IntervalList or Q_IntervalList was empty => no intersection. Test finished

TestFinished := true
else if result = 1 then // intersection detected. Test finished

TestFinished := true
else if result = 2 then // DB_IntervalList tested until the end => fetch new one

DB_IntervalList := DB_IS.fetch (InterlaceArea, N);
else if result = 3 then // Q_IntervalList tested until the end => fetch new one

Q_IntervalList := Q_IS.fetch (InterlaceArea, N);
else if result = 4 then // DB_IntervalList and Q_IntervalList tested until the end => fetch new ones

DB_IntervalList := DB_IS.fetch (InterlaceArea, N);
Q_IntervalList := Q_IS.fetch (InterlaceArea, N);

end if;
end while;
if result =1 then

LastFoundDBID := DB_ID;
end if;

end if;
return result;

end IntesectionTest ;

Figure 42: IntersectionTest  
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As shown in figure 43 it is not always necessary to access the whole interval

sequence. It is enough to test those parts of the interval sequence falling into the

interlacing area. This imposes a twofold problem:

  • Finding the starting point of the interlacing area efficiently.

  • Accessing those parts of the black interval sequence efficiently which fall into the

interlacing area.

The following two theorems deal with these questions in case both intervals fol-

low the same storage approach. The theorems can easily be extended to those cases

where one interval is bit-oriented and the other offset-oriented organized.

Theorem 4 (bit-oriented approach (access))

Let Igrey = ((lgrey , ugrey) , Sblack) and I’grey = ((l’grey , u’grey) , S’black) be two grey

intervals which interlace. Let Linterlace be the length of the interlacing area and b the

disk block size. Then O (Linterlace / b) disk accesses are needed for testing these two

intervals for intersection.

Proof. We can find the starting point of the interlacing area linterlace in both inter-

vals in O(1) time by using linterlace - l1/2 as offset. We have to test at most Linterlace bits

to pinpoint whether the two intervals intersect. This worst case occurs if there is no

intersection. Thus we need 2·O(1)+2·O(Linterlace / b) = 0(Linterlace / b) disk accesses

for the intersection test, as the bits are consecutive organized in the BLOB.

Figure 43: Accessing the attached interval sequences stored in a BLOB
a) bit-oriented, b) offset-oriented   
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Theorem 5 (offset-oriented approach (access))

Let Igrey = ((lgrey , ugrey) , Sblack) and I’grey = ((l’grey , u’grey) , S’black) be two interlac-

ing grey intervals of length Lgrey and L’grey . Let b be the disk block size and

linterlace = l’grey. Let n be the cardinality of Sblack , and let ninlerlace and n’inlerlace be

the number of black intervals of Sblack and S’black interlacing the interval Iinter-

lace=(linterlace , uinterlace). Then testing these two intervals for intersection needs the

following number of disk accesses:

O (log n + (ninterlace log Lgrey)/b+(n’interlace log L’grey)/b) 

Proof. The starting point of the interlacing area linterlace of I’ can be accessed in

O(1) time. In I we can find this point by bipartitioning. We first access the value in

the middle of the BLOB and compare it to linterlace. If it is smaller we only have to

consider the upper half of the BLOB. If higher, we take the lower half. This test can

be done in 0(1) time and has to be done at most O(log n) times. Thus finding linterlace

in both intervals needs O(1+log n) = O(log n) disk accesses. Then we have to access

all black intervals in the interlacing area until we detect an intersection. These are at

most ninlerlace+n’inlerlace intervals which are consecutive organized in the BLOB.

Each of these boundary values can be expressed by O(log L) respective O(log L’) bits

as outlined in section 2.3. 

Thus O (log n + (ninterlace log Lgrey)/b+(n’interlace log L’grey)/b) disk accesses are

needed in order to decide whether the two intervals intersect.

3.7 Dynamically created query objects

3.7.1  Introduction

As already mentioned in section 1.3, we can encode a spatial object by an interval

sequence while recursively decomposing the space into an error-bound or a size-

bound approximation of the object. What we did up to now, was using the error-

bound approach by closing small gaps between the intervals from bottom-up, leading

us to grey intervals. As we wanted to work error-free, we added the attached interval

sequences to the grey intervals, so that in the third filter step we could determine

exactly whether two grey intervals intersect or only interlace. If we want to know,

which parts in our database are intersected by a query object stemming from the

database as well, we can revert to the attached interval sequences, available in the
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database. Thus, we do not have to process the costly step of creating the attached

interval sequences during the collision query process.

On the other hand, if a user wants to know which parts are in an area of his interest,

our system has to decompose this spatial query object into grey intervals and their

corresponding interval sequences before the actual query process can start. This de-

composition, especially of large objects, could cost us minutes or even hours

(cf. section 4.4). Therefore, it is necessary to provide a concept for the decomposition

of spatial objects, which are not known in advance. We shortly explain this concept,

using boxes as an example for dynamically created query objects. 

3.7.2  Basic idea

The basic idea is to use the error-bound top-down approach with a big MAXGAP

parameter, so that we can quickly receive grey intervals. As most of these spatial

objects can be described with a few parameters (e.g. a box can be described by two

points), the corresponding abstract data types consist only of a few attributes (cf. the

type TBoxOrientedIS of figure 19). 

Note, that the algorithm of figure 6 has to be adjusted to the needs of the X-RI-tree.

During the top-down approach we have to ensure, that our grey intervals start and end

with black voxels. Furthermore, we have to compute the density of these intervals

during this process in order to use the X-RI-tree without further changes. 

If the query objects are boxes, these restrictions and computations can be easily

integrated in the recursively decompositioning algorithm of figure 6. 

3.8 Optimizations

In this section, we want to discuss, how far the optimization rules of the RI-tree,

introduced in subsection 1.5.4 , can be applied to the X-RI-tree.

3.8.1  Gap optimization

Unfortunately, we cannot apply the gap-optimization of the RI-tree straightfor-

ward to the X-RI-tree, owing to the gaps included in the grey intervals itself.

But if the grey object interval sequence includes black intervals with a length

longer than MAXGAPdatabase we can apply the gap optimization to the X-RI-tree as
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well. The example in figure 44 shows, that in the case, that the middle interval of the

query sequence is such a long black interval, we can save a right query of the leftmost

interval from node 128 and two queries of node 64. Unfortunately, the number of

long black intervals decreases very fast with an increasing MAXGAP parameter

(cf. figure 51). Therefore, this optimization is not as beneficial to the X-RI-tree as it

is to the RI-tree. 

3.8.2  Integrating Inner Queries

Integrating inner queries does not yield any problems. This optimization can be

applied to the X-RI-tree without further changes. In the example of figure 44 we save

three more join partners by integrating the inner queries.

Note, that in the experiments we always compare the optimized variant of the RI-

tree to the optimized variant of the X-RI-tree.
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a) naive X-RI-tree b) optimized X-RI-tree  
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Chapter 4
Experimental Evaluation

4.1 Introduction

In this chapter, we want to evaluate the performance of the X-RI-tree based on two

test data sets CAR and PLANE (cf. figure 15). These test data sets were provided from

our industrial partners, a German car manufacturer and an American plane producer,

in form of high resolution voxelized three-dimensional CAD parts. In both cases, the

Z-curve was used as a space filling curve to enumerate the voxels. To express one of

these z-values we had to spend 33 bits in the case of the CAR data and 42 bits in the

case of the PLANE data. To put it another way, the CAR data space consists of

8.589.934.592 voxels and the PLANE data space of 4.398.046.511.102 voxels. The

voxels were grouped together to black intervals, so that we could use these data as

test sets for the RI-tree. Furthermore, we used different MAXGAPdatabase
1 parame-

ters in order to evaluate the X-RI-tree. Note, that the X-RI-tree and the RI-tree coin-

cide if the MAXGAP parameter is 0. In this case we always used the original opti-

mized version of the RI-tree and not the X-RI-tree. 

As the RI-tree outperforms competitive techniques like the Linear Segment Tree

and the Composite Index by factors of up to 4.9 for the query response time and the

Linear Quadtree (Octree) and the Relational R-tree by factors of up to 4.6 and 58.3

[Pöt 01] [KPS 01a], the X-RI-tree was only compared to the RI-tree2.

1 If not otherwise stated, we use the term MAXGAP for denoting a global MAXGAPdatabase parameter.
2 According to the motto:”If you beat the best, you can beat them all.”
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We have implemented the optimized RI-tree and the X-RI-tree for the Oracle

Server Release 8.1.7, using PL/SQL for the computational main memory based pro-

gramming. All experiments have been performed on a Pentium III/700 machine with

IDE hard drives. The database block cache was set to 500 disk blocks with a block

size of 8 KB and was used exclusively by one active session.

As already mentioned, FMAXGAP is the only transformation function we want to

investigate in more detail. We apply this function to both example data sets CAR and

PLANE and evaluate both the static and the dynamic behavior of the X-RI-tree. Be-

fore doing that, we shortly pinpoint in section 4.2, that accessing a BLOB in Oracle

8i is in accordance with our expectations. In section 4.3 we evaluate the static prop-

erties, including the characteristica of the transformed databases, interval histo-

grams and storage requirements. In section 4.4 we concentrate on the dynamic be-

havior of the X-RI-tree, as for instance response time, main memory footprint, tested

candidates and number of disk accesses. We conclude this chapter with section 4.5,

where we summarize the main experimental results.

4.2 BLOB access

The only experiment presented in this section generally clarifies a few things

about BLOB accessing in Oracle 8i. 

In figure 45a it is shown, that only a few logical reads are necessary to open a

BLOB no matter how large it is. Furthermore you can see, that if you want to read a
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tiny part out of the middle of a BLOB (e.g. 10 bytes), the system does not have to go

through all the pages, starting from the beginning.

On the other hand, if we want to get all the information included in a BLOB the

number of logical reads linearly increases with the BLOB size (cf. figure 45b) . This

figure also depicts the fact, that if you have to read the whole BLOB, it is advanta-

geous to read with a high chunksize (number of bytes per read). For instance, reading

one million bytes of one BLOB with a chunksize of 100 needs 70 times more logical

reads than doing it with a chunksize of 10.000 and still 50 times more physical reads.

All following experiments have been executed with a chunksize of 30.000.

4.3 Evaluation of the static properties of the X-RI-Tree

4.3.1  Characteristica of the transformed Databases

Obviously, the characteristica of a transformed database strongly depends on the

MAXGAP parameter. As this parameter determines which small intervals are

1

100

10000

1000000

0 1000 1000000
MAXGAP

n
u

m
b

er
 o

f 
in

te
rv

al
s 

CAR
PLANE

1

100

10000

1000000

0 1000 1000000
MAXGAP

av
er

ag
e 

le
n

g
th

 o
f 

in
te

rv
al

s

CAR
PLANE

0

50

100

150

200

0 1000 1000000
MAXGAPd

at
ab

as
e 

ch
ar

ac
te

ri
st

ic
a

[ 
x 

1.
00

0.
00

0]

CAR
PLANE

b)

d)

a)

0,0

0,2

0,4

0,6

0,8

1,0

0 1000 1000000
MAXGAP

av
er

ag
e 

d
en

si
ty

 o
f 

in
te

rv
al

s

CAR
PLANE

c)

Figure 46: Transformed databases     
a) Ntrans, b) Ltrans, c) Dtrans, and d) Ctrans=Ntrans*Ltrans*Dtrans 



Chapter 4 Experimental Evaluation

High resolution indexing for CAD databases 68

grouped to large grey intervals, it is not surprising that with increasing MAXGAP

parameter, the number of intervals Ntrans in the transformed database decreases1. It is

also obvious, that their average density Dtrans decreases, owing to the fact, that you

include gaps into the long grey intervals. This is also the reason for the increasing of

the average length Ltrans of the grey intervals. What you might expect is that the

product Ntrans ·  Dtrans ·  Ltrans is independent of the MAXGAP parameter. But this is

not true as the following unequation clarifies.

The extreme rise in the Ctrans PLANE curve at very high MAXGAP parameters

(cf. figure 46) is owing to the fact, that we have a few extremely long parts (e.g.

wings of the plane) but still a lot of short parts with high density.

4.3.2  Gap and interval histograms

As shown in [Gae95] the number of intervals generated via a space-filling curve

out of a real-world-object, mainly depends on the surface, the shape of the object and

the granularity of the underlying grid approximation. Unfortunately, there is nothing

mentioned about the distribution of the intervals or the corresponding gap distribu-

1 The PLANE curve becomes flatter because we have almost 10.000 objects in the database and we need
at least one grey interval for each object. If we want to pinpoint the same effect on the CAR data set,

which consists of less than 200 objects, we have to increase the MAXGAP parameter even more. 
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tion. In [Pöt 01] it is asserted, that the binary logarithms of fractal gaps typically obey

an exponential distribution. Furthermore, histograms on fractal gaps show local

peaks at whole multiples of three (=the original data dimension d), i.e. at gap lengths

around 23 · k, k ≥ 0. This behavior is caused by the fact that many gaps represent

empty cube-like (3D) regions at the boundary of spatial objects. Figure 47 supports

the assertion made in [Pöt 01]. Figure 48 depicts the interval distribution. It can be

seen that the bucket which includes most intervals is regularly increasing with in-

creasing MAXGAP. The gap histograms dependent on the MAXGAP parameter are

obvious because all gaps smaller than MAXGAP were used to form the grey intervals.

On the other side, the gaps larger than MAXGAP are unused. 

4.3.3  Storage Requirements 

Although the storage complexity O(n/b) of the native RI-tree is optimal, it seems

rather wasteful to spend a whole row in the Ranges table for a small interval.

Figure 49a shows the different storage requirements for the XRange table with re-

spect to the different organization approaches of the BLOBs. These experiments

were carried out based on subsets of the original test data sets, comprising approxi-

mately 10% of the original data. As you can see, the bit-oriented approach is very bad

for high MAXGAP values, but it is better than the offset-oriented approach1 when

using small MAXGAP values. The final approach combines the advantages of both

1 We used the offset-oriented-byte approach throughout the experiments presented in this chapter. 
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and can never be worse than the original RI-tree. The curve of the final approach

increases a little bit when the MAXGAP parameter exceeds values greater than 1.000.

This is due to the fact, that in this case, most intervals follow the offset-oriented

approach, whereas in the case of small MAXGAP parameters, they are organized

according to the bit-oriented approach. In Figure 49b the storage requirements for the

sum of the upper- and lowerIndexes as well as for the complete XRange table are

depicted. In the case of small MAXGAP parameters, the number of disk blocks used

by the upper- and lowerIndexes dominate the number of disk blocks for the XRange

table. With increasing MAXGAP parameters the number of disk blocks for the index-

es dramatically decreases (cf.  figure 46a) and at high parameter values they yield no

significant contribution any more to the overall sum of used disk blocks.
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4.3.4  Miscellaneous

4.3.4.1  Minimum and maximum length of intervals

As depicted in figure 50, the maximum length of the intervals increases with the

MAXGAP parameter. Note, that the minimum length does not likewise. Although

using great MAXGAP values, there are still intervals of length 1.

4.3.4.2  Black intervals

Figure 51 illustrates, that the number of grey intervals with maximum density1

decreases faster than the number of all grey intervals, with increasing MAXGAP pa-

rameter. The number of long black intervals, meaning black intervals longer than

MAXGAP, decreases even faster than the number of all black intervals. So with in-

creasing MAXGAP parameter there remain only a very few long black intervals,

which are useful for gap optimization (cf. section 3.8).

1 Recall that we call Igrey = ((lgrey , ugrey) , <s1>) also a black interval.
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4.3.4.3  Fork nodes

Figure 52 depicts in what way fork node properties change with changing MAX-

GAP parameters. 

In figure 52a it is shown, that the average number of intervals which share the

same fork node is much higher in the case of the CAR data than it is in the case of the

PLANE data. This is rather obvious, as the PLANE space is 2(42-33) times larger than

the CAR space, but comprising only marginally more intervals. Note that two grey

intervals sharing the same fork node belong to two different objects and that these

two different objects thus interlace each other. As we will see in the next section the

average number of collisions for one part is much higher on the CAR data set than it

is on the PLANE data set. Figure 52b is quite similar to figure 48, thus indicating the

connection between fork node level and interval length. This is due to the fact, that an

interval of length l cannot belong to a fork node nf which resides on a level smaller

than log2l. Note, that there still exist fork nodes on the leave-level, even if rather high

MAXGAP values are applied.

4.3.4.4  Upper- and lowerIndexes

Figure 53 illustrates that we can save one level in the B+-directory, if we increase

the MAXGAP parameter. It is interesting that the MAXGAP parameter is always the

PLANE

1

100

10000

1000000

0 3 6 9 12 15 18 21 24
tree-leveln

r.
 f

o
rk

 n
o

d
es

M=0
M=10^1
M=10^2
M=10^3
M=10^4
M=10^5
M=10^6

CAR

1

100

10000

1000000

0 3 6 9 12 15 18 21 24
tree-leveln

r.
 f

o
rk

 n
o

d
es

M=0
M=10^1
M=10^2
M=10^3
M=10^4
M=10^5
M=10^6

1,0
1,2
1,4
1,6
1,8
2,0
2,2

0 1000 1000000
M AXGAP

n
r.

 in
te

rv
al

 /
n

r.
  f

o
rk

 n
o

d
es

CAR

PLANE

a)

Figure 52: Fork nodes     
a) number of different fork nodes / number of intervals, b) fork node level 

b)



Chapter 4 Experimental Evaluation

High resolution indexing for CAD databases 73

same there, where the height of the B+-directory decreases, where we need a mini-

mum of secondary storage (cf. figure 49), and where we get the best response time

(cf. figure 54), e.g. 1.000 on the CAR data and 10.000 on the PLANE data.

4.4 Evaluation of the dynamic properties of the X-RI-Tree

In this section, we want to turn our attention to the different facets related to the

query response behavior of the X-RI-tree. In subsection 4.4.1 we concentrate on

collision queries, whereas in the subsequent subsection, we consider box volume

queries, or more generally spoken dynamically created query objects.

4.4.1  Collision Queries

4.4.1.1  Introduction

All figures presented in this subsection depict the average result yielding from

collision queries, where we have taken every part from both test data sets CAR and

PLANE as query objects and asked, which parts in the associated database are collid-

ing with them. We first discuss the overall runtime behavior and the correlated disk

accesses. Furthermore, we address the issue of main memory session footprint and

number of tested candidates. This subsection is closed with a few general remarks on

miscellaneous facets1.

4.4.1.2  Response time

In figure 54, it is shown in what way the overall response time depends on the

MAXGAPdatabase parameter. If we use small MAXGAP parameters, we still need a lot

1 We use MAXGAPquery to denote the MAXGAP parameter belonging to the query object and MAX-

GAPdatabase to denote the MAXGAP parameter belonging to the database. If not explicitly stated, these
two values are equal.
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of time for the determination of all transient join partners, i.e. the preparation step. On

the other hand, using big values leads to an expensive third filter step. Fortunately,

using MAXGAP parameters in the middle leads to a good query response time.

4.4.1.3  Disk accesses

Analyzing the number of disk accesses (cf. figure 55), reveals, that the number of

logical reads is smaller in the case of the RI-tree, than it is in the case of the X-RI-tree

with a small MAXGAP parameter (e.g. MAXGAP=10). This is because the X-RI-tree

does not benefit as much as the RI-tree from the gap optimization and that conse-
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Lesson 2

With a well parametrized X-RI-tree you can improve the response time of

collision queries by an order of magnitude compared to the RI-tree.
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quently, we have more join partners in the transient tables left- and rightNodes

(cf. figure 56) yielding to more cached B+-directory lookups.

4.4.1.4  Main memory footprint

As mentioned in the last subsubsection, we have a lot of records in the transient

tables left- and rightNodes. Fortunately, this number decreases hand in hand with the

number of entries in LQI (List of Query Intervals), when using large MAXGAP pa-

rameters. Figure 56 depicts, that the number of entries in LC3 (List of Candidates for

the 3rd filter step) is neglectable and does not yield any significant contribution to the

overall main memory footprint. Thus, we might have dispensed with the LC3MAX

parameter introduced in subsection 3.5.2. 

4.4.1.5  Tested candidates

Figure 57 illustrates the number of candidate pairs of query and database intervals

and the number of the corresponding tests, which were actually carried out in the

second and third filter step. 

In the second filter step the number of these candidate pairs rapidly decreases with

increasing MAXGAP, although the number of candidate object IDs increases (cf. fig-

ure 58). Thus the redundancy reduction dominates the effect of falsely detected ob-

jects. At low MAXGAP values we have to test only a fractional amount of candidate
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Lesson 3
With a well parametrized X-RI-tree you can dramatically reduce the session

footprint.
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pairs, as the fast grey test works very successfully with this parametrization (see also

figure 58). Consequently, there is only a relative small number of candidate pairs left

for the third filter step. With increasing MAXGAP values this test looses effective-

ness.

In the third filter step the number of both candidate pairs and corresponding tests

do not vary as much as in the second step. It is difficult to make a profound statement
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in this case, but we can still see, that in the case of the best response time on the CAR

data (i.e. MAXGAP equals 1.000), we only have to test 40% of all candidates and thus

benefit in the third step as well from the skipping principal introduced in section 3.6.

In figure 58, it is illustrated, that at small MAXGAP values the number of different

objects IDs resulting from the first filter step is only marginally higher than the num-

ber of different IDs in the final result set. Likewise, the number of detected hits in the

second filter step is only marginally smaller. With increasing MAXGAP values the

two curves disperse.

4.4.1.6  Miscellaneous

The size of the parts in the PLANE data set vary very much. We have a lot of small

parts and only a few very large ones. In the case of the CAR data this peculiarity is far

less distinctive. As large query parts produce a large number of query intervals, it is

obvious that the size part correlates with the response time. In figure 59a it is shown

that for most parts out of the PLANE data set, the X-RI-tree outperforms the RI-tree

“only” by a factor of 2.9, whereas there are some parts, for which this factor is higher

than 100. In figure 59b it is illustrated that the high response time of the RI-tree is

mainly owing to the high preparation time, which naturally correlates with the num-

ber of intervals of the query object. In the case of the RI-tree we have to wait for more

than five minutes for some collision queries in order to get the response. On the other

hand, using the X-RI-tree yields almost interactive response time for all collision

queries (cf. figure 59). 
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4.4.2  Box queries

In this subsection we discuss box volume queries. All remarks in this subsection

can be generalized to other dynamically created query objects. The tests have been

carried out only on the PLANE data set because we focus on the decompositioning of

the boxes rather than on the underlying database. The preparation step comprises two

steps, the decompositioning of the boxes according to the algorithm of figure 6 and

the creation and registration of the transient join partners.

In figure 60 it is shown that the decompositioning of the boxes into black interval

sequences takes very long, even if the box size is relatively small. With increasing

box size the preparation time increases as well1. Note, that with an X-RI-tree with a

high MAXGAP value, the preparation time can be reduced by more than two orders

of magnitude leading to a much better overall response time. 

In a last experiment we carried out box queries on databases where the two values

MAXGAPquery and MAXGAPdatabase might differ. The results in figure 61 show, that

1 The number of intervals linearly depend on the surface of the query object [Gae95].

260,2

1,6

56,3

0,7

0

100

200

300

400

re
sp

o
n

se
 t

im
e 

[s
ec

]

preparation query

                             PLANE
                X-RI-tree            R I-tree

42

2
1 1 1 1 0 0 1

9959

2,9

43,6

141,0

71,7

48,0

23,0

79,6

106,0

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100
% of max. response-time

n
u

m
b

er
 o

f 
q

u
er

y 
p

ar
ts

0

50

100

150

re
sp

. t
im

e 
R

I-
tr

ee
/  

re
sp

. t
im

e 
X

-R
I-

tr
ee

number of parts
resp. time RI-tree / resp. time X-RI-tree
trend response-time-ratio

PLANEa)

Figure 59: Response time     
a) |resp. time RI-tree | / |resp. time X-RI-tree|, b) maximum response times 

b)

Lesson 4

If the overall response time of the RI-tree is extremely high, we particularly

benefit from the X-RI-tree.
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at MAXGAPquery values of 1.000.000 and at a MAXGAPdatabase value of 10.000, we

get the best response time. The optimal value for MAXGAPdatabase is the same as the

one, we evaluated during the collision tests in the last subsection. As a rule-of-thumb

we can say that it is good to use high MAXGAPquery values for the dynamically

created query objects, so that the preparation time is reduced, whereas for the data-

base we can use MAXGAPdatabase values which lead to an optimal storage exploita-

tion and furthermore to an optimum response time for collision queries.
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4.5 Summary

We have seen, that the X-RI-tree works well on our test data sets CAR and PLANE.

With MAXGAPCAR = 1.000 and MAXGAPPLANE = 10.000 we outperform the opti-

mized version of the RI-tree with respect to storage exploitation and response time by

an order of magnitude. Using the X-RI-tree gains the following advantages over the

RI-tree:

• Only a fractal of secondary storage is occupied.

• The session footprint is less. Therefore the X-RI-tree is better qualified for a
multi-user environment.

• The query response time is much better.

• The concept of grey intervals is particularly useful for dynamically created
query objects, which are resolved into grey interval sequences in a top-down
approach.

Figure 61: Box queries with different query and database MAXGAP parameters
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Lesson 5

In the case of dynamically created query objects, we particularly benefit from

the X-RI-tree compared to the RI-tree.



Chapter 5
Incorporation of Spatial Objects 
in an ORDBMS 

A lot of traditional database servers have evolved into an Object-Relational Data-

base Management System (ORDBMS). This means that in addition to the efficient

and secure management of data ordered under the relational model, these systems

now also provide support for data organized under the object model. Object types and

other features, such as large objects (LOBs), external procedures, extensible index-

ing and query optimization, can be used to build powerful, reusable server-based

components. 

In this chapter we pursue a twofold plan. 

In the first two sections, which are more or less a reformulation and summary of

what can be found in [Pöt 01], we want to talk generally about extensible OBRDMS.

In section 5.1, we shortly introduce the object-relational data model among other

approaches and talk about abstract data types. In section 5.2, we turn our attention to

the extensible query language, enabling the declarative embedding of abstract data

types within the built-in optimizer and query processor.

In section 5.3 we describe in detail how the X-RI-tree can be integrated into the

extensible indexing framework of the Oracle8i server, using the concepts introduced

in the foregoing sections. 
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This mix of Oracle specific and more general information, should enable the read-

er to implement the X-RI-tree on top of any other ORDBMS such as IBM DB2 or

Informix IDS/UDO.

5.1 Extensible Data Model

In this section, we shortly point out, why the object-relational data model is pref-

erable to other existing approaches. Furthermore, we show how abstract data types

can be integrated into object-relational servers.

5.1.1  Classification of Data Models

Stonebraker and Brown [SB 98] considered the complexity of the stored data and

submitted queries to classify some common data models. Four major groups were

identified (cf. figure 62): 

  • File system

  • Relational DBMS (RDBMS) 

  • Object-oriented DBMS (OODBMS) 

  • Object-relational DBMS (ORDBMS) 

We focus on object-relational database management systems, as they combine the

advantages of both, the object-oriented and the relational data model. Their extensi-

ble design enables us to integrate new access methods, e.g. the X-RI-tree. In addition,

the practical impact of ORDBMSs is very strong as object-relational functionality

has been added to most commercially available relational database servers, including

Oracle [Doh 98], IBM DB2 [CCN+ 99], and Informix IDS/UDO [Bro 01]. 

Figure 62: Classification of data models
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Simple queries File system
Object-oriented 
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Complex queries
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5.1.2  Abstract Data Types

DDL statements like CREATE, ALTER, and DROP have been extended in

SQL:1999 [SQL 99] to support the declaration and implementation of abstract data

types [Bro 01] [CZ 01], often also referred to as object types. According to [Ora 99b]

an object type is a schema object with three kinds of components: 

  • A name, which identifies the object type uniquely within that schema. 

  • Attributes, which model the structure and state of the real-world entity. Attributes

can be built-in types or object types. 

  • Methods of an object type are functions or procedures that are called by the appli-

cation to model the behavior of the objects. Methods can be stored in the database,

which is preferable for data-intensive procedures and short procedures that are

called frequently.

5.2 Extensible Query Language

Most ORDBMSs, including Oracle [Ora 99a] [SMS+ 00], IBM DB2 [IBM 99]

[CCF+ 99], or Informix IDS/UDO [Inf 98] [BSSJ 99], provide extensibility interfac-

es in order to enable database developers to seamlessly integrate custom object types

and predicates within the declarative DDL and DML. The resulting custom server

components, built on these interfaces, are called data cartridges, database extenders,

and data blades, respectively.

5.2.1  Extensible Indexing

In order to guarantee an efficient evaluation of user-defined predicates, the exten-

sibility services of the ORDBMS offer a conceptual framework to supplement the

functional evaluation of user-defined predicates with index-based lookups. This is in

accordance with the extensible indexing frameworks proposed by Stonebraker

[Sto 86], enabling developers to register custom secondary access methods at the

database server in addition to the built-in index structures. An object-relational in-

dextype encapsulates stored functions for creating and dropping a custom index and

for opening and closing index scans. Figure 63 shows some basic indextype methods,

invoked by extensible indexing frameworks. Furthermore, there exist additional

functions to support query optimization. Most ORDBMSs support both rule-based
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and cost-based query optimization, whereby the cost-based approach is preferable to

the rule-based approach when referencing user-defined methods as predicates ( cf.

[BO 99], [HS 93]). Therefore most ORDBMSs provide cost-based functions, which

are invoked by the extensible indexing framework (for a list of such functions have a

look at [Pöt 01] or [Ora 99a]). 

Some main advantages of extensible indexing frameworks are:

  • The maintenance and access of a custom index structure is completely hidden from

the user, achieving thereby data independence.

  • Any redundant index data remains consistent with the user data.

  • The declarative paradigm of SQL is preserved.

5.3 Implementation of the X-RI-tree on top of Oracle 8i 

In section 5.3 we describe how the X-RI-tree can be integrated into the extensible

indexing framework of the Oracle8i server, using the concepts introduced in the fore-

going sections. 

5.3.1  Declarative integration of the abstract data type TOIS 

As already mentioned, an interval sequence is a basic data type for temporal and

spatial data, which can efficiently be managed with the X-RI-tree. In order to seam-

Function Task

index_create(), 
index_drop()

Creates and drops a custom index.

index_open(), 
index_close()

Opens and closes a custom index.

index_start(),
index_fetch()

Starts an index scan.
Fetches the next record from the index that meets 
the query predicate.

index_insert(),
index_delete(),
index_update()

Adds, deletes, and updates a record of the index.

Figure 63: Methods for extensible index definition and manipulation
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lessly embed it into an ORDBMS we need an abstract data type for such an interval

sequence. We call this type TSpatialObject, or a bit more general TOIS (Type of

Object Interval Sequence). Instances of this custom object type are stored as elements

of relational tuples. Figure 64 depicts some of the required object-relational DDL

statements in pseudo SQL. By using the functional binding of the user-defined pred-

icate INTERSECTS, object-relational queries can be expressed in the usual declara-

tive fashion (cf. figure 64).

5.3.2  Extensible Indexing

In subsection 5.2.1 we discussed from a general point of view the extensible in-

dexing framework, whereas in this subsection we want to show exemplary, how the

X-RI-tree can be embedded into the Oracle 8i extensible indexing framework. We

// Type declaration

CREATE TYPE INTERVAL AS OBJECT (lower NUMBER, upper NUMBER);
CREATE TYPE INTERVAL_TABLE AS TABLE OF INTERVAL;
CREATE TYPE TOIS AS OBJECT (

intervals INTERVAL_TABLE,
MEMBER FUNCTION intersects (Aois TOIS) RETURN BOOLEAN

);

// Type implementation
// …

// Functional predicate binding

CREATE OPERATOR INTERSECTS (Aois1 TOIS, Aois2 TOIS) 
RETURN BOOLEAN
BEGIN RETURN Aois1.intersects(Aois2); END;

// Table SpObjs (SpatialObjects) definition

CREATE TABLE SpObjs (id NUMBER PRIMARY KEY, SpObj TOIS);

// Intersection query

SELECT id FROM SpObjs
WHERE INTERSECTS(SpObj, :q) = TRUE;

Figure 64: Object-relational DDL and DML statements for TOIS
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will mention a few technical details in connection with index creation and intersec-

tion queries.

5.3.2.1  Indextype XRItree

The first thing we have to do, is to encapsulate the X-RI-tree within the custom

indextype XRItree. Figure 65 gives a rough impression of what this means.

First, the ODCIIndex interface (Oracle Data Cartridge Interface Index), which is a

set of index definition, maintenance and scan routine specifications, has to be imple-

mented. This interface does not refer to a separate schema object but rather to a

logical set of documented method specifications (for detailed documentation see

[Ora 99a]). To accomplish this task, you can add different attributes and additional

functions to your indextype. 

Figure 65: Indextype XRItree

CREATE TYPE XRItree_im AS OBJECT (

// attributes
crs1Step NUMBER, // cursor for the first filter step

crs3Step NUMBER, // cursor for the third filter step

XRIMetadata TXRIMETADATA, // metadata for this index object (resolution, DB_MAXGAP)

LC3 TLC3, // List of candidates for the third filter step 

LC3Cnt number, // counter for the above collection set

LQI TLQI // List of the input query sequence

F2ActID number,  // ID of actual part in the second filter step

F2ActIDStart number, // position of the first record of this part stored in F2ResTab

LastHitID number, // Last ID, added to the result set 

XRangeTab varchar2(100), // Name of the XRange-Table

// ODCII-Functions
STATIC FUNCTION ODCIIndexCreate      ...,
STATIC FUNCTION ODCIIndexStart       ...,
MEMBER FUNCTION ODCIIndexFetch       ...,
MEMBER FUNCTION ODCIIndexClose       ...,

  .... 

// Additional functions   
  .... 
);

CREATE INDEXTYPE XRItree
FOR intersects (TOIS, TOIS) 
USING XRItree_im;
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Secondly, a new indextype has to be created by specifying the list of operators

supported by the indextype and referring to the type that implements the index inter-

face. In figure 65 the DDL statement for defining the new indextype XRItree, which

supports the intersects operator and whose implementation is provided by the type

XRItree_im, is depicted. 

5.3.2.2  Create index statement

In figure 66 it is shown that we can create an index spatial_idx on the SpObj

attribute on the SpObjs table by submitting the usual DDL statement. We can append

to this create-statement a parameter-clause, specifying the resolution and the MAX-

GAPdatabase parameter. The ODCIIndexCreate method is called when a CREATE IN-

DEX statement is issued. Upon invocation, any parameters specified in the parame-

ter-clause are passed in along with a description of the index. Based on this

information we can start grouping the black intervals together to grey intervals,

which is the essential part of the implementation of the ODCIIndexCreate function in

the case of the X-RI-tree.

5.3.2.3  Select statement

After having issued an intersection query, as illustrated in figure 64, an index scan

is executed, which is specified through three routines, ODCIIndexStart, ODCIIn-

dexFetch, and ODCIIndexClose. These routines perform initialization, fetch rows

(essentially row identifiers) satisfying the predicate, and clean-up once all rows are

returned. 

ODCIIndexStart: ODCIIndexStart is invoked to initialize any data structures and

start an index scan. Since the index and operator related information are passed in as

arguments to ODCIIndexStart and not to the other index scan routines (ODCIIn-

dexFetch and ODCIIndexClose), any information needed in the later routines must

be saved. This is referred to as the state that has to be shared among the index scan

routines. Oracle RDBMS will pass the SELF value to subsequent ODCIIndexFetch

// Index creation

CREATE INDEX spatial_idx ON SpObjs (SpObj) INDEXTYPE IS XRItree 
parameters ('33; 10000’);

Figure 66: Creation of a custom index on spatial data
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and ODCIIndexClose calls which can then be used to access the relevant context

information. 

In the case of the X-RI-tree, we use the ODCIIndexStart routine to fill the transient

left- and rightNodes tables and then post the query statement of the first filter step.

Furthermore, we save all necessary state attributes (cf. attribute list in figure 65).

ODCIIndexFetch: ODCIIndexFetch returns the next row identifier of the row

that satisfies the operator predicate. The operator predicate is specified in terms of the

operator expression (name and arguments) and a lower and upper bound on the oper-

ator return values. Thus, an ODCIIndexFetch call returns the row identifier of those

rows for which the operator return value falls within the specified bounds. A NULL

is returned to indicate the end of an index scan. The fetch-method supports returning

a batch of rows in each call. The state returned by ODCIIndexStart or a previous call

to ODCIIndexFetch is passed in as an argument. 

In the case of the X-RI-tree, the second and the third filter step are executed inter-

leaved as shown in figure 38. Note, that we might benefit from the fast grey test

because we can deliver results without accessing the BLOB. Therefore, we might

accomplish an ODCIIndexFetch call without executing the third filter step at all. As

the introductory example of figure 30 shows, the result set has not to be ordered by

the object ID attribute, as we return results as soon as they are available. Neverthe-

less, we have to save the transient table LC3 (cf. figure 65) for further ODCIIn-

dexFetch calls, where we might have to execute the SQL statement of the third step.

If we have already executed this statement, we save the corresponding cursor for

further ODCIIndexFetch calls.

ODCIIndexClose: ODCIIndexClose is invoked when the cursor is closed or re-

used. In this call the indextype can perform any clean-ups, etc. The current state is

passed in as an argument. 

In the case of the X-RI-tree, we just close open cursors.

5.4 Conclusions

In this chapter, we have shown, that we can seamlessly integrate the X-RI-tree into

a modern extensible ORDBMS. It is beneficial, that the second filter step of the X-

RI-tree, yields very fast first results, without knowing the complete result set.
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In order to enable the optimizer of the database system to place the X-RI-tree at its

optimal position in the query execution plan, we still have to develop a cost model for

the X-RI-tree. This is deferred to future work (cf. chapter 6), but certainly will not

pose any insuperable problems, as a cost model for the RI-tree has already been

developed (cf. [Pöt  01]) and can serve as a guideline.



Chapter 6
Conclusions

In this chapter we first turn our attention to a list of open problems. For a lot of

these problems, there already exist methods of resolution, which have not yet been

implemented and evaluated. Nevertheless, we will sketch the rough ideas, so that

others can take these thoughts as a starting point for future elaborations. At the end of

the last chapter we have already pursued this approach, where we suggested that it is

a good idea to develop a cost model for the X-RI-tree, based on the available cost

model for the RI-tree.

In section 6.2 we summarize the work presented in the foregoing chapters, putting

emphasize on the advantages of the X-RI-tree.
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6.1 Future work

In this section, we list a few open problems and shortly outline solutions to the

posted problems, but no detailed elaboration and verification. 

In subsection 6.1.1 we introduce a new auspicious idea called, self-adapting in-

dexing, where we try to combine the strengths of both, linear scan and (X-)RI-tree.

We will see, that we already used this concept to some extent in the case of the X-RI-

tree, without being aware of it. In subsection 6.1.2 we write down a few thoughts

about a constructive computation method of an optimum global MAXGAP parame-

ter, whereas in the following subsection we glance at optimum local MAXGAP pa-

rameters combined with the idea of integrating bounding boxes into the upper- and

lowerIndexes. This aims at minimizing the candidates for the second and third filter

step. In the last subsection, we shortly summarize our annotations about future work.

6.1.1  Self-adapting indexing

As having seen in the foregoing chapters, the transformed database contains much

less intervals, and furthermore, the fork nodes of these intervals reside much closer

to the root. To put it another way, the tree levels close to the leaves of the virtual

backbone are only sparsely occupied, although there are still some leaves with inter-

vals registered at them (cf. figure 52). This raises the question, whether it is beneficial

to use the full path from the root of the virtual backbone to the leaves in order to

generate the necessary join partners. A lot of them will not contribute to the result set.

Therefore, it might be much better to stop the process of generating join partners at a

higher level of the tree and scanning the index from this point onward. 

This principal seems to be useful not only for transformed databases, but it can

also be applied to the RI-tree, especially if the underlying data spaces are sparsely

occupied. For example, imagine the data space of an airplane (e.g. 100 m in each

dimension). If you put a box volume query returning no results (e.g. Z-value > 50 m),

it is desirable that the system recognizes this at an early stage of the query process. 

We will shortly introduce four closely linked approaches, where we stop generat-

ing join partners, somewhere between the root and the leaves of the virtual backbone. 

We call this new index method S-RI-tree (Scan-Relation-Interval-tree), or XS-RI-

tree respectively. The first two approaches totally disregard the data stored in the
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database for the determination of the scan nodes NSanL and NSanR (cf. figure 67),

whereas the other two approaches take them into account.

6.1.1.1  S-RI-tree based on fixed truncation levels 

As already described, we can stop collecting join partners if the nodes are beneath

a fixed truncation level. In addition to the already collected join partners, we produce

two more range queries ‘node BETWEEN NScanL AND lτ AND upper ≥ lτ ’ and ‘node

BETWEEN NScanR AND uτ AND lower≥ uτ ’. Note, that intervals registered at N’

(cf. figure 67) can never contribute to the result set. Thus, we can no longer guarantee

blocked output.

6.1.1.2  S-RI-tree based on query dependent truncation levels

Pötke presents in [Pöt  01] an architecture for the Database Integration of Virtual

Engineering (DIVE) for existing Engineering Data Management systems (EDM). In

this work, emphasis was put on the efficient embedding of the RI-tree into an off-the-

shelf object-relational database system. A prototype of the DIVE system has been

evaluated in cooperation with the Volkswagen AG, Wolfsburg [KMPS 01a]

[KMPS 01b]. In these tests it emerged, that the RI-tree works more efficiently, if we

virtually enlarge the query intervals by a constant factor (cf. figure 67). If we find

nodes in this virtually enlarged area (e.g. NScanL and NScanR), we stop the collecting of

further transient join partners and produce range queries as described in the last sub-

subsection. 

root

virtual backbone τ
uτlτ

virtual enlarged τ

NScanL

NScanR

N‘

root

virtual backbone τ
uτlτ

virtual enlarged τ

NScanL

NScanR

N‘

Figure 67: Determination of NSanL and NSanR, i.e. the truncation level
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6.1.1.3  S-RI-tree based on data dependent truncation levels

We could compute the truncation level dependent on the histogram of the fork-

node levels (cf. figure 52). If there are only few fork-nodes close to the leave level,

we might use a higher truncation level. In this approach, we use (few) data in the

database to assess the truncation level but neglect any information stemming from

the query intervals (e.g. the position of the intervals).

6.1.1.4  S-RI-tree based on data and query dependent truncation levels

In [Pöt  01] effective and efficient methods to estimate the selectivity and the

performance of interval intersection queries are presented. The developed appropri-

ate I/O and CPU cost models can be invoked by common extensible indexing frame-

works (cf. remarks at the end of chapter 5). These models immediately exploit the

built-in statistics facilities of the database server, to cope with arbitrary interval dis-

tributions. For instance, histograms or quantiles can be employed to capture the data

characteristics at any desired resolution. 

In order to compute the optimum truncation level, we could pursue a similar ap-

proach. At each node, we could compute the number of remaining nodes, which still

have to be visited in the preparation step. Each of these nodes is linked to at least one

disk access of the leaves of the upper- and lowerIndexes. 

On the other hand, we could estimate the number of blocks between the actual

node and the interval boundary, based on built-in statistics. Comparing these two

values helps us to decide, whether we should further randomly access the leaves of

the upper- and lowerIndex by means of further collected transient join partners, or

just scan contiguous leaf blocks of these relational indexes, taking into account, that

we do not have blocked output.

Note, that random access to a leaf block is only beneficial with respect to I/O cost,

if the preceding block gap is larger than the size of a disk block [Pöt 01].

6.1.1.5  Summary

We have shortly sketched four different approaches to determine the scan nodes

NSanL and NSanR, i.e. the truncation levels, of the S-RI-tree. For the classification of the

different approaches, we can use the information stored in the database and the infor-

mation stemming from the query object. The result of this classification, applied to

our four approaches is depicted in figure 68.
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Adjusting this self-adapting indexing approach to other access methods as for in-

stance the Linear Quadtree (Octree) and the Relational R-tree could also be very

beneficial and lead to a general concept.

Finally, we would like to stress, that the X-RI-tree and the S-RI-tree, have a few

things in common, indicating, that the runtime behavior of the S-RI-tree is likely to

be much better as the one of the RI-tree.

  • In both cases the number of transient join partners can be dramatically reduced.

In the case of the X-RI-tree, this is owing to the lower number of query intervals,

whereas in the case of the S-RI-tree it is owing to the abbreviated virtual backbone.

  • Note, that due to possible fruitless scans, both indexes do not guarantee blocked

output, whereas the RI-tree does. As we have seen in the case of the X-RI-tree, this

drawback does not seem to be grave.

  • Both indexes use linear scan. In the case of the X-RI-tree this scan is confined to

parts of one database object stored in a BLOB, whereas in the case of the S-RI-tree

several database objects might be affected. Nevertheless, in both cases, we have

to cope with the same problem: What is the optimum level for switching between

the RI-tree and a linear scan? In this work we pursued the approach comparable

to the one of the S-RI-tree based on fixed truncation levels. The variation of the

MAXGAP parameter can be compared to the variation of the truncation level. Thus,

a third dimension could be added to the classification of figure 68, dealing with the

question, whether we use linear scan for one or all objects. The main difference

between this classification of the X-RI-tree and the S-RI-tree is, that the MAXGAP

parameter is fixed after the grey intervals have been inserted, whereas the trunca-

tion level has nothing to do with the insertion of intervals, but only with the query

no query information query information

no DB information
S-RI-tree based on fixed
truncation levels

S-RI-tree based on query
dependent truncation levels

DB information
S-RI-tree based on data
dependent truncation
levels

S-RI-tree based on data and
query dependent truncation
levels

Figure 68: Classification of self-adapting indexing (2-dimensional)
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response behavior. If we could access concurrently several databases, containing

the same objects, but based on different MAXGAP parameters, we could also

choose the optimum one, dependent on database and/or query data, at the begin-

ning of the query process1. 

6.1.2  Mathematical approach for FMAXGAP

In this work, we pursued a global empirical approach concerning the determina-

tion of an optimum MAXGAPdatabase parameter. We applied the FMAXGAP function to

different MAXGAP parameters, yielding different transformed databases, which we

empirically evaluated. To find an optimum global MAXGAP parameter, it could be

helpful to investigate in more detail the interval histograms resulting from the differ-

ent MAXGAP values. They could provide an indication of which parameter is the best

one. We will now introduce a mathematical approach for FMAXGAP , by means of

which we could determine the resulting interval histograms, dependent on MAXGAP.

Drawing conclusions from these interval histograms is a further unsolved task.

Note that the interval histograms correlate closely with the distribution of the fork-

node-levels (cf. section 4.3). By intensifying this mathematical approach, you should

be able to answer questions like: How probable is it, to find all objects intersecting

an interval query, if you neglect the last ten layers of the virtual backbone? Further-

more, this approach could build a sound foundation for the process of information

retrieval which itself is an interesting topic for future research. 

The now presented computational model is deferred to the section dealing with

future work, because the model has not yet been empirically analyzed. Nevertheless,

we introduce the basic idea of it and a corresponding algorithm for the computation

of FMAXGAP.

6.1.2.1  Algorithm for the computation of FMAXGAP

The basic idea is, to put all the intervals into a bucketintervals and all the gaps into

a bucketgaps. Then you have to draw by turns out of the two buckets, starting with the

1 You could also think of a more sophisticated concept, where the different tables, containing grey inter-
vals, are hierarchically linked. In this case only the one with the smallest MAXGAP parameter may con-
tain an additional BLOB, whereas all the others only store the hulls of the grey intervals. Here we omit
redundancy because we only store the complete information of the grey intervals with their attached
interval sequences in one table. On the other hand we still introduce redundancy compared to the
approach of this work because we additionally store the hulls of the grey intervals based on different
MAXGAP parameters.



Chapter 6 Conclusions

High resolution indexing for CAD databases 96

bucket of intervals. The drawn intervals and gaps are concatenated to a long grey

interval. If a gap is drawn from bucketgaps , which is longer than MAXGAP, the algo-

rithm stops.

The now introduced model assumes that both the gap and the interval sequence

form an i.i.d. sequence (independent, identically distributed sequence). This means,

that if you repeatedly draw intervals and gaps out of the two buckets, the probability

distribution of both does not change. To put it an other way, if you have drawn an

interval or gap, the model assumes, that you put it back. Of course, this is not really

done, thus the model simplifies the real world (cf. subsection 3.1.5). If you do not

assume that you put the intervals back into the buckets, you have to apply a hyper

geometric model or use transition probabilities, which is much more complicated.

Figure 69 depicts the gap and interval histogram, both normalized to 1. The two

distribution functions are called X and Y. Furthermore, let pM be the probability that

a gap is smaller than MAXGAP and qM the probability that it is greater than MAXGAP

(pM+qM=1). In a first step, we create the function YM, by omitting the gaps greater

than MAXGAP from Y and normalize it to 1. In a second step, we create the function

f* by convoluting YM and X: .

This function f* describes the probability distribution of grey intervals, consisting

of one black interval and one gap (so they are “no real” grey intervals with respect to

definition three, because they do not end with a black interval).

The now introduced algorithm (cf. figure 69) is based on this function f*and on Pk,

the probability of drawing k-1 gaps with a length smaller than MAXGAP and then an

interval with a length greater than MAXGAP. For Pk the two following statements

hold: 
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Figure 69: Algorithm for computing FMAXGAP  
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The algorithm is based on recursive convolution. We start with  and form

each  by convoluting  with . Each of the so generated functions is

weighted with . Adding all these functions, leads to: 

You can stop the algorithm at any point k with a controlled error:  

The error over all x can be estimated by: 

Of course, the more natural way is, to allow a maximum error  and compute the

number of necessary steps k , so that the following holds:

The mathematical approach, indicated above, complements the empirical ap-

proach, which has been mainly pursued throughout this work. The future work con-

sists in uniting the both approaches and verifying the mathematical approach by

means of empirical results.

6.1.3  An optimum local MAXGAP parameter

6.1.3.1  Using different MAXGAP parameters

Up to now we have always used a global MAXGAP value for the whole database.

In this subsection, we want to talk about an intermediate and a local approach for an

optimum MAXGAP parameter (cf. figure 70). In a first step, we only allow different

MAXGAP parameters for the different objects in the database, but not for their corre-

sponding grey intervals, leading us to an intermediate approach. In a second step, we

allow different parameters for each grey interval, leading us to a local approach.

Finding such optimal local or intermediate MAXGAP parameters, would certainly

reduce the response time of intersection queries.

One very important task is to define quality criterions for the local, intermediate

and global approach which for instance take into account the average density and the
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overall number of intervals. This criterion should help us to assess whether a frag-

mentation of an object into grey intervals is good or not. 

6.1.3.2  Bounding boxes for grey intervals

Not only could we allow different MAXGAP parameters for each grey interval, we

could also add bounding boxes to the grey intervals. These bounding boxes could

easily be integrated into the TAIS-structure which itself is a part of the upper- and

lowerIndexes of the XRange table. This approach, depicted in figure 71, might con-

tribute to an enormous reduction of the candidate pairs for the second and third filter

step. 

level of different MAXGAP 
parameters

name of approach

database global approach

database object intermediate approach

grey interval local approach

Figure 70: Global, intermediate and local MAXGAP parameters

Figure 71: Bounding boxes for the grey intervals (2-dimensional)

grey interval and bounding box from object A

grey interval and bounding box from object B

grey interval and bounding box from object A

grey interval and bounding box from object B
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Figure 71 illustrates that although the grey intervals of the objects A and B inter-

lace, the corresponding bounding boxes do not. In this example, we do not have to

test this pair of grey intervals in the expensive third filter step, but can exclude it

already in the first or second step, which is still only based on the upper- and lower-

Indexes. 

Furthermore we could include progressive approximations into the TAIS-structure

(cf. subsection 1.4.2) in order to detect more hits in the second filter step. 

Thus the detection of an optimum local MAXGAP parameter for each grey interval

should consider the bounding boxes as well as progressive approximations, as for

instance minimum bounding 5-corners and maximum enclosed rectangles

(cf. [BKKS 94]), in order to improve the efficiency of the second filter step.

6.1.4  Summary

In this section we presented a list of open problems. We do not claim that this list

is exhaustive. It could be arbitrarily extended by topics like information retrieval or

general interval relationships1 based on the X-RI-tree. Furthermore, you could apply

the X-RI-tree to object interval sequences, not stemming from CAD data, but from

temporal applications or any other area, where objects can be expressed by means of

interval sequences. Another interesting topic would be, to use other transformation

functions than FMAXGAP (cf. figure 25) to group the black intervals together to grey

intervals.

A nice side-effect of our reflections about future work is, that we deepened our

understanding of the X-RI-tree, by comparing it to the S-RI-tree. Both trees use the

RI-tree index to some extent before switching to a linear scan.

1 In addition to the intersection query predicate, there are 13 more fine-grained topological and direc-
tional relationships between intervals [Allen 83], which are of practical relevance, as a subset of them
has been introduced into the new SQL:1999 standard [Sno 00]. We do have to investigate, whether que-
ries based on these predicates are also efficiently supported by the X-RI-tree. The paper from Kriegel,
Pötke and Seidl on “object relational indexing for general interval relationships” [KPS 01b] could serve
as orientation.
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6.2 Summary

In this master thesis, a new indexing method for object interval sequences was

presented, called X-RI-tree. The X-RI-tree is a multi step index, which is based on the

RI-tree. To minimize the number of intervals for each object, we close small gaps,

with a maximum length of MAXGAP. As we do not want to loose any information, we

connect to each of these newly created grey intervals an attached interval sequence,

stored in a BLOB. This structure of the grey intervals is reflected in the query pro-

cess, which is based on three major steps: 

  • In a first filter step, we use the slightly modified RI-tree to determine all interlacing

pairs of grey database and query object intervals. These interval pairs are ordered

by database ID and a value P, indicating how probable an intersection between the

two intervals might be. 

  • In a second step we perform the so called fast grey test to determine intersecting

intervals without examining the attached interval sequences. All necessary infor-

mation for this step is provided by the first filter step, so that no additional I/O ac-

cesses are necessary.

  • Finally, we carry out the expensive BLOB test, scrutinizing the attached interval

sequences. 

The X-RI-tree has been implemented on top of an Oracle8i Server, exploiting its

extensible indexing framework. The experimental evaluation of a well parameterized

X-RI-tree, compared to the optimized version of the RI-tree, can be summarized as

follows:

  • Using the X-RI-tree improves the secondary storage behavior at least by an order

of magnitude.

  • Using the X-RI-tree dramatically reduces the session footprint.

  • Using the X-RI-tree improves the response time of collision queries by an order of

magnitude.

  • Using the X-RI-tree improves the response time of box queries by an order of sev-

eral magnitudes, because the concept of grey intervals is especially beneficial for

top-down dynamically created query objects.
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