FernUniver sitat
Gesamthochschule in Hagen

High resolution indexing
for CAD databases

Aufgabensteller: Prof. Dr. Ralf Hartmut Guiting (Lehrgebiet Praktische Informatik 1V)
Prof. Dr. Hans-Peter Kriegel

Betreuer: Dr. Marco Potke
Dr. habil. Thomas Seidl
Bearbeiter: Martin Pfeifle

Abgabedatum: 31. Oktober 2001

Acknowledgments

I would liketo thank Prof. Dr. Ralf Hartmut Guiting for hisalacrity to allow meto
accomplish my diploma in computer science at the University of Munich. | was
working there under theleadership of Prof. Dr. Hans Peter Kriegel to whom | am very
grateful. Without his confidence in me, and without the productive and inspiring
working atmosphere he created, thiswork could never have come into existence.

My diplomathesis was greatly inspired by the work of my two tutors Dr. Marco
P6tke and Dr. habil. Thomas Seidl, the inventors of the RI-tree. | want to thank them
for the many fruitful discussions concerning scientific questions and their readiness
to help me with technical problems. | am also grateful to Bob Abarbanel, M.D.,
Ph.D., at the Boeing Company, who placed real-world test dataat my proposal.

| want to thank all my other colleaguesfor their enjoyable collaboration and their
friendliness.

Furthermore, | would like to express my deepest thanks to my parents, who con-
stantly supported me. Last but not least, my special thanks go to my wife Valeriefor
her encouragement and unceasi ng love. Without her considerateness, thiswork could
never have been accomplished.

Erklarung

Hiermit erkl@reich, dassich diese Arbeit selbstéandig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Hagen, den 31. Oktober 2001 .o
Martin Pfeifle

Abstract

Themanagement of complex spatial objectsin many non-standard database appli-
cations, such as computer-aided design (CAD), imposes new requirements on spatial
database systems, in particular on efficient query processing. In the past two decades
various index structures have been proposed to support this process. Recently, there
has been an increasing awareness that it is indispensable to integrate these index
structuresinto fully-fledged database systems.

In thismaster thesisanew spatial index isintroduced, which supportstheintersect
predicate on a data type TSpatial Object. This new access method, called X-RlI-tree,
can easily be implemented on top of an object-relational database management sys-
tem, exploiting its extensible indexing framework. Thus, fundamental services of
underlying commercial database systems can be fully reused, including transactions,
concurrency control, and recovery.

The X-RlI-tree is a multi step index for grey interval sequences, which can be
generated out of spatial objects via space filling curves. Each of these grey intervals
consistsof aninterval hull, aggregated information of thegrey interval, and adetailed
attached black interval sequence. This structure is reflected in the query process,
which is based on three consecutive filter steps. In afirst filter step, all overlapping
pairs of grey database and query intervals are determined, by means of a dightly
atered Ri-tree. In a second filter step a so called fast grey test is used to determine
intersecting intervals without examining the attached interval sequences. In a last
third filter step, an expensive BLOB test is carried out, scrutinizing the attached inter-
val sequences.

Both the RI-tree and the X-RI-tree were implemented on top of an Oracle Server
Release 8.1.7, using PL/SQL for the computational main memory based program-
ming. The experimental evaluation, which was based on two real world test datasets,
has pointed up that a well parameterized X-RI-tree outperforms the optimized ver-
sion of the RI-tree approximately by an order of magnitude with respect to use of
secondary storage, main memory session footprint, and overall query responsetime.

Abstract (in Deutsch)

Die Verwaltung komplexer raumlicher Objekte, wie sie beispielsweise im CAD-
Bereich auftreten, stellt neue Anforderungen an raumliche Datenbanksysteme und
besonders an die rAumliche Anfragebearbeitung. In den letzten zwel Jahrzehnten
wurden verschiedenartige Indexstrukturen zur Unterstiitzung solcher Anfragen ent-
wickelt. In jungster Zeit, rickte die Wichtigkeit der Integration dieser Indexstruktu-
ren in vorhandene Datenbanksysteme immer mehr ins Bewusstsein.

In dieser Diplomarbeit wird eine neue Indexstruktur vorgestellt, die dasinter sect-
Pradikat auf einem raumlichen Datentyp TSpatial Object unterstiitzt. Diese neue Zu-
griffsmethode, die wir X-RI-Baum nennen, kann sehr leicht in gangige objekt-rel atio-
nale Datenbanksysteme integriert werden, so dass zentrale Datenbankdienste wie
Transaktionen, kontrollierte Nebenlaufigkeit und Wiederanlauf in Einklang mit der
Benutzung des X-RI-Baum stehen.

Der X-RI-Baum ist ein mehrstufiger Index fir graue Intervallsequenzen, die
durch raumfiillende Kurven aus raumlichen Objekten gewonnen werden kénnen. Je-
desdieser grauen Intervalle besteht aus einer Intervallhille, aggregierter Information
Uber das graue Intervall und einer detaillierten schwarzen Intervallsequenz. Die
Struktur der grauen Intervalle wird in der Anfragebearbeitung widergespiegelt, die
auf drei Filterschritten basiert. In einem ersten Filterschritt werden alle Paare sich
Uberlappender grauer Intervalle mit Hilfe des RI-Baumes ermittelt. Im zweiten
Schritt wird ein Schnelltest durchgefiihrt, der ohne zusétzliche 1/0-Zugriffe aus-
kommt. In einem teuren dritten Filterschritt werden die schwarzen Intervall sequen-
zen ausgewertet.

Sowohl der RI-Baum als auch der X-RI-Baum wurden in PL/SQL implementiert
und in einen Oracle Server Release 8.1.7 integriert. Die experimentelle Auswertung
basierte auf zwei Echttestdatenmengen und hat aufgezeigt, dass das Sekundéarspei-
cherplatzverhalten, der Hauptspeicherbedarf und die gesamte Anfragezeit ungefahr
um eine Grof3enordnung beim X-RI-Baum besser sind als beim RI-Baum.

Table of Contents

Acknowledgments e i
ErKIArUNg . . oo e I
ADSIIaCT . . 1
Abstract (iNDeutsCh)o v
Table of Contents.o e %
1 Introduction 1
1.1 Virtual Engineering.o v 1
1.2 Spatial Databaseso 2
1.3 Spatially Extended CAD Objects. 4
131 Trianglemeshes. 4

1.3.2 ObjectiInterval Sequences., 4

1.4 Processing Spatial QUEries.t 8
141 Two-Step Query ProCeSSING. . ..o oo vt e 8

142 Multi-Step Query Processing. . .. oo vv v i 9

143 Complexity versusRedundancy 11

15 TheRedational Interval Tree. ...t 1
15.1 Relational Storage and ExtensibleIndexing 12

152 DynamicDataStructure............ ..., 12

153 Intersection Query Processing.oovviiiinnnnnan.. 13

154 Optimizations.ot 14

155 Fina Optimized Algorithm 16

156 Concludingremark.......... ... 17

1.6 ProblemFormulation 17

1.7 Methodof Resolution.t e 19
1.8 Outlineof thiswork. 20
Storage of Spatial Objectsin an ORDBM S 22
21 GreylIntervals 23
2.2 Moddling GreyIntervalscc i 27
2.3 SoringanInterval SequenceinaBLOB 29
231 Introduction 29
2.3.2 Bit-Oriented Approach. 29
2.3.3 Offset-Oriented Approach o .. 31
234 DISCUSSION . .ottt ittt e e e 31
2.4 Implementationof GreyIntervals. oo, 33
241 TheAbstract DataTypeTISt 33
242 TheAbstract DataType TAISo 34
243 DatabaseSchema. oo 34
2.5 Insert-, Delete- and Update-Statements 35
25.1 Determinationof theForkNode 35
252 InsertandDelete 35
253 Update 36
26 TransformedDatabase 36
2.6.1 Transformation Function.............., 36
2.6.2 Characteristicaof aDatabase. oot 38
I nter section of Spatial Objectsin an ORDBM S 39
3.1 Intersectionof Interlacingintervals. 40
311 INtroductiono 40
312 Definitions. 40
313 INtErseCtion.o 41
314 NOINErseCtion.ot e 43

3.1.5 Probabilitymodels............ 44

3.2 General Survey of theQuery Process., 47
33 FirgFilter Sep. . ..o 50
331 Introductionot 50
332 RaNKING ..ot 50
3.3.3 Structure of the transient tables left- and rightNodes 51
334 Onesteponly . ..ot 52
3.3.5 Final SQL command for thefirst filter step. 52
34 SecondFilter SEP.o v i e 53
3.4.1 Structure of the candidate set of the second filter step SC2. 53
34.2 Algorithm. ... e 54
3.5 Connection between the Second and the Third Filter Sep............ 55
351 Introduction 55
352 TheLCagMAX parametercoviiiii e 55
3.6 ThirdFilter Step oo 56
3.6.1 Introductiont 56
3.6.2 Structure of the transient table of query intervalsLQI 57
3.6.3 Structure of the candidate set of the third filter step SC3 57
364 SQLStaement e 58
3.6.5 Stored procedure IntersectionTest 59
3.7 Dynamically created queryobjects. L 62
371 Introductiont 62
37.2 BasiCidea.t 63
3.8 OptiMizations.ottt 63
381 Gapoptimizationot 63
3.8.2 IntegratingInner QUENies. 64
Experimental Evaluation 65
A1 IntrodUuCHiON.o e 65
4.2 BLOB GCCESS ittt et 66
4.3 Evaluation of the static propertiesof the X-RI-Tree. 67
4.3.1 Characteristicaof the transformed Databases 67
432 Gapandinterval histogramso 68

433 StorageRequirementst 69

434 Miscalaneous 71

4.4 Evaluation of the dynamic propertiesof the X-RI-Tree. 73
441 ColiSONQUENES. ..ottt ettt 73

442 BOXQUENES . .ottt et et e 78

A5 SUMMAIY ..ttt 80

5 Incorporation of Spatial Objectsin an ORDBM S 81
51 ExtensibleDataModel 82
5.1.1 Classficationof DataModels.t 82

5.1.2 Abstract DalaTypesS. . ..o v it 83

5.2 ExtensibleQueryLanguage 83
521 Extensiblelndexing.......... ... 83

5.3 Implementation of the X-RI-treeontopof Oracle8i 84
5.3.1 Declarative integration of the abstract datatype TOIS 84

532 Extensiblelndexing.............oouiiiiiiiiiiiii 85

5.4 CONCIUSIONS. . . oot 88

6 Conclusions 90
6.1 Futurework. 91
6.1.1 Sef-adaptingindexing............ ... 91

6.1.2 Mathematical approach for FyjaxGAP -« -+« « v v vrrrrrerennnn. 95

6.1.3 Anoptimum local MAXGAPparameter.................... 98

6.1.4 SUMMAIY ..ottt e e e 100

6.2 SUMMAIY . .ottt e 101
Listof Figuresand Tables. A-1
Listof Definitions A-4
Listof Theorems e A-5
List Of LESSONS. . . .ot A-6

REfEIENCES . . . A-7

Chapter 1
| ntroduction

1.1 Virtual Engineering

For along time industrial practice in automotive, aerospace, and other manufac-
turing industriesinvolves the creation of a number of physical product models. Dur-
ing the product devel opment phase, both the product and the process are verified on
the basis of physical mock-up (PMU). However, hardware checks cause tremendous
time delays. Moreover, a late hardware verification very often leads to respectively
late design changes, which are cost intensive (cf. figure 1).

Nowadays, the different industries
R do not haveto build real test models

- prototypes

Redesign
Costs

- testing

-snangeneisnsour s ANYMOre. The real models currently

Time

required for automobile develop-

1
]
1
A A
he
v

ook ment, for instance, are being dis-

100% DMU Check HW Cl
Product Quality

pensed with new digital mock-up
(DMU) methods, which combineall
digital data from CAD, CAE and
CAM, including the results from

1
as designed :
I

as built

Time

Figure 1: Digital mock-up (DMU) [IWB 01]

simulations and animations. This
new approach, called virtual engineering, meansthat the devel opment period in auto-
motive construction can sharply be reduced. Shorter product cycles and a greater
diversity of models are becoming decisive competitive factors in the hard-fought

automobile market. These demands can only be met by digitalization of the manufac-
turer’'s whole development process and within the entire component supplier chain.
The thereby incurred huge amounts of data, have to be managed somehow.

1.2 Spatial Databases

Database systems (DBS) are designed to manage and analyze huge amounts of
persistent data, offering important advantages compared to afile-based organi zation.
DBSs provide logical and physical data independence, transactions, concurrency
control, integrity checking, recovery, security, standardization, and distribution
[Dat 99].

One of the most promising data models for DBSs is the object-relational one. It
provides two substantial advantages. First, the practical impact of ORDBMSs (ob-
ject-relational database management systems) is very strong, as object-relational
functionality has been added to most commercially available relational database
servers, including Oracle [Doh 98], IBM DB2 [CCN+ 99], and Informix IDS/UDO
[Bro 01]. Secondly, its extensibility is a hecessary prerequisite for the seamless em-
bedding of spatial datatypes and geometric predicates, which isvital for virtual en-
gineering. Defining spatial data types and spatia predicates on top of any off-the-
shelf ORDBM S enables usto ask querieslike (cf. figure 2):

» Determine all spatial objectsintersecting agiven rectilinear box volume (box vol -
ume query).
 Find all objectsthat intersect an arbitrary query object (collision query).

a) Box volume query b) Collision query

Figure 2: Spatial queries on a Spatial Database System

Furthermore, integrating these spatial features into an ORDBMS, allows us to
combine structural queries as, for instance, “retrieve all documents, that refer to the
current version of thejet engine”, with the eval uation of geometric predicates. To put
it another way, ORDBMSs allow us to combine easily Engineering Data Manage-
ment systems (EDM) with spatial database systems.

According to Gitting [Giit 94] 'spatial database systems, could be defined in the
following way:

* A spatial database system is a database system.
* |t offers spatial datatypes (SDTs) in its datamodel and query language.

* |t supports spatial data types in its implementation, providing at least spatial in-
dexing and efficient algorithms for spatial joins.

Thisdefinition pointsup, that aspatial database system, isafully-fledged database
system, with additional modulesfor handling spatial data. The extensibility interfac-
es of most ORDBMSs, including Oracle [Ora99a] [SMS+ 00], IBM DB2[IBM 99]
[CCF+ 99], or Informix IDS/UDO [Inf 98] [BSSJ 99], enable us to integrate spatial
requirementsinto off-the-shelf object-relational database systems.

In this work we focus on building aspatial index, supporting the intersect? predi-
cate on a data type TSpatial Obj ect3. This enables us to effici ently process collision
and box volume queries, as depicted in figure 2. We do not claim, having build anew
gpatial database system, knowing that wefall short of presenting efficient algorithms
for other spatial relationships and for spatial joins. Nevertheless, this diplomathesis
can be used as a starting point and a guideline to build an efficient spatial database
system on top of an ORDBMS.

1[Gt 94] can be used as an introductory paper into the area of spatial database systems. Furthermore,
werecommend [GG 98] to the reader, in which an overview of multidimensional access methods can be
found. Finally, [Sam 90a] and [Sam90 b] can serve as a starting point for the general area of spatial data
structures.

2 In [GG 98] it is mentioned that the intersection operator is one of the most important operators, and
that it playsacrucial rolein virtually all the other cases [GR 94].

3 This data type is equal to a more general data type TOIS (Type of Object Interval Sequence), indicat-
ing that our approach is suitable for all domain objects, which can be represented by an interval
sequence. Throughout this thesis the two data types are used interchangeable.

1.3 Spatially Extended CAD Objects

Engineering products can be regarded as a collection of individual, three-dimen-
sional parts. Each of these parts may consist of acomplex and an intricate geometric
shape with a very high precision. In order to cope with the demands of accurate
geometric modeling, highly specialized CAD applications are employed. In subsec-
tion 1.3.1, wetalk about triangle meshes, avery accurate and widely spread represen-
tation form of CAD objects. In subsection 1.3.2 a coarser, conservative approxima-
tion of the parts, by means of voxels, will be discussed. These voxels can be grouped
together to Object Interval Sequencest, which build the foundation of thiswork.

1.3.1 Triangle meshes

Accurate representations of CAD surfaces are typically implemented by paramet-
ric bicubic surfaces, including Hermite, Bézier, and B-spline patches. For many op-
erations, such as graphical display or the efficient computation of surface intersec-
tions, these parametric representations are too complex [MH 99]. As a solution,
approximative polygon (e.g. triangle) meshes can be derived from the accurate sur-
face representation. These triangle meshes alow for an efficient and interactive dis-
play of complex objects, for instance by means of VRML encoded files, and serve as
an ideal input for the computation of spatial interference.

1.3.2 Object Interval Sequences

In order to employ spatial indexing on CAD databases, the geometry of each sin-
gle CAD part can betransformed into an interval sequence by means of voxelization.

In [P6t 01] different ways are described to achieve this voxelization, suitable for
both solid and surface modeling. In this work we only consider representations of
solid objects, which are already voxelized. Therefore, we do not have to take acloser
look at the algorithms creating voxelized sets, but rather take their result asastarting
point.

L In [P6t 01], Pétke described in detail how these three different object representations are linked
together and how they can be used to build a well functioning system for the Database Integration of

Virtual Engineering (DIVE) for existing Engineering Data M anagement systems (EDM).

Hilbert-order Z-order lexicographic order

Figure 3. Examples of space-filling curvesin the two-dimensional case

1.3.2.1 Mapping Extended Objectsto Interval Sequences

Voxels coarsely approximate spatial objects. The voxels correspond to cells of a
grid, covering the complete data space. The grid resolution determines the finest
possible granularity for the approximation of the objects. By means of space filling
curves, each cell of the grid can be encoded by a single integer number, and thus an
extended object isrepresented by a set of integers. A lot of these space filling curves
achieve good spatial clustering properties. Therefore, cellsin close spatial proximity
are encoded by similar integersor, putting it another way, contiguousintegers encode
cells in close spatial neighborhood. Examples for space filling curves include Hil-
bert-, Z-, and the lexicographic-order, depicted in figure 3. The Hilbert-order gener-
ates the last intervals per object [Jag 90] [FR 89] but unfortunately, it is the most
complex linear order. Taking redundancy and complexity into consideration, the Z-
order seemsto be the best solution. Therefore, it will be used throughout the rest of
thisthesis.

Voxels can be grouped together to Object Interval Sequences, so that an extended
object can be represented by some continuous ranges of numbers. The three shortly
discussed representation forms of objects are depicted in figure 4.

Rz
N
G

&
PSOELBS
55‘}(\%%\‘&?
2
9

a) Triangle mesh b) Voxel set ¢) Interval sequence

Figure 4: Conversion pipeline from triangul ated surfaces to interval sequences

e A
Y \
A [8
Ed B
B | \:4%(\:%
= :
£l £l
= 5] EP
60 tiles 20 tiles 30 tiles
+14% error +61% error +30% error
ﬁn‘%w : E}gr o
a) b)| c) o
41 intervals 20 intervals 17 intervals
+14% error +26% error +30% error

Figure 5: Decomposition of a spatial object
Top row: into Z-tiles, bottom row: into Z-ordered interval sequences,
a) granularity-bound, b) size-bound, and c) error-bound approach

1.3.2.2 Controlling Accuracy and Redundancy

Theresolution of the underlying grid of the data space, i.e. the granularity, is deci-
sive for the mapping of spatial objectsto their corresponding interval sequences. On
the one hand, refining the resolution approximates the object more accurate, but on
the other hand, the redundancy increases. Gaede pointed out in [Gae 95] that the
number of tiles and intervals exponentially depends on the granularity.

Replicating technigues based on the Linear Quadtree [TH 81] [OM 88] [Ora 99¢]
[RS 99] [FFS 00] decompose spatial objectsinto tileswhich correspond to constraint
segments on a space filling curve. In contrast, intervals are not confined to these tile
boundaries, and therefore, yield a significantly lower redundancy, as shown in
figure 5a.

Apart from the sketched granularity bound approximation [Gae 95], we need other
concepts, allowing usto vary the resolution between insertion and query time aswell
asbetween different objects. Orenstein [Ore 89] introduced the error-bound and size-
bound approximation approaches, embracing these problems.

These approaches are based on arecursive subdivision procedure, that stopsif the
desired redundancy (size-bound) or the desired maximum approximation error (er-
ror-bound) is reached. Figure 5b and 5c illustrate the size and error-bound approxi-
mation of a polygon into variable-sized tiles (top row) and into Z-ordered interval
sequences (bottom row). Interval sequencesyield either about half of the approxima-

tion error or half of the redundancy dependent on the desired approach compared to
Quadtreetiling.

Kriegel, Potke, and Seidl adapted in [KPS 01a] the algorithms of [Ore 89] by
integrating the management of generated intervals into the recursive spatial decom-
position. The algorithm returnsthe sorted interval sequencefor agiven d-dimension-
al spatial object (cf. figure 6). Starting with asingleinterval, encoding the entire data
space, non-empty tiles are subdivided recursively, following the chosen space-filling
curve. Depending on the desired approximation type, the recursion is terminated by
asize-bound or an error-bound criterion.

function decompose (object, bound) — sequence of intervals;
begin
Sequence result = E[O..Zh—l] Gl
PriorityQueue tiles = [{co, entire_space)]
while not bound exceeded /* size bound or error bound */
and not tiles.empty() do /* granularity bound */
tile = tiles.dequeueGreatest ();
if tile n object is empty then
remove the cell codes of tile from resullt;
elsif |tile]| > 1then
split tileinto {tiley, ..., tile};
for i = 1..n do tiles.enqueue(Jtilg — object], tilg);
end if;
end do;
return result;
end decompose;

Figure 6: Recursive decomposition of a spatial object into an interval sequence

Furthermore, there exists an alternative approach proceeding bottom-up, iterative-
ly closing small gaps between intervals. For a size-bound approximation, this algo-
rithm stopsif the maximum redundancy has been reached. The error-bound approach
minimizes the redundancy, by allowing only gaps larger than a MAXGAP parameter
between the different intervals, grouping all other intervals together to “grey inter-
vals'.

1.4 Processing Spatial Queries

In this section we review some general ideas about the spatial query process as
presented in the literature. In the first two subsections we point out the difference
between two- and multi-step query processing. In subsection 1.4.3 we look at the
topic of complexity versus redundancy. The new spatial access method, devel oped
throughout this thesis, combines multi-step query processing with a balanced ratio
between complexity and redundancy, which itself is essential for efficient query pro-
cessing [SK 93].

1.4.1 Two-Step Query Processing

Asalready mentioned, we can transform spatially extended objectsto object inter-
val sequences. In the next section we will introduce an existing spatial access meth-
od, the RI-treet, enabling us to efficiently process interval intersection queries. As
intervals, like minimum bounding rectanglesz, only approximate objects, a second
step is needed to pinpoint whether two objects intersect or not.

Gaede describes this two-step strategy for the query processin the following way
(cf. [Gae 95]):

* Filter step: By using a spatial access method (e.g. RI-tree, R-tree etc.) based on
approximated geometries (e.g. intervals, MBRs...) one obtains a set of candidate
objects. With this step one eliminates most objects that do not satisfy the query,
however some false hits are usually included.

» Refinement step: Toidentify false hitsinthe candidate set, it isnecessary to fetch
the qualifying objects into main memory and perform a (computationally expen-
sive) test on the accurate geometry.

In this thesis we only focus on the filter step. In order to refine collision and box
volume queries, afine-grained spatia interference detection of the candidate set can
be implemented, as for instance done in the DIVE system (cf. [KMPSO01a],
[KMPS 01b]) .

1 Patent pending [KPS 00b].

2 We could also approximate our spatial object with a minimum bounding rectangle (MBR), and use the R-tree
(cf. [Gut 84]) or some variant of it as a spatial access method.

multi-step
processing of SAM
spatial queries

exact geomet
pro%amr 4

Figure 7: Multi-step query processing

1.4.2 Multi-Step Query Processing

In[BKKS94]* thefilter step wasreplaced by two filter stepsleading to athree step
approach for the intersection problem (cf. figure 7).

* Inafirst filter step the minimum bounding rectangles of the objects are evaluated
returning a set of candidates. This step can be efficiently supported by spatial ac-
cess methods such asthe R*-tree [BK'SS 90].

* In the second filter step, more accurate approximations are exploited for filtering
out elements (fal se hits) from the candidate set. M oreover, answers can already be
identified using conservative as well as progressive approximations (e.g. mini-
mum bounding 5-corners and maximum enclosed rectangles) without accessing
the exact representation of the spatial objects. Two different techniques are pre-
sented in [BKKS 94]:

The false area test: The difference between the area of an object obj and the
area of its conservative approximation is called the false area (denoted by
fangpr(0b))). For two intersecting polygonal objects obj; and obj, the following
property holds:

Appr(obj1) n Appr(objp) > faagyr(0bj1) + fasgy(0bjo) L objy N obj, # [

To put it in words, if the area of the intersection of the approximations is larger
than the sum of the false areas of the objects, it follows that the objects intersect.

1 Jensen certifies this paper as being particularly beautiful and content-rich [Jen 99].

o) B &7

object conservative progressive

Figure 8. Conservative and progressive approximations

Progressive approximations. In addition to conservative approximations, pro-
gressive approximations (cf. figure 8) are adequate for identifying hits. A polyg-
onal object isprogressively approximated if the point set of the approximationis
a subset of the point set of the object. If two progressive approximations inter-
sect, it follows that the objects intersect.

» Eventualy, inthethird step, all remaining members of the candidate set are exam-
ined. This step requires access to the exact representation of the spatial objects.

In this thesis we introduce three filter steps based on object interval sequences,
akin to the above steps. This yields a four step approach for query processing, i.e.
threefilter steps and one refinement step. Our second filter step isquite similar to the
false areatest, but can easily be enlarged to cope with progressive approximations as
well (cf. subsection 6.1.3)".

We want to shortly discuss two more papers, taking advantage of an introduced
second filter step. A variant of both is applied in the second filter step of our new
access method.

In [ZS 98] apolygon approximation, called four-color raster signature (4CRS), is
introduced. Each polygon contains m x n cells, each one having two bits of informa-
tion to indicate whether a cell is empty, weak, strong or full (cf. figure 9). In the

Empty: the cell does not intersect the polygon

Weak: the cell contains an intersection of 50 %
or less with the polygon

Strong: the cell contains an intersection of more
than 50 % with the polygon
. Full: the cell isfully occupied by the polygon

Figure 9: Four-color raster signature

1 Unfortunately, progressive approximations are very expensive to compute, especially for maximum enclosed
approximations [BKKS 94].

——O—
This combination of boundary pointsimply that the two polygons intersect

Figure 10: Polygon boundary test

second filter step the false areatest is applied to each pair of superimposed cells. If
they have each more than 50% of the polygon’s areait is obvious that the polygons
intersect each other.

In[HJR 97] it is deployed, that some configurations of boundaries imply that poly-
gons must intersect. An example of such a situation is depicted in figure 10.

1.4.3 Complexity versus Redundancy

Most approaches for multi-step query processing are based on afirst filter step,
which itself uses minimum bounding rectangles to approximate the objects. This
approach reveal s strong disadvantages caused by the coarse approximation [SK 93].
These drawbacks are avoided by object decomposition techniques introduced in
[KHS 91]. Object decomposition techniques use a set of simple components repre-
senting acomplex spatial object. However, the number of components, called redun-
dancy, resultsin astorage and query processing overhead. According to [SK 93] the
point at issueis:

Which degree of redundancy i s best suitabl efor efficient spatial query processing?

In the experiments, presented in chapter 4, it is shown that an answer to this ques-
tioniscrucial for the efficiency of our new spatial access method.

1.5 The Relational Interval Tree

The efficient management of interval data represents a core requirement for many
spatial database applicationsl. The RI-tree, developed by Kriegel, Potke, and Seidl,
iIs arelationa storage structure for interval data (lower, upper), built on top of the

SQL layer of any ORDBMS. With the Relational Interval Tree (RI-tree), an efficient
access method has been proposed to process interval intersection queries. By design,
it follows the concept of Edelsbrunner’s main-memory interval tree [Ede 80] and
guarantees the optimal complexity for storage space and for 1/O operations when
updating or querying large sets of intervals.

1.5.1 Relational Storage and Extensible I ndexing

The RI-tree strictly follows the paradigm of relational storage structures since its
implementation is purely built on procedural and declarative SQL but does not as-
sume any lower level interfaces to the database system. In particular, built-in index
structures are used as they are, and no intrusive augmentation or modification of the
database kernel isrequired.

On top of its pure relationa implementation, the RI-tree is ready for immediate
object-relational wrapping. It fits particularly well to the extensible indexing frame-
works, which were already proposed in [Sto 86]. These frameworks, which are pro-
vided by the latest object-relational database systems, enable developers to extend
the set of built-inindex structures by custom access methodsin order to support user-
defined data types and predicates without weakening the reliability of the entire sys-
tem.

1.5.2 Dynamic Data Structure

The structure of an RI-tree consists of a binary tree of height h which covers the
range [1, 2h—1] of potential interval bounds. It is called the virtual backbone of the
RI-tree since it is not materialized but only the root value 21
inametadatatable. Traversalsof thevirtual backboneare performed purely arithmet-
icaly by starting at the root value and proceeding in positive or negative steps of
decreasing length 2™ thusreachi ng any desired value of the data spacein O(h) CPU

time and without causing any /O operation.

Is stored persistently

Upon insertion, an interval isregistered at the highest node that is contained in the
interval. For the relational storage of intervals, the value of that node is used as an
artificial key. The resulting relational schema, called intervals or Range table, con-

L A variety of methods has been published concerning interval management in databases, most of them
addressing temporal applications [TCG+ 93] [MTT 00Q]. In [KPS 00a] a survey of interval handling in
general isgiven.

a)

Mary

Ann

©)

intervals (node, lower,upper, id): [8, 2, 13, Mary|16, 4, 23, John|16, 10, 21, Bob[24, 21, 30, Ann
d)

lowerIndex (node, lower, id): | 8, 2, Mary | 16, 4, John | 16, 10, Bob | 24, 21, Ann |
upperIndex (node, upper, id): | 8, 13, Mary | 16, 21, Bob |16, 23, John| 24, 30, Ann |

Figure 11. Example for an RI-tree
a) four sampleintervals, b) virtual backbone and registration positions of the intervals,
¢) resulting table intervals, d) resulting relational indexes lowerIndex and upper | ndex

tainsthe attributes (node, lower, upper, id) and is supported by two composite index-
es (node, lower, id) and (node, upper, id), called lower- and upperindex. Aninterval
isrepresented by exactly one entry in the Range table and in each of the two indexes,
and therefore, O(n/b) disk blocks of size b sufficeto store nintervals. For inserting or
deleting intervals, the node values are determined arithmetically, and updating the
indexes requires O(logy, n) 1/0 operations per interval.

Theillustrationinfigure 11 provides an examplefor the RI-tree. Let usassumethe
intervals (2,13) for Mary, (4,23) for John, (10,21) for Bob, and (21,30) for Ann
(cf. figure 11a). The virtual backboneisrooted at 16 and covers the data space from
1to 31 (cf. figure 11b). Theintervals are registered at the nodes 8, 16, and 24 which
are the highest nodes hit by the intervals. Theinterval (2,13) for Mary isrepresented
by one entry inthetableintervals (8, 2, 13, Mary) and the entries (8, 2, Mary) inthe
lowerIndex and (8, 13, Mary) in the upperIndex since 8 is the registration node, and
2 and 13 are the lower and upper bound, respectively (cf. figure 11c and 11d).

1.5.3 Intersection Query Processing

To minimize barrier crossings between the procedural runtime environment and
the declarative SQL layer, an interval intersection query (lower, upper) is processed
in two steps. The procedural query preparation step descends the virtual backbone

from the root node down to lower and to upper, respectively. The traversal is per-
formed arithmetically, and the visited nodes are collected in two main-memory ta-
bles, leftNodes and rightNodes, as follows. nodes to the left of lower may contain
intervals which overlap lower and are inserted into |eftNodes. Analogously, nodesto
the right of upper may contain intervals which overlap upper and are inserted into
rightNodes. Whereas these nodes are taken from the paths, the set of all nodes be-
tween lower and upper belongs to the so-called inner query which is represented by
a single range query on the node values. All intervals registered at nodes from the
inner query are guaranteed to intersect the query and, therefore, will be reported
without any further comparison. The query preparation step is purely based on main
memory and requires no 1/0O operations.

In the subsequent declarative query processing step, the transient tables are joined
with the intervals table by a single, three-fold SQL statement (cf. figure 12). The
upper bound of each interval registered at nodes in leftNodes is compared to lower,
and the lower bounds of intervals stemming from rightNodes are compared to upper.
Theinner query corresponds to a simple range scan over the intervals with nodesin
(lower, upper). The SQL query requires O(h-logyn + r/b) I/Osto report r resultsfrom
an RI-tree of height h since the output from the relational indexesisfully blocked for
each join partner.

SELECT id FROM intervalsi, :leftNodes q

WHERE i.node = g.node AND i.upper >= :lower // left queries
UNION ALL
SELECT id FROM intervalsi, :rightNodes q

WHERE i.node = g.node AND i.lower <= :upper // right queries
UNION ALL
SELECT id FROM intervalsi //inner queries

WHERE i.node BETWEEN :lower AND :upper;

Figure 12: SQL statement for interval intersection queries

1.5.4 Optimizations

The naive approach of the RI-tree, produces alot of unnecessary join partners. In
this subsection we shortly introduce optimization rules for the RI-tree, which are
especially useful for object interval sequences, e.g. spatial queries (for further elabo-
rations cf. [KPS 014 or [P&t 01]).

43 52 55 85 8T 2l black object interval sequence

a) root = 128
o
-
=
~—
96
O
=
——
92
24 join partners
inner queries
b) black object interval sequence
root = 128
~—t
96
O
~—t
92
O
~—

9 join partners

Figure 13: Optimization of the RI-tree
a) naive Rl-tree, b) optimized Rl-tree

1.5.4.1 Gap optimization
The naive approach of the RI-tree, disregards the important fact that the intervals

of an interval sequence represent the same object. As a mgjor disadvantage, many
overlapping queries are generated. This redundancy causes an unnecessary high
main memory footprint for the transient query tables, an overhead of query time, and
lots of duplicates in the result set, which have to be eliminated. The basic ideaisto
avoid the generation of redundant queries, rather than to discard the respective que-
ries after their generation.

In the example, depicted in figure 13, the root node (128) is queried by threeright
queries. An interval registered at the root node is reported three times if its lower
bound isless or equal to 52, and twice if its lower bound is greater than 52 but not
greater than 85. Theright query of the rightmost interval sufficesto report al result-

ing intervals from node 128, and discarding the other queries prevent the generation
of duplicates without yielding false dismissals.

Node 64 is aso queried three times. A registered interval isreported at |east once
— dueto theinner query — and up to three timesif itslower bound isless or equal
to 52 and its upper bound isgreater or equal to 87. Here, theinner query of the second
interval suffices to produce the complete result. Analogously, the nodes 32, 48, 52,
56, 80, 84, 88, and 96 are queried twice and may produce duplicates.

In [KPS 014] it is asserted and proved, that for a sorted interval sequence
g = [y, ..., gyEwith intervals g; = (lower;, upper;), the result of an intersection query
iscompleteif for each g;, query generationisrestricted to nodesnwith upper;_; <n <
lower;, where uppery = —o and lower 4.1 = oo.

1.5.4.2 Integrating Inner Queries

As an example, consider the interval (43, 52) in figure 13 which yields the inner
query ‘node BETWEEN 43 AND 52’ or, rewritten, ‘node BETWEEN 43 AND 52
AND upper =43'. Theleft query at node 42 trandatesto ‘ node = 42 AND upper = 43
or, rewritten, ‘node BETWEEN 42 AND 42 AND upper > 43 . Theleft query range
(42, 42) isimmediately adjacent to the inner query range (43, 52). Thus, merging
both queries to the single range query ‘node BETWEEN 42 AND 53 AND upper =
43 savesone (cached) B+-tree lookup without producing any redundancy. Generally
spoken, if one interval bound is odd, the outer adjacent node is even and, thus, is
reached earlier when descending the tree. The inner query may be merged with the
closest corresponding left or right query. If both interval bounds are odd, the algo-
rithm arbitrarily chooses the adjacent left node or right node. Only if both interval
bounds are even, the inner query cannot be merged with an adjacent query.

The exploitation of this observation typically avoids the generation of 75% of the
inner queries.

Figure 13 illustrates the effect of these two optimization rules to our example.
Having originally generated 24 queries, now only 9 queries are produced.

1.5.5 Final Optimized Algorithm

The presented optimizations are orthogonal and may be integrated into the naive
agorithm independent from each other. When descending from the root to the inter-
val bounds, single queriesbeyond the adjacent gaps are suppressed, and inner queries
may be combined with adjacent left or right queries. The resulting left and right

queries are collected in two transient tables, leftNodes (from, to, lower) and right-
Nodes (from, to, upper), indicating the single nodes (if from = to) or the range of
nodes (if from < to) to be scanned, and the lower or the upper bound of the individual
query interval. Query processing itself is performed by a single two-fold SQL state-
ment as depicted in Figure 14.

SELECT id FROM intervalsi, :leftNodes | eft
WHERE i.node BETWEEN left.from AND left.to
AND i.upper >= left.lower // using upperindex
UNION
SELECT id FROM intervalsi, :rightNodes right
WHERE i.node BETWEEN right.from AND right.to
AND i.lower <=right.upper // using lowerIndex

Figure 14: Final SQL statement for interval sequence queries

1.5.6 Concludingremark

For a more detailed elaboration of the RI-tree have a closer ook at [Pot 01] or
[KPS 01a]. We usethisfinal version of the RI-tree asastarting point for anew access
method, called X-RI-tree, which will be devel oped throughout thisthesis. The X-RI-
tree is an enhancement of the RI-tree, suitable for high resolution CAD databases. In
order to understand the X-RlI-tree, you have to be acquainted with the basics of the
RI-tree, asintroduced in this section.

1.6 Problem For mulation

This work was mainly motivated by the need of two of our industria partners, a
German car manufacturer and an American plane producer, dealing both with high
resolution CAD data. Gaede pointed out that the number of intervals, representing a
spatially extended object, exponentially depends on the granularity of the grid ap-
proximation [Gae 95]. Furthermore, the extensive analysis given in [MJFS 96] and
[FIM 97] shows, that the asymptotic redundancy of an interval-based decomposition
Is proportional to the surface of the approximated object. Thus, in the case of high
resolution huge parts (e.g. wings of an airplane), the number of intervals can become
very large. In order to support the process of virtual engineering, an efficient access

a) b)
approx. 200 parts approx. 10.000 parts
approx. 7 million intervals approx. 10 millionintervals
resolution: 33 bit (0 .. 8.589.934.591) resolution: 42 bit (0 .. 4.398.046.511.103)
data space: [0 m .. 6,144m]3 dataspace: [0inch .. 3276,8 inch]3
voxel sidelength: 3 mm voxe sidelength: 0,2inch

Figure 15: High resolution CAD test data sets
a) CAR, b) PLANE

method for spatia objects is needed. The best known access method, which is also
suitable for a multi user environment, is the RI-tree (cf. [KPS 00a] [P6t 01]). But
unfortunately, it does not fully meet the industrial demands:

* First, processing collision and box volume queriesin interactive timeisno longer
possible, because of the high redundancy (i.e. large amount of intervals for each
object) and the high resolution (i.e. high virtual primary structure of the RI-tree).

» Secondly, alot of secondary disk storage space is occupied, asfor each interval a
new entry in the intervals table and the corresponding upper- and lowerIndexesis
spend.

* Third, the main memory session footprint may become very high because of the
enormous amount of transient join partners, generated during the procedural query
preparation step.

In this thesis a new access method for spatially extended objects is devel oped,
which adoptsthe positive properties of the RI-tree, asfor instanceits easy implemen-
tation on top of any ORDBMS. Furthermore the main memory session footprint, the
overall response time, and the amount of occupied secondary disk space are reduced.
This new index, called X-RlI-tree, is an enhancement of the RI-tree. The X-Rl-tree
supports the inter sect predicate on a spatial data type TOIS (Type of Object Interval
Sequence). Its evaluation is based on two real-world test data sets CAR and PLANE
(cf. figure 15), demonstrating that thisindex is suitable for industrial use.

1.7 Method of Resolution

The basic idea of the X-RlI-tree consistsin grouping black intervals of the origina
RI-tree together to larger grey intervals and attach the corresponding black object
interval sequenceto thegrey intervals. Furthermore, we enhance the upper- and low-
erlndexes of the RI-tree with aggregated information of the grey intervals.

Figure 16 illustrates the query process of interval intersection queries. It consists
of three consecutive filter steps, which are closely linked to the three parts of agrey
interval.

different parts of different filter steps

agrey interval of the query process short explanation

In the first filter step all interlacing
(i.e intersecting) grey query and
the hull first filter step: database intervals are detected by
(Igrey » Ugrey) Ri-tree means of a slightly altered Rl-tree,
which evaluates the hulls of the
intervals (lgrey » Ugrey)-

By means of aggregated informa-
tion of the grey intervas, the fast
the ADT TAIS . . grey test tries to figure out, whether
(Type of Aggregated second filter step: two interlacing intervals redly

Interval Sequence) fast grey test intersect. It applies the “false area
test” [BKK 94] and the “boundary
test” [HJIR 97] to grey intervals.

the ADT TIS o | !n the third filter step the atta}ched

(Type of Interval third filter step: interval sequences, stored in a

BLOB test BLOB (Binary Large OBject), are

Sequence)

carefully investigated.

Figure 16: The different parts of a grey interval with the correspondent filter steps

Figure 17 shows how an object A isstored in the RI-tree and in the X-RlI-tree. The
grey interval withthe hull (13,19) isonce stored intheinterval stable of the X-RI-tree
whereasthree entriesin theintervalstable of the RI-tree are necessary. Likewise, the
X-RI-tree hasless entriesin the upper- and lowerIndex. Furthermore, the grey inter-
vals are situated closer to the root of the tree.

[\ I \ object A and its corresponding
o[T [[oh | | | b | (0reY) Object interval sequence

r_ - —

b) 313 VTO'S

/7] |(16,16)

(X-)RI-tree

¢) intervals (node, lower, upper, id, AIS, 19): [8,38,AAIS; IS, [16,13,19,A AlS, IS, [24,23,30A AlS;IS; |

(X-Rl-tree)
intervals (node, lower, upper, id): [437A [888A [131313A16,1616,A/19,19,19,A|24,2330,A
(Rl-tree)

d) lowerindex (node, lower, id, AlS): [8B3AAIS, [1613AAIS; [2423AAIS; |
(X-Rl-treg)
lowerIndex (node, lower, id): [43A [88A [1313A]1616A[1919A[2423A |
(RI-treg)
upper|ndex (node, upper, id, AIS): [88AAIS, [1619AAIS, [2430AAIS; |
(X-Rl-tree)
upperIndex (node, upper, id): [47A [88A [1313A]1616A[19,19A[24,30A]
(RI-tree)

Figure 17: Storing one object interval sequence in the (X-)RI-tree
a) black / grey object interval sequence, b) RI-tree/ X-Rl-tree,
c) intervals tables, d) upper- and lowerIndexes

1.8 Outline of thiswork

After this first introductory chapter, we will concentrate on the X-RI-tree in the
following three chapters. The X-RI-treeisanew relational access method for object
interval sequences. Chapter 2 introduces grey intervals and how they can beintegrat-
ed into an ORDBMS. Chapter 3 discusses in great detail the process of intersection
gueries of grey object interval sequences, by meansof the X-RI-tree. We will explain
at full length the three different filter steps of the X-RI-tree and the way they are
linked together. In chapter 4 the experimenta results of our new relational access
method are presented and compared to the RI-tree. This evaluation is based on the

two test data sets, shown in figure 15. We will seethat in all relevant areasthe X-RI-
tree outperformsthe RI-tree approximately by an order of magnitude. Chapter 5 con-
siders extensibility interfaces of ORDBMSs and shows, how the X-RI-tree can be
integrated into an off-the-shelf ORDBM S, by means of these frameworks. In the last
chapter we will resume our work. Furthermore, we will present alist of open prob-
lems and shortly sketch possible methods of resolution.

Chapter 2

Storage of Spatial Objects
Inan ORDBM S

The mapping of a spatial object by means of a spacefilling curve into a sequence
of intervals, ends up with a huge number of very small intervals. Not only are the
intervals very small, but also the gaps between them tend to be so. In order to mini-
mize the number of intervals, which have to be stored in the RI-tree, we close these
small gaps between intervals of the same (spatial) object. Aswe do not want to loose
any information, we attach to each of these newly created grey intervals a black
interval sequence.

The above indicated approach is introduced in this chapter. The presented tech-
nigque perfectly fits into the well known error-bound approach and furthermore can
easily be embedded into modern ORDBM Ss by means of their extensible indexing
frameworks (cf. chapter 5).

We call this new spatia indexing method Extended Relational Interval Tree (X-
RI-tree), as it is based on the original RI-tree. Like the RI-tree, the X-RI-tree effi-
ciently supportsinterval intersection queries, i.e. reporting all intervals from the da-
tabase that intersect a given query interval. The X-RI-tree inherits most of the prop-
erties of its ancestor the RI-tree. Both implement the paradigm of relational access
methods and exploit the availability, robustness and high performance of built-in
index structuresin existing systems.

In the next chapter we concentrate on the query process based on the X-RI-tree,
whereas in this chapter we focus on the storage properties of our new approach. In
section 2.1, we define the terms grey and black intervals as well as attached black
interval sequence. Additionally to these definitions, in section 2.2 spatial objectsand
grey intervals are modelled with UML. In section 2.3 we discuss, how an interval
sequence can be efficiently stored inaBLOB. In section 2.4 the model of section 2.2
isintegrated in an off-the-shelf ORDBMS. We describe in detail the ADTs TAISand
TIS Then, the structure of the necessary database tables and their corresponding
indexes are presented. Section 2.5 and 2.6 might be skipped asthey are not necessary
for the basic understanding of the X-RI-tree, but have arather accessory character. In
section 2.5 the reader’s attention is drawn to the way how insert, delete and update
statements are handled, and in section 2.6 the term transformed database is intro-
duced. Thistermis helpful for chapter 4, where we show by means of experimentsin
what way the original databases (RI-tree) differ from transformed databases (X-RI-
tree).

2.1 Grey Intervals

Asshown in [KPS 00a], [KPS 01a] and [P6t 01] the RI-tree outperforms compet-
ing dynamic interval access methods by a factor of 5 for query response time and
more than 40 for physical disk accesses. Furthermore, it needs only O(n/b) disk
blocks of size b to store n intervals. Although thisis the optimum analytical storage
complexity, it seemsrather wasteful to spend onerow in thetableinterval s of the RI-
tree for each short interval. As there are a lot of application problems where the
corresponding objects can be modelled as interval sequences, consisting of very
small intervals and small gaps, it seems worth investigating, whether it is not better
to group small intervals, together to longer grey intervals. We can find such applica-
tionsin alot of different areas. They may occur as transaction time and valid time
ranges in temporal databases [SOL 94] [Ram 97] [BO 98] or as line segments on a
space-filling curvein spatial applications[FR 89] [BKK 99].

All the definitions and other basics necessary for the understanding of the X-RI-
tree areintroduced in this section. We start with the definition of ablack interval and
ablack interval sequence.

Definition 1 (black interval)
Let BOIN beadomain of boundary points. The closed interval Iy = (I, u) O B2
is called a black interval, iff | < u. It represents all elements x O B, where| < x < u.
The number of represented elementsx O B is called the length of theinterval Ly 5qk.
I.e. Lyjaek = U-I+1. The values | and u are the lower and upper bound of 1y 50k,
respectively. Theinterval 1,5 1S called degenerated or point, iff | = u.

Although it is possible to define the boundary points of the black intervals as rea
numbers [Pot 01], we confine them to natural numbers as this answers our purpose.
The definition of a black interval is straightforward and self-explaining. Note, the
length of apoint, according to our definition, equals one.

Definition 2 (black interval sequence)
LetD = {(l,u) O BZ\I <u} beadomain of black intervals with boundaries out of
B OIN. A sequence Sy ack = <Sy, ---» Sy Of black intervals s O D is called a black
interval sequence with cardinality n, iff the following condition holds:

0i O{L,n=1 (u+1<l,,).

Notethat we define ablack! interval sequence asan ordered set of interval's, where
thereexistsat |east one natural number mbetween two intervals(l;,u;) and (lj4 1, Ui+ 1),
with uy; < m< lj; 1. Thisis done because otherwise the two intervals could be joined
to alonger one.

A blackinterval sequence naturally correspondsto one object. Although thisisnot
included in definition 2, we silently assume it. Thus we could aso speak of a black
object interval sequence. Note that we allow one object consisting of severa black
interval sequences, but we do not allow, that a black interval sequence represents
several application domain objects.

Definition 3 (grey interval with an attached black interval sequence)
LetD = {(l,u) O BZ\I <u} beadomain of black intervals with boundaries out of
BOIN.Let Sy ack = <St, -.., S™> beablackinterval sequencewiths; O D, s;=(11,uq)
and sy=(Ip,up)- Then, the tuple I grey = ((Igrey » Ugrey) » Shiack) is called agrey interval
with the attached black interval sequence Syack , iff lgrey = 11 and Uge = Up. The
values lge and Uy, are the lower and upper bound of Iy, respectively.

1 If it is clear from the context, we omit the word black.

Lgrey = Ugrey - Igrey* 1 is called the length of the grey interval. Furthermore, we call
Nejack = § - Li >0 and Nypie = Loy~ ZI”: ,Li20 the number of black and

white cells of the grey interval.

Inagrey interval, not only black intervals are included but also the gaps between

them. If we are only interested in the upper and lower bounds of | but not in the

rey:
exact structure of S5, We also write alittle bit sloppy I e, = (ngy , Ugrey)- If the
cardinality of S;jack 1S 1, Nyhite isequal to 0. Inthiscasel yrey = ((Igrey » Ugrey)) <S1>)
isalso called ablack interval .

Note that at the beginning and at the end of a grey interval gaps are not allowed.
Similar to Definition 2 we could easily define grey interval sequencesand according
to the remark following this definition, we could also speak of grey object interval
sequences.

We are now defining the average density of agrey interval dye . It is defined as
theratio of the sum of the lengths of all black interval's attached to | 4, to the length

Of Igrey-

Definition 4 (density of a grey interval)
Let Syack= <Sp, .- Sy be a black interval sequence with cardinality n. Let
lgrey = ((11,Un) ,» Shiack) bethe corresponding grey interval. Then the density of agrey
interval dgye, isdefined asfollows:
>
d i=1l..n — NBlack

re = =
ey Lgrey NBIack+ N

white

Correspondingly, to the error-bound-approach we now define a maximum gap
parameter of agrey interval, called MAXGAP. This parameter assures that the maxi-
mum gap between two black intervals of 14, is smaller or equal to the value of
MAXGAP.

Definition 5 (maximum gap parameter)
Let Syack = <Sq, ---» Sy be a black interval sequence with cardinality n > 1. Let
lgrey = ((11,Un) , Shiack) Pe the corresponding grey interval. Then the maximum gap
parameter MAXGAP of agrey interval isdefined asfollows:
MAXGAP = max{l;,;—u—-1|(i01...n-1)}
If n=1, then O isassigned to MAXGAP.

avoxelized

“real world” object
istransformed
viaaspacefilling curveinto a
black object interval sequence

black object interval sequence

1 10 20 30 40 50

Lblack=4 ¢ Lplack=1

grey object interval sequence
MAXGAP pject = 2

1 10 20 30 0 50
[I | I I
e [= =[] [e e
Lyey=6 Lyey=7 Lyey=8 Lyey=5 Lyey=1
dyrey = 5/6 Oyrey = 317 dyrey = 1 Oyrey = 2/5 Aoy =1
MAXGAP = 1 MAXGAP = 2 MAXGAP = 0 MAXGAP = 2 MAXGAP = 0

Figure 18: Grey object interval sequence

We also speak of a maximum gap parameter MAXGAP ¢ Of a (spatial) object,
meaning that all the maximum gap parameters MAXGAP jnervar) OF the grey inter-
vals, belonging to this object are smaller or equal to MAXGAP . Similarly, we
speak of a MAXGAP y4tabase Parameter, meaning that all the maximum gap parame-
ters MAXGAP gpjects Of @l objects in the database are smaller or equal to the MAX-
GAPyatabase Parameter. If it is clear from the context, we omit the indices and use
only the term MAXGAP parameter, or even shorter only M. In Figure 18 al the de-
fined terms and their connectionsto each other are depicted for clarification.

We can assess dg, by means of the following theorem.

Theorem 1 (density of a grey interval)
The density dyq, Of agrey interval I, with a defined maximum gap parameter M
can be estimated in the following way:

1

Proof. According to definition 4, dy.e, is smaller or equal to one. On the other
hand, the minimum density isachieved if the nintervals of the attached black interval
sequence are points and all gaps between them are of length M.

Inthiscase, dgye, = N/(N+M-(n-1)) = 1/(1+M-(n-1)/n) = 1/(1+M) holds as well.

2.2 Modeélling Grey Intervals

In this section the grey object interval sequences, defined in the last section, are
modelled with UML.
As depicted in figurel9, a spatial object consists of an ordered collection of grey
intervals. The grey intervals themselves are made up of three different objects and
offer two methods for testing intersection and interlacing, which are scrutinized in

TSpatialObject

ID : integer

intersects (A SpatialObject) : Boolean
interlaces (A SpatialObject) : Boolean

{ordered}

TintervalList

TGreylinterval

CntTestedElements: number

intersects (A TintervalList) : Boolean

intersects (A Greyinterval) : Boolean
interlaces (A Greyinterval) : Boolean

Tt

{ordered}

* 1 1

Tinterval TAggregatedinterval Sequence TintervalSequence

(abstract)
lower : number density: number
u * number
pper i fetch (A Tinterval, N number) : TintervalList

interlaces (A Tinterval) : Boolean

sedin T
first filter step

usedin _—
second filter step

tsedin o
third filter step

TintervalList

Tintervallist

TEmptylS TBitOrientedIS TOffsetOrientedIS TBoxCrientedIS TCircleCrientedIS
IS: BLOB IS: BLOB X,Y1Z, : TPoint M: TPoint
fletch (A Tinterva, N nurrter) - X,Y,Z, : TPoint R number L
Tintervallist fetch (A Tinterval, N number) © fetch (ATinterval, N number) :

fetch (A Tinterval, N number) :
TintervalList

fetch (A Tinterval, N number) :
TintervalList

Figure 19: Modelling of a Spatial Object

chapter 3. Each of the three objects of agrey interval islinked directly to one of the
threefilter stepsin the query process (cf. figure 19).

» The ADT Tinterval isthe hull of the grey interval, used in the first filter step.

» The ADT TAggregatedinterval Sequence (TAIS) contains aggregated information
of the attached interval sequence. It hasto comprise the density of the attached in-
terval sequence. Other information likethe cardinality, the actual MAXGAP; terval
value, the coordinates of the bounding box of the grey interval, etc. might be use-
ful, but can be omitted. The ADT TAIScould easily be enlarged by such informa-
tion and may thereby improve the effectiveness of the second filter step.

* The ADT Tlinterval Sequence (T1S) provides only a method fetch (A Tinterval,
N number): TintervalList, purveying an ordered list of black intervals. This list
contains maximum N elements, starting with the black interval closest to A.lower.
If lessthan N black intervals are included in the range (A.lower, A.upper) the car-
dinality of thelist issmaller than N, otherwiseit isequal to N. There are no addi-
tional attributes assigned to this abstract datatype, because different implementa-
tions need different attributes.

We can distinguish three main kinds of implementations.

First, if the grey interval is actually a black interval no additional attributes have
to be stored (cf. class TEmptyl S).

In the second case, represented by the classes TBitOrientedl Sand TOffsetOrient-
edlS, the attached black interval sequenceis stored in aBLOB. This approach is

useful for intricate spatial objects, and is discussed in detail in the next section.

In case of dynamically created query objects or simple database objects, like
boxes (TBoxOrientedlS) or circles (TCircleOrientedlS), we can use another
approach, which does not materialize the attached interval sequence but rather
creates it on demand during the fetch-operations. In order to do that, only little
information, like box coordinates or the central point plus radius are necessary.
In thiswork, we pursue thisidea only in case of dynamically created box volume
queries (cf. section 3.7), but as already mentioned it would be useful for simple

database objects as well.

2.3 Storing an Interval Sequencein aBLOB

In this section, we discuss how the attached interval sequence of a grey interval
can be efficiently materialized and stored in a BLOB. We introduce two different
approaches the bit-oriented and the offset-oriented one, which are applied in the two
classes TOffsetOrientedlS and TBitOrientedlS (cf. figure 19). Furthermore, it is
shown in which cases each of them uses less secondary disk space, leading us to
central theorems for the efficient storage of attached black interval sequences.

2.3.1 Introduction

As it is the main task of the RI-tree to store black intervals and to efficiently
support their access, it is the main task of the X-RI-tree to do the same with grey
intervals, while using a minimum of secondary storage space (cf. design goals of
section 1.6). The RI-tree spends for each (small) interval of a black object interval
sequence one record in the intervals' table. Additionally, two index entries in the
lower- and upperindex are created for each interval.

Grouping n black intervals together to a grey interval saves (n-1) entries in the
intervalstable plus 2:(n-1) entriesin the indexes. But what we have to do additional -
ly, is storing the attached interval sequence of the grey interval.

As aready mentioned O(n/b) is the optimum complexity class for storing n inter-
vals. Furthermore, there is no redundancy included in a black object interval se-
guence, so that we haveto store all the information included in this sequencein order
todeliver error-freeresults, with respect to the voxel representation (cf. section 1.3).

We now present an approach of organizing the attached interval sequence, that
saves disk space without |oosing any information.

2.3.2 Bit-Oriented Approach

A very important observation is, that an object interval sequence consists of a
large number of very short intervals (e.g. points) which are connected by short gaps.

1 In the case of the RI-tree, thistable is also called Range table and in the case of the X-RI-treeit is
called XRange table.

grey intervad (3,42) start (end) of byte
with attached interval sequence (M = 9) | start (end) of value

10 20 30 40 50
N e e e e e v o

([[(@ [m (e[(e[@] -

[11110100/00100100/10001111/11000000/00010011

10 20 30 40 50
N e e e e e v o

([(m [m (e[(e[@] -

000011[000101/0001 011001010]001010]00/1101]0071 01[010000010000j010100]
0110,01]100011[100011]10.0110

10 20 30 40 50
N e e e e e v o

00000011/[00000101/J00000101/[00001010(j00001010/|00001101/[00001101||
00010000//00010000]00010100(00011001j00100011/J00100011/]00100110

Figure 20: Storing the attached interval sequencein aBLOB
a) bit-oriented, b) offset-oriented (bit (1) and byte (2))

Experiments suggest that both the number of intervals and the number of gaps of a
specific length x are exponentially distributed (cf. section 4.3).

This motivates the bit-oriented approach illustrated in figure 20a. We represent
each voxel of the data space, which is covered by a grey interval by one bit in its
BLOB. Obviously this approach works well for short intervals with short gaps. In-
stead of storing e.g. 5 black intervals (10,10) (12,12) (14,14) (16,16) (18,18) of one
object, we store only the hull (10,18) and the sequence (101010101) in the attached
BLOB. On the other hand, this approach is extremely bad, if the grey intervas in-
clude very long intervals or gaps. For example, grouping the two intervals (10,200)
and (400,450) together, results in the hull (10,450) and in an attached BLOB, in
which 441 bits are stored. Thus the size of the attached BLOB is aways equal to

(Ugrey - Igrey* 1) bits, i.e. O (Lyrey)-

2.3.3 Offset-Oriented Approach

In the offset-oriented approach (cf. figure 20b) we process the boundary val ues of
the black intervals belonging to an attached black interval sequence. If the attached
interval sequence S, 5 Of agrey interval |y, isof cardinality n, we store the values
Ug-lgreys 1ol greys Ul greys -+ ln-1)lgreys Un-1)greys In-lgrey SEQUeNtially in a BLOB.
Each of these 1+2:(n-2) +1 = 2:(n-1) values is smaller than Lye,. Thus only
[10g,L e, | bits are needed for storing one value ([log,(42—-3)] = 6 hitsinthe
example of figure 20).

In the offset-oriented approach the size of the BLOB does not depend linearly on
Lgrey but logarithmic and additionally it depends linearly on the cardinality n of the

attached interval sequence, i.e. we have aspace complexity of O(n x log,L,,).

The offset-oriented-bit and the offset-oriented-byte approach differ in the fact that
the offset-oriented-bit approach only uses the cal culated number [log,L e, | Of bits
for expressing one boundary value, whereas the offset-oriented-byte approach al-
ways uses full bytes, i.e. 8x[(log,Ly.e,)+ 8] hits. Thus the offset-oriented-byte
approach allows a more comfortable access to the different valuesin the BLOB.

A final remark: instead of using the offset-oriented approach, we could have orga-
nized the attached interval sequence by means of run-length-coding. The result isin
the same storage space complexity class but the process of accessing the BLOB at a
desired offset is only possible by scanning the BLOB from the beginning, whereas
our approach alows bipartitioning the BLOB and so a logarithmic access time is
guaranteed (cf. chapter 3).

2.3.4 Discussion

In this subsection, wefirst discuss the differences between the two offset-oriented
approaches and then compare both to the bit-oriented approach.

Theorem 2 (offset-oriented approach (storage))
Let Sjack = <S1, --.» Sy beablack interval sequence of cardinality n, which belongs
to agrey interval Iy, = ((Igrey » Ugrey) + Spiack) OF length Ly, Then, the offset-
oriented-bit approach always needs less or equal secondary disk space compared to
the offset-oriented-byte approach for storing S, 5c«-

Proof. As outlined in subsection 2.3.3, the offset-oriented approaches need
2 x (n—1) x X bitsfor storing §;5cx Where X denotes the number of bits needed for
storing one boundary value. In the case of the offset-oriented-byte approach X equals
8 x| (log,lye) + 8] andin the case of the offset-oriented-bit approach X equals

[Iogngreﬂ .

Let (log,Le,) = 8 beequal tontgqwith nOIN,0<q<1

grey
As[log,ly e |=I8(n+0) |=8n+[8q]<8n+8[q]|=8/n+q]=8[(log L) + 8]

holds, the theorem istrue.

Obviously it is sometimes better to use the bit-oriented approach which needs
O(Lgrey) bits and sometimes the offset-oriented one is better, needing
O(n x log,L e,) bits. Fortunately, it can be decided which oneis preferable for each
grey interval, dependent on the length of the grey interval and the cardinality of the
attached interval sequence.

Theorem 3 (bit-oriented approach versus offset-oriented approach (storage))
Let §jack = <S1, ---» Sy beablack interval sequence of cardinality n, which belongs
to agrey interva lgey = ((Igrey + Ugrey) + Shiack) OF length Ly, Let X be equal to
8x [(logylgrey) + 8] in the offset-oriented-byte approach and equal to [1og,L ¢, |
in the offset-oriented-bit approach. Then, the bit-oriented approach needs less sec-
ondary disk space compared to the offset-oriented approaches for storing §; 5« if the

following formula holds:

Lgrey <2% (n=1) x (X)

Proof. The bit -oriented approach needs L ¢, bitsfor storing the attached interval
sequence § 5« iN @ BLOB. As outlined in the theorem above X bits are needed for
storing one interval boundary in the case of the offset-oriented approaches. As we
haveto store 1 + 2:(n-2)+1 = 2-(n-1) of these boundary values, the theorem holds.

Based on thislast theorem, we can decidefor each grey interval whether the offset-
or the bit-oriented approach needs less secondary storage. We call this the final ap-
proach. In section 4.3 the experimental results of the bit-oriented, offset-oriented and
the final-approach are compared to each other and to the Rl -tree.

2.4 Implementation of Grey Intervals

Asinalot of CAD-databases the data space is fixed, we are assuming a constant
data space, which is known in advance. Nevertheless, all methods which are intro-
duced in[P6t 01] for handling dynamic data spaces can be applied to the X-RI-tree as
well.

The RI-tree is an efficient implementation of Edelsbrunner’s interval tree
[Ede 80], [PS 93] on top of any relational database system. Inthissectionitisshown
how the model of grey intervals(cf. section 2.2) can be integrated into an ORDBMS,
thus meeting one of the design goals of section 1.6. In the first two subsections, we
discuss the implementation of the abstract datatypes TISand TAIS. Finally, weintro-
duce the database schema, which uses these two abstract datatypes.

24.1 The Abstract Data Type TIS

As polymorphism is an inherent part of most ORDBMSs, we can implement the
abstract data type TIS straightforward (cf. figure 21). After having defined the ab-
stract supertype TIS, the specific subtypes can be derived.

CREATETYPE TISASOBJECT
(NOT INSTANTIABLE FUNCTION

Fetch (Area Tinterval, N number) RETURN TintervalList;
) NOT INSTANTIABLE NOT FINAL;

CREATE TYPE TEmptylS UNDER TIS
(FUNCTION Fetch (Area Tinterval, N number) RETURN TlintervalList);

CREATE TYPE TBitOrientedlS UNDER TIS
(1SBLOB,
FUNCTION Fetch (Area Tinterval, N number) RETURN TintervalList);

CREATE TY PE TOffsetOrientedlS UNDER TIS
(1SBLOB,
FUNCTION Fetch (Area Tinterval, N number) RETURN TintervalList);

CREATE TYPE TBoxOrientedlS UNDER TIS
(xlylzl TPoint,
X2y2z2 TPoint,
FUNCTION Fetch (Area Tinterval, N number) RETURN TintervalList);

Figure 21: Implementation of the ADT TIS

2.4.2 The Abstract Data Type TAIS

The ADT TAISis kept rather smple. It consists only of one attribute Density and
no additional methods. As already mentioned, it could be enlarged by other values, if
required.

CREATE TYPE TAISAS OBJECT(
/1 attributes
Density number
/1'if necessary further attributes like MAXGAPerval, Cardinality etc. could be included as well

);

Figure 22: Implementation oriented ADT TAIS

2.4.3 Database Schema

We can now include the two abstract data types TAISand TISinto the table inter-
vals. Figure 23 comparesthe necessary table and index creation statementsfor the X-
RI-tree and the RI-tree to each other. In the case of the X-RI-tree, the table intervals
isaugmented by thetwo ADTs TISand TAIS.

The ADT TAISis also included into the upper- and lowerIndex so that until the
third filter step, we do not have to access the table intervals at all, but can confine
ourselves to the corresponding indexes. For the same reason both boundary values of the

grey interval, and the attribute ID are incorporated into the indexest.

Rl-tree

CREATE TABLE intervals (node int, lower int, upper int, id int);
CREATE INDEX lowerIndex ON intervals (node, lower, id);
CREATE INDEX upperIindex ON intervals (node, upper, id);

X-Rl-tree

CREATE TABLE intervals (node int, lower int, upper int, idint, AISTAIS, ISTIS);
CREATE INDEX lowerIndex ON intervals (node, lower, upper, id, AlS);
CREATE INDEX upperindex ON intervals (node, upper, lower, id, AlS);

Figure 23: SQL statements to instantiate an (X-)RI-tree with secondary indexes

1 We resigned from introducing the Tinterval-object for the sake of comparability to the RI-tree.

2.5 Insert-, Delete- and Update-Statements

2.5.1 Determination of the Fork Node

As already mentioned the primary structure of the X-RI-tree is managed purely
virtually. Let[1, 2h—1] be the entire range of the dataspace. In thiscase, theroot node
isset to 2M1 [KPSO01a] . Let (I, u) be an interval, which has to be inserted. First, we
have to determine the fork node of the interval. The fork node is the topmost node w
for which | <w < u holds (cf. figure 24). The computation of the fork node can be
done by recursive traversing the virtual backbone via bisection. No /O access is
necessary, but only simpleinteger arithmetic, i.e. bit-shift-operations.

25.2 Insert and Delete

The X-RI-tree has basically the same behavior as the RI-tree with respect to the
DML -statements insert and delete. The I/O complexity for the search in the index
(B*-directory) is O(log,n), where n denotes the number of (grey) intervals stored in
the database.

Keep in mind, that inserting or deleting one interval in the X-RI-treeis equivalent
with inserting or deleting several intervals in the RI-tree. For example, if you group

in average M black intervals together to one grey interval of length L you get an

grey’
I/O complexity of O(Mlog,n+M) for inserting these M intervals in the RI-tree,

grey » 2(M-1)l0gsLgrey)/D)) in
the X-RI-Tree. The first factor in this sum is due to the fact that you have to search

whereas you get a complexity of O(log,(n/M)+ (min(L

once in the B*-tree, the second factor describes the number of disk accesses neces-
sary to storethe M intervalsin the BLOB. Not only do you always need | ess spaceto

_— 7 root !

P >
A
lower upper

Figure 24: Fork node of an interval in the virtual backbone

store an attached interval sequence of cardinality M in the X-RI-tree compared to
storing these M intervalsin the RI-tree (cf. subsection 4.3.3), but you aso need less
disk accesses for index lookups.

2.5.3 Update

The X-RI-tree has basically the same behavior as the RI-tree with respect to the
update-statement. The I/O complexity for the search in the index (B*-tree) is
O (logyn), where n denotes the number of (grey) intervals stored in the database.

Note that updating one grey interval in the X-RI-tree, can be equivalent toi insert,
j delete and k update statements in the RI-tree. Thusit is rather difficult to compare
the update operationsin both trees to each other. Nonetheless, you can assert, that the
number of 1/0 accessesfor searching in the B*-tree, which isthe underlying operation
of all the DML-statements discussed in this section, is smaller in the case of the X-
RI-tree. Thisis dueto the fact, that lessintervals are stored in the X-Rl-tree. There-
fore the height of the corresponding B*-directory can at |east be as high as the one of
the RI-tree (cf. section 4.3).

2.6 Transformed Database

2.6.1 Transformation Function
In the previous sections we have introduced the X-RI-tree. We have seen, that an
instance of it can be described like an instance of the RI-tree by a five tuple
(intervals, lowerIndex, upper Index, root, MAXGAP yatapase) - VWeWill call aninstance
of the RI-tree an original database D,j. Grouping black intervals of an original
database D, together to grey intervals, leads to a transformed database
Dirans = T (Dgri)- Thefunction f (i.e. algorithm) iscalled the transfor mation function?.
A few obvious remarks concerning Dy, gns = f (Dgyi):
« Of course, only intervals of the same object (sameid value in the table intervals)
can be grouped together.

* The number of records for each object stored in the intervals table is smaller in
Dirans thanin Dyj.

1 Weuse Dorigtrans) interchangeable for an instance of a database as well as for the domain of the func-
tionf.

» Weuse the X-RlI-tree for storing Dy, 55 @nd the RI-tree for storing Dy;; .
e There exist a lot of transformation functions, some of them are introduced in

figure 25.

Fmaxcap 1S the function, we implicitly applied up to now and the only one we
want to investigate in more detail in this thesis. Nevertheless, the other functions
might be useful, especially because some of them seamlesdly fit into the size-bound
approach [Ore 89]. As already mentioned Fy,axcap Can be regarded as a generaliza-
tion of the error-bound approach.

Function Explanation

Fident: The two database D and Dy, 4 are identical. Never-

Dori = Dirans theless, D, is connected to the RI-tree and Dy, g tO
the X-RlI-tree.

We allow only N (grey) intervals for each object. This
isakind of size-bound approach on thefirst filter step.
Of course the maximum number N of intervals is not
enough for a deterministic behavior of f. Additionally
we ask for a maximum average density of each grey
object interval sequence.

Fnigep:
Dyi XN - D

trans

We alow only grey intervals with a maximum cardi-
Frogep: nality of N. This is a kind of size-bound approach on
the second filter step. Additionally we ask for a maxi-
trans I mum average density of each grey object interval
sequence.

Dyi XN - D

We alow only grey intervals with a maximum gap of
M between two black intervals of the attached black
F) interval sequence. Furthermore, we demand that the
MAXGAP- grey intervals start and end with a black interval. Addi-
Dori XM = D tionaly, the cardinality of an attached black interval-
sequence is maximum with respect to the above men-
tioned restriction.
Note that if M is zero this function is equal to Fjgent-

trans

Figure 25; Transformation functions

2.6.2 Characteristica of a Database

The term characteristica of a database denotes all the properties of an original or
transformed database, including the distribution, length, density and number of al
(grey) intervals and their corresponding fork nodes.

Thisinformal description can hardly be investigated, as it is not measurable and
includes a lot of different aspects. In order to receive a quantitative measure, the
following definition is introduced, although it only partly comprises the informal
description.

Definition 6 (characteristica of a database).
Let Dorigtrans) b€ @n original (or transformed) database. Let N denote the number of

intervals in the database. L et L denote the average interval length of agrey interval.
Let D denote the average density of a grey interval. Then CDori (trans) denotes the
characteristica of adatabase D y;(trang) and is defined as follows:

CD = NxDxL
ori(trans)

Chapter 3

| nter section of Spatial Objects
Inan ORDBM S

In the last chapter we introduced grey intervals and how we can store them in an
ORDBMS. In thischapter we focus on the process of interval intersection queries. In
section 3.1 we definethetermsinterval interlacing and interval intersection. Wethen
point out, in what cases we can tell, whether two interlacing grey intervals intersect
each other or not, without accessing the attached interval sequence, stored in the
BLOB. Thistest isonly based on information, which areintegrated in the upper- and
lowerIndexes. We further introduce two different probability models, enabling us to
predict the probability, whether interlacing intervals intersect. In section 3.2 we
shortly survey the complete query process which consists of three consecutive filter
steps. In section 3.3 we discuss the first step, which is based on the original RI-tree.
In section 3.4 we introduce the so called fast grey test, which is a pure cpu test,
yielding no additional 1/0 accesses. In section 3.5 it is shown how this second filter
step is linked to the third one, which is discussed in section 3.6. In section 3.7 we
point out, that the concept of grey intervalsis especially useful for dynamically cre-
ated query objects. We close thischapter by applying the optimization rulesof the RI-
tree of subsection 1.5.4 to the X-RI-tree.

3.1 Intersection of Interlacing Intervals

3.1.1 Introduction

In this section we introduce the two termsintersect and interlace and try to figure
out, when two interlacing intervalsinter sect each other. Of course we could perform
this task by examining the BLOBSs, but we will confine ourselves to the following
information, available in the upper- and lower I ndexes:

» upper and lower bound of theinterval
* density of theinterval dy.e (i.e. number of black (Npjac) and white (Nyyite) Cells

of the interval)

What is discussed in this section forms a necessary prerequisite for the under-
standing of the query behavior of the X-RI-tree, which will be explained in detail in
the following sections of this chapter.

3.1.2 Definitions

We will usetheterminterlace for theintersection of the hull of two grey intervals,
whereas we will use intersect, if the attached interval sequences of two interlacing
grey intervalsintersect. For the intersection of two grey intervalsit isanecessity that
they interlace. Note that in SQL:1999, which provides the Period as basic interval
datatype, the corresponding operator for intersection iscalled “overlap” [Sno 00].

Definition 7 (interval interlacing)
Let 1,u,l,u OIN,letT=(,u) andk = (l,u,) betwo intervals. In the
following, we say that T and k interlace (or, alternatively, t interlaces k), iff
(I;su) O <uy).

We cal lineriace = Max (I,1,) the lower bound of the interlacing area
and U;pieriace = Min (ug,u,) the upper bound of the interlacing area.

Note that we defined interval interlacing in such away that we can use it for the
hulls of grey intervals as well as for black intervals of attached black interval se-
guences.

Definition 8 (interval intersection)
Let 1=((,u)S) and k= ((I,u)S) betwo (grey) intervals of
cardinality n, and n, , which interlace each other. These two intervals intersect
each other, iff (0 O1...n;)(0 O1...n,) sothat s interlacesq.

e I T

Thetwo intervals Thetwointervals Thetwo intervals
do not interlace interlace interlace
and do not intersect but do not intersect and intersect

Figure 26: Interval interlacing and intersection
a) no interlacing, b) interlacing but no intersection, c) intersection

In figure 26 the relation between the two above definitions is depicted.

3.1.3 Intersection

3.1.3.1 Introduction

Aswewill seelater on, it isvery advantageous, not having to access the attached
interval sequence of an interval, in order to decide whether two interlacing intervals
intersect each other or not. If we can decide this, only based on the information
introduced in subsection 3.1.1, we can omit the third filter step. In this subsection we
will discusswhat grey and black! intervals have to look like, so that we can test them
successfully in afast second filter step.

3.1.3.2 Two Black Intervals

If two black intervalsinterlace, they necessarily intersect aswell. Thisisthe stan-
dard case in the RI-tree, where we do not have any attached interval sequences. But
we will find this situation in the X-RI-tree aswell, although less frequently.

3.1.3.3 Black and Grey Intervals

Inthiscase, the situationisalittle bit more complicated than in the last subsubsec-
tion. But we will still see that in a@most any cases where a black interva
lniack = (Iblack» Unlack) iNterlacesagrey interval lgrey = (Igrey, Ugrey), it intersectsit as
well. If any of the three conditions depicted in table 1 holds, then Ijac and | grey
intersect each other.

1 Recall that we call grey intervals Igrey = ((Igrey » Ugrey) » <S1>) also black intervals.

Note that the third case in table 1 is the generalization of the intersection test
between two black intervals. Furthermore, it is a special case of the situation dis-

cussed in the next subsubsection.

condition explanation figure

If the black interval is longer larger than

parameter, the two intervals <

intersect because the maximum —

Lpiack > MAXGAP ! aul aximu

gap between two black intervals \ |

of the atached interval - - -

sequence of |, is smaller than smaller than
MAXGAP

MAXGAP.

linterlace = lolack
and

Uinterlace = Ugrey

or

linterlace = lgrey
and

Uinterlace = Unlack

If one of the two conditions
depicted in the cell on the left
holds, the black and grey inter-
val intersect. This is due to the
fact, that the grey intervals end
and start with black intervals.
We do not alow grey intervals
starting or ending with a “gap”
(cf. definition 3)

linterlace™! black Uinterlace™ YUgrey

N

white
<

L

interlace

If the number of the white cells
Nuhite Of @ grey interva is
smaller than the length of the
interlacing area, then the grey
and the black interval necessar-
ily intersect. Note, this is the
reason why two black intervals
which interlace each other aso
intersect each other (Nyite Of @

black interval is 0)

[
r—

, \
| \f\ e
R
'«—p -

Uinterlace ~ linterlacet 1 > Nuhite

Table 1: Intersection between an interlacing black and grey interval

3.1.3.4 Two Grey Intervals
Of course, two grey intervalslgre, = (Igrey, Ugrey) @A 1" grey = (I" grey » U grey) Which
interlace do not haveto intersect. Fortunately, there are two caseswhere we can assert

that they intersect without examining in detail the attached interval sequences of the
XRangetable. Thetwo casesareillustrated in table 2.

condition explanation figure
Ugrey = u1grey u’gre},:‘ Ugrey
If one of the three conditions —
or depicted in the cell on the left E—
holds, the two grey intervals I’grey‘: Igrey
| = intersect (grey intervals start —
e oYy and end with black intervals). ———
or This test is similar to the poly- V" grey = Ugrey
gon boundary test in [HIR 97]. —
lgrey = U’ grey — —

N’ white + Nwhite
<

I-interlaoe

If the sum of the number of the
“white cells” of two grey inter-
vals N’vvhite + Nwhite is smaller
than the length of theinterlacing
area, then the two intervals nec-
essarily intersect. This is the
generalization of the third case
of table 1.

This test is similar to the false
area test in [BKSS 94].

I-i nterlace

L -
e —

Voey o 1
T 1

. B
N’ white™ Nuhite

Table 2: Intersection between two interlacing grey intervals

3.1.4 No intersection

There are only two situations, depicted in table 3, where we can assert that two
interlacing intervals do not intersect.

condition explanation figure
Npjack = 2 If lge, condists only of two lorey < I'grey U grey < Ugrey
nd black cells, and I grg is totally - -
| < “included” in lge then we ﬁ% Lorey
r r .
g eyan d arey know that the two intervals can- — L
> not intersect each other, N 2
Ugrey = U grey athough they interlace. black
— I grey < U grey < U
N =2 grey ™ 'grey grey = Ugrey
black If both grey intervals consist | ' | o
and only of two black cellsand, fur- | | !ﬁ_ Lgrey
N’ pack = 2 thermore, have distinct interval | |,
and bounds, then the two intervals - - oy
1) certainly do not intersect. Nplack = 2
lgrey # I grey # Ugrey U’ grey N ok = 2

Table 3: No intersection between two interlacing grey intervals

3.1.5 Probability models

3.1.5.1 Introduction

As we have seen in the foregoing subsection we can pinpoint from time to time,
based on a few information, whether two interlacing intervals intersect or not. Nev-
ertheless, there will be alot of cases where we cannot do that. But it is still helpful, if
we can predicate how probable an intersection might be.

Since we want to integrate this probability model into the SQL statement of the
first filter step, its computation should be rather cheap. This is the reason why we
introduce two models. The first one models the problem alittle bit better, but unfor-
tunately it isvery expensive to compute. On the other hand, the second oneis easy to
compute and al so meets our needs.

The two probability models differ in whether “ drawn elements are put back into
the bucket or not” . The first one, which assumes, that they are not put back, equals
the sweepstake-model, whereas the second one is equal to the coin-toss experiment,
i.e.itisaBernoulli experiment.

Both models assume that the black and white cells are equally distributed?.

3.1.5.2 First Probability Model

In this subsection we introduce our first probability model and mention a few
reasons, why it isnot suitablefor our needs. The probability for asuccessful intersec-
tion test is computed in the same way as you compute for instance the probability,
that you tip no number right out of seven in the very popular sweepstake game* 7 out
of 49”.

* Consider two grey intervals | ye, (With a density dgy.q) and I’ g, (With a density
d' grey) Whichinterlace at alength L. Aswe assumethat the black cells of both grey

intervalsare equally distributed, we can concludethat N = d, x L black cells

of l4ey areincluded in theinterlacing areaand likewise N’ = d'j o xL black

cellsfrom I’ .o, We now compute the probability P for a successful intersection
in the following way:

1 We neglect the fact, that the grey intervals represent (parts of) spatial objects and that in this case the
white and black cells of the grey intervals tend to form groups.

number of different possibilities, how N’
—Ng black cells of I’ 4o, can be placed over the
b —Ny O N’ O remaining L-N white cells, assuming that
ON O all N black cells of |, are already posi-
P=1- oL tioned.
Ot L number of all different possibilities, how
Ry = N black cells of I, can be placed over
theL cellsof theinterlacing area.
-5
b= 1_D N %L_(L—N)!(L—N’)!D
Nk LI(L-N-N)'0
ENiS

Figure 27: Computation of P (first probability model)

Computing factorials fac(n) is a rather expensive operation. Straightforward
algorithms are based on the following definition fac(n)=n - fac(n-1), taking O(n)

timel.

Furthermore, alot of database systems do not provide the fac-operator asabuilt-
infunction. Therefore, we haveto simulate it with aloop-Operator, executing the
multiplication inside the loop. Thisloop-operator hasto be embedded into auser-
defined function, which has to be called within the SQL statement of the first
filter step. As shown by M. Kornacker in [Kor 99], the calling of a user defined
function out of an SQL statement is avery expensive operation, which should be
avoided.

To avoid high computational costs for the determination of n!, you could use
approximations of the factorias, like stirlingsformula: n! =n"e"./2mn .

This expression can be computed more efficiently, as you can compute a" in
O(log) time, based on the following definition a" = (a"?)°.

Another way to reduce the runtime for the computation of P is to ssimplify the
model, rather than approximating the result of a complex model. We pursue this
approach in our second probability model.

1 We assume that the multiplication is a basic operation.

3.1.5.3 Second Probability Model
Our second model! is based on the following steps:

* Consider two grey intervals| e and I’ 4 With their corresponding densities dyyq,
and d' gy, Whichiinterlace at alength L.

 Let xbeoneof thecellsintheinterlacing area. The probability that thiscell iscov-
ered by ablack cell of | and ablack cell of I'ge is Py = d ¢y X dgrey- The
probability, that either x or an other cell y is covered by black intervals from | ¢

and Iy is P = d'grey X dgrey * (1= grey X dyrey) X d grey X dgrey. Thus the
probability that | yre and I’ ¢ share at least one black cell can be computed asfol-

lowsk:

L-1
_ : , Vv
P= 3 dgrey? grey* ~dgrey grey)
v=0 L
g g Udgedgey)
grey” grey T-(1-dg o @ o)
P=1-(1-d__d L
=1-(1- grey grey)

Figure 28:; Computation of P (second probability model)

» The last representation of P enables us, to tell something about the intersection
probability of two intervals without putting too much effort in its computation. P
can be computed efficiently without calling a user-defined function, using itself a
loop-operator. Instead, we can confine ourselves to built-in functions, which are
provided by off-the-shelf DBM Ss:

algorithm ComputeP
begin
return := floor (1 - power (1- (dgrey - d'grey) -
|east (ugrey U grey) - greatest (Igrey , I’grey) +1));
end ComputeP;

Figure 29: Algorithm for the computation of P (second probability model)

We will use this model and not the first one for further considerations.

1 This formulacan easily be proved by induction on the interlacing length L.

3.2 General Survey of the Query Process

The general query processing flow of the X-RI-tree consists of three major steps.

* Inafirst step we use the dlightly modified RI-tree to determine al interlacing
pairs of grey database and query object intervals. These interval pairs are
ordered by database ID and probability P, introduced in the last section.

* Inasecond step we perform the so called fast grey test to determine intersecting
intervals without examining the attached interval sequences. This test is based
on the cases discussed in table 1 to 3.

* Finaly, we carry out the expensive BLOB test, scrutinizing the attached interval
sequences.

We could stop the query process after each of these three steps.

» Stopping after the first step yields an error-bound result, according to the MAX-
GAP yatabase Parameter.

» Stopping after the second step results in a result set, which might not be com-
plete, but nonetheless correct. If you are only interested in questions like “Does
My query object intersect at least x database objects’ you might be able to leave
out the third filter step completely.

« Stopping after the third step delivers an error-free complete result, with respect
to the voxel set representation of the objects.

Figure 30 depicts the complete query processing flow, including a short example
for clarification. In this example our database consists out of five objects A, B, C, D,
and E, and a query object Q consisting of two grey intervals. Each of the database
objects is composed out of one to four grey intervals with their corresponding at-
tached interval sequences.

In afirst step we determine al pairs of interlacing grey database and query inter-
vals (e.g. A1Qq, A3Qo, AxQq, B3Qq, ...). These pairs are ordered by database ID and
decreasing probability P for afurther successful intersection test. Thisfirst filter step
isentirely based on the upper- and lower I ndex of the XRange table. At this point we
could stop the query process, telling that object A,B,C, and D intersect our query
object Q with amaximum error of MAXGAP/2.

coarse fine
query Q result set result set

sl 2
LQI B
left- & D

rightNodes

—

RI- FAST 2 —>BLOB +
_»TREE GREY —>TEST
- TEST « -
g N N
M 3
1.filter step 2. filter step 3. filter step
(upper- (CPU) (XRange table & CPU)
& lowerlndex) sc, SC,
LC, LG,

H;: database objectsintersecting the query object (Hit).

M;: database objects not intersecting the query object (Miss).

C;: pairsof query and database intervals, which might be tested in step i (Candidates).

T;: pairsof query and database intervals, which have actually been tested in step i (Tests).
$;: costsfor testing oneinterval pair in stepi.

QU (LQI) : Structure (List) of Query Intervals.

SN (LN) : Structure (List) of left- and rightNodes.

SC, (LCy): Structure (List) of Candidatesfor the 2" £ ter step.

SC3 (LC3): Structure (List) of Candidatesfor the 3 filter step.

transient tables
>< deleted in the second filter step

“w:”" deleted in the third filter step

* *

Our goal istoreceivetheresult set H, [H; withminimal costs: $ * T
=1.3

Figure 30: General Survey of the Query Process

In asecond, main memory based filter step, we consider all these pairs (i.e. candi-
date set C,) grouped by database ID. Wetest them until the first successful test occurs
or until there are no more pairsof thisID to test. Thistest is based on the reflections
discussed in section 3.1. If the test yields neither a positive nor a negative result, we
subjoin this pair to Cg, the candidate set of the third filter step (e.9. A;Qq, A3Qy,
B3Q1, BoQ1,C1Q4). Ontheother hand, if thetest is successful we add the database | D
to the final result set (e.g. A, C) and delete all pairs belonging to the same ID out of
C, (e.9. C,Q,,C3Q,) and C3 (e.9. A1Q1, A3Qo, C1Qq). In the case of the X-RlI-tree
with a MAXGAP parameter equal to zero, the hits in this step (i.e. H,) form the
complete result set.

In athird step we pinpoint whether the remaining interval pairs intersect or not.
Thisisdone by accessing the BLOBsstored inthe XRangetable. If atest i s successful
(e.g. B3Qq), we stop examining other pairs belonging to the same D (e.g. B,Q;) and
add the corresponding object I D to theresult set (e.g. B).

Asyou can seethe number of tested pairs T, and Tzisalwaysegual or lessthan the
number of pairsin C, and C3. For agood runtime behavior it is essential that T, and
Tzaresmall. Filter step two aswell asfilter step three obey the algorithm of figure 31,
aiming at the decreasing of the ratio between T,/C, and T/Cs.

algorithm TestCandidates (C Candidates, R ResultSet)
begin
TestSet T :=C;
while not T.IsEmpty() do
Element e := T.first();
if SuccessfulTest (€) then
R :=R+{€};
T:=T-{€|eid=€".id};
ese
T:=T-{€};
end if;
end while;
end TestCandidates.

Figure 31: Algorithm TestCandidates

We will seein the following sections, dealing with filter step two and three, how
thisalgorithm is put into practice.

3.3 First Filter Step

3.3.1 Introduction

Basically, the first filter step can be seen as the application of the RI-tree to the
transformed database. Note, that this step can be done without accessing the XRange
table. It isentirely based on the upper-and lower I ndex.

Inapreliminary step, the virtual backbone hasto betraversedin order to collect all
possiblefork nodes of thoseintervals, which might interlace the query interval. Con-
cerning this, the RI-tree and the X-RI-tree do not differ. After this preliminary step,
which isimplemented in aprocedural runtime environment such as PL/SQL, we pass
onesingle SQL query to the SQL engine. Thus, thefirst filter stepisacursor-driven-
operation [Pt 01].

3.3.2 Ranking

In the steps succeeding thisfirst filter step, we have to examine whether two inter-
lacing intervalsintersect or not. In order to determine whether an object in the data-
base intersectsthe query object, we may haveto accomplish several interval intersec-
tion tests. As we can stop after the first succesful one (with respect to the same
database ID) (cf. agorithm of figure 31), it is beneficial to do those testsfirst, which
have the highest probability of being successful. In the example, depicted in
figure 32, the database object with the ID n interlaces the query interval q g, times.

first step
testing interlacing
; result set fromthefirst filter step
| P O i R query interval q
o %:} P successful test
- — 3y nomoretests
I— — an]
I — }—» successful test
T *
x > no more tests
= Qm]
second step

testing intersection

Figure 32: Ranking of thefirst filter step

But already the first test is successful, so the g,-1 other intersection tests have not to
be carried out. The same holds for the ID m where we also have to test only once.
Note, that if the candidate set for the second filter step C, had been in a different
order, we would have carried out more intersection tests. Therefore, it isimportant,
that C, isordered in an advantageousway. What this exactly means, hasalready been
discussed in section 3.1. We order the candidate set C, according to the second pro-
bability model introduced in 3.1.5. In order to put thisideainto practice, we enlarge
the transient tables | eft- and rightNodes.

3.3.3 Structure of thetransient tables|eft- and rightNodes

In thefinal approach for the RI-tree, both transient tables|eftNodes (from, to, low-
er) and rightNodes (from, to, upper) contain information about the nodes of the vir-
tual backbone (fromand to) and about one boundary value of the query interval (low-
er, upper). As we need more information belonging to the query interval in order to
rank the results of the first filter step in a proper way, we augment both transient
tables so that they obey the relational schema:

SN={
N_from number,
N_to number,
Q_ref integer,
Q_lower number,
Q_upper number,
Q AIS TAIS
}

Figure 33: Structure of the transient table left- & rightNodes

Note, that the four last entries of the transient table left- and rightNodes are equal
to the entries in the transient input query table LQI introduced in section 3.6. We
introduced redundancy in theleft- and rightNodes table in order to omit an additional
joinwith LQI in thefirst filter step. Thisjoin would be based on the Q_ref attribute,
which pointsto exactly onegrey interval in LQI, i.e. refersto one grey interval of the
complete spatial query object.

@) | SELECT id FROM intervalsi, :leftNodes left
WHERE i.node BETWEEN left.n_from AND left.n_to
AND i.upper >= |eft.q_lower /l'inner query and left queries
UNION ALL
SELECT id FROM intervalsi, :rightNodes right
WHERE i.node BETWEEN right.n_from AND right.n_to
AND i.lower <= right.q_upper; /I right queries

b) | SELECT STATEMENT
UNION-ALL
NESTED LOOPS
COLLECTION ITERATOR
INDEX RANGE SCAN lowerlndex
NESTED LOOPS
COLLECTION ITERATOR
INDEX RANGE SCAN upperIndex

Figure 34: Interval intersection query (first step only)
a) SQL statement, and b) execution plan

3.3.4 Onestep only

Obviously, we could stop the query process after the first filter step, accepting an
error corresponding to the MAXGAP parameter. Therefore, it might bewiseto choose
the MAXGAP parameter not only based on storage space requirement reasoning , but
also on facts like “A lot of application-queries are satisfied, if the maximum error,
does not exceed MAXGAP/2”. Thusthe set C, forms an error bound result set, which
meets the needs of many application queries.

In figure 34 the final SQL statement for the first filter step and the corresponding
execution-plan are shown, provided we omit the second filter step.

3.3.5 Final SQL command for thefirst filter step

If we continue the query process after the first step, the corresponding SQL state-
ment has to be enlarged. The necessary changes are depicted in figure 35. Note, that
we do not call a stored procedure to do the ranking but only use built-in functions of
ordinary ORDBMS. The execution plan belonging to this SQL statement isthe same
astheoneshowninfigure 34, aswe do not select fieldsfrom the XRange table, which
are not included in the corresponding indexes.

SELECT
DB_id, DB_row, Q ref,
DB_lower, DB_upper, DB_density, Q lower, Q_upper, Q_density
FROM
(
SELECT
floor (1-power(1-(i.AlS.density - left.Q_AlS.density),
least(i.upper,|eft.Q_upper) -greatest (i.lower,left.Q_lower) +1)) asQ_DB_rank,
iidasDB_id, i.rowlD as DB_row, left.Q ref as Q _ref,
i.lower as DB_lower, i.upper as DB_upper, i.AlS.density as DB_density,
left.Q_lower as Q_lower, left.Q_upper as Q_upper, left.Q_AlS.density as Q_density
FROM intervalsi, :leftNodes |l eft
WHERE i.node BETWEEN left.N_from AND left.N_to
AND i.upper >= left.Q_lower I/ left and inner queries
UNION ALL
SELECT
floor (1-power(1-(i.AlS.density - right.Q_AlS.density),
least(i.upper,right.Q_upper) -greatest (i.lower,right.Q_lower) +1)) asQ DB_rank,
i.idasDB_id, i.rowlD as DB_row,right.Q_ref asQ ref ,
i.lower as DB_lower, i.upper as DB_upper, i.AlS.density as DB_density,
right.Q_lower as Q_lower, right.Q_upper as Q_upper, right.Q_AlS.density asQ_density
FROM intervalsi, :rightNodes right
WHERE i.node BETWEEN right.N_from AND right.N_to
AND i.lower <= right.Q_upper /lIright queries

)
ORDER BY DB _id, Q DB _rank desc

Figure 35: Fina SQL statement of thefirst filter step

3.4 Second Filter Step

In this section we put into practice what we discussed in section 3.1. But first, we
shortly address ourselvesto the structure of theresult set of thefirst filter step, i.e. the
candidate set of the second step.

3.4.1 Structureof the candidate set of the second filter step SC,

As already mentioned, it is not enough that the first filter step delivers the object
IDs of those objects interlacing the query interval. We need additional information
for the second step, which has to be provided by the first one. This information is
collected in SC, (Structure of Candidatesfor step 2), showninfigure 36. Thefirst two
fields DB_id and DB_row reference ROWsin the XRangetable, i.e. in the database.
Thenext field Q_ref pointsto an entry in LQI, so that we can join both the XRANGE
table and LQI in the third filter step. The next six fields DB_lower, DB_upper,
DB_density, Q lower, Q upper and Q_density are used to determine in the second
filter step, whether the query and database interval intersect without examining the

L= {
DB_id integer, /I necessary for 3" filter step
DB_row varchar, Il necessary for 39 filter step
Q ref integer, I necessary for 39 filter step
DB_lower number, Il necessary for 2" £ ter step
DB_upper number, Il necessary for 2 filter step
DB_density number, /I necessary for 2™ filter step
Q_lower number, /I necessary for 2 filter step
Q_upper number, // necessary for 2" filter step
Q_density number /I necessary for 2™ filter step
}

Figure 36: Structure of the candidate set for the second filter step SC,

corresponding BLOBs. Note, that we do not collect the results from the first filter
step in atransient table, but process them right away. In the remainder of this work,
we will use the notion LC, (List of Candidates for the 2 filter step) for both the
“entire result set of thefirst step” and for a“cursor running through this set”.

3.4.2 Algorithm

In the second filter step we perform thefast grey test for each entry in LC,, i.e. for
each pair of interlacing intervals, until no moreintervalsare available or apair of the
same database ID has already been tested positive. Thisis done, by calling the func-
tion SecondFilter Step (cf. figure 37), which tests, whether the database interval and
the query interval intersect. Thistest isbased only on the upper and lower bounds of

function SecondFilterSep (DB _lower, DB_upper, DB_density,
Q_lower, Q upper, Q_density) : integer;
begin
if the query and database interval intersect (cf. subsection 3.1.3) then
return 1
elseif the query and database interval do not intersect (cf. subsection 3.1.4) then
return 2
else
return 3
end if;
end SecondFilter Sep;

Figure 37: Procedure SecondFilter Sep

theintervals and their density. Note, that based on thisinformation you can calculate

the number of black cells and decide whether the interval isblack or grey.

3.5 Connection between the Second and the Third Filter Step

3.5.1 Introduction

In this section we explain the connection between the second and the third filter
step. Thetwo steps do not strictly follow each other in the temporal flow of the query
process, but take turns. They alternate because otherwise the transient table LCs
could becomevery large and in its aftermath the main memory footprint could not be

controlled. In this section we will introduce a concept which solves this problem.

3.5.2 The LCsMAX parameter

Theagorithm depicted in figure 38 illustrates the general connection between the
second and the third filter step. We introduce a user defined boundary LC3MAX,
which allows us, to control the main memory footprint. If the number of recordsin
the transient table LC3 exceedsthis value, we perform the third filter step. The disad-
vantage of this construction is, that we cannot predict in advance, how many SQL
statements have to be executed in the third step because this depends on the number
of generated candidates by the two preceding steps. On the other hand, we do control
the main memory footprint and make thereby the X-RI-treefit for a multi-user-envi-

ronment.

If we detect, that adatabase object intersects our query object, we can leave out all
following tests belonging to this database object. Owing to the fact that the result set
of the first filter step is ordered by DB_id we only have to keep in mind the last
successfully tested database ID and not alist of already successfully tested objectsin
order to skip tests. Furthermore, LC, is ordered by Q_DB_rank (=probability value
for the intersection of query and database interval). This ordering was mainly de-
signed to meet the needs of thethird filter step, but it isalso beneficial for the second

step.

algorithm SecondAndThirdFilter Sep

begin
LastFoundDBID :=-1; /I variable used for skipping tests
ResultSet ={}; I/ result set
LCs ={}; /I Candidates for the third step

execute FirstFilter Step ;
while LC, not empty do
1/ @l information of the current candidatein LC, is assigned to local variables, needed for filter step two and three
LC,.fetchinto (DB_id, DB_row, Q_ref,
DB_lower, DB_upper, DB_density,
Q_lower, Q_upper, Q_density)
if DB_id <> LastFoundDBID then
result_of_2 filter_step := SecondFilter Step (DB_lower, DB_upper, DB_density,
Q_lower, Q_upper, Q_density) ;
if result_of 2 filter_step =1then
ResultSet := ResultSet + {DB_id};
LastFoundDBID := DB_id;
Delete all recordsin LCg with ID = DB_id; // we do not have to examine these recordsin
Il filterstep 3, because we already determined that DB_ID
/1 intersects our query object.
elseif result_of_2 filter_step =2 then
do nothing;
else // add it to the candidate list of the third step
LC3z:=LCz+{(DB_id, DB_row, Q_ref)};
if LCz.count > LC3MAX then /1 we control the main memory footprint
execute ThirdFilter Step;
ResultSet := ResultSet +{results of third step};
LCg={};
end if;
end if;
end whileg

/1 al results from the first step are processed
/1 we have to check whether there are some more candidates for the third step and if necessary execute the corresponding statement

if not LCs.IsEmpty() then
execute ThirdFilter Step;
ResultSet := ResultSet +{ results of third step}
end if;
end SecondAndThirdFilter Step;

Figure 38: Connection between second and third step

3.6 Third Filter Step

3.6.1 Introduction

In the second filter step there might be alot of interval pairs for which we cannot

decide by means of the fast grey test, whether they intersect or not. In contrast, in the

third filter step we can do that for all interval pairs, by scrutinizing the attached

interval sequences. These sequences might be materialized and stored in aBL OB, or

being generated during the fetch-calls of the ADT TIS

Inthissection, wewill first shortly discussthe structure of LQI and LC3, which are
used in the SQL statement, executed in the third step. Furthermore, we will empha-
size how the algorithm TestCandidates of figure 31 isimplemented. Additionally, we
will talk about how we can efficiently access materialized black interval sequences
which are stored in aBLOB.

3.6.2 Structure of the transient table of query intervalsLQI

Theoriginal RI-tree does not have to store any information about the query inter-
val. The entireinformation consists of the values of the lower and upper bound of the
interval. This information is completely used in the preliminary procedural step by
filling the transient tables left- and rightNodes.

In the case of the X-RlI-tree the query interval consists also of an attached interval
sequence, stored in aBLOB. In the third filter step we have to access this informa-
tion. We therefore store a grey query interval in SQI (Structure of Query Interval),
depicted in figure 39.

SQl ={
Q_ref integer,
Q_lower number,
Q_upper number,

Q_AISTAIS
Q_ISTIS

Figure 39: Structure of Query Interval QI

Note, that in the case of query objects consisting of several intervals, we just use
the corresponding transient table LQI (List of Query Intervals), wherethefield Q_ref
is used as an identifier of the different grey query intervals. The boundary values
Q_lower and Q_upper allow usto compute the exact interlacing area, so that we can
concisely examine the BLOB.

3.6.3 Structure of the candidate set of the third filter step SC;
Thisstructureisrather ssmple. It consists of thefirst threefields of SC,, which are
just passed through in the second filter step (cf. figure 40).

We need thesefieldsin thethird step in order tojoin thetransient query input table
LQI and the XRange table of the database.

SC3:{

DB _id integer,
DB_row varchar,
Q_ref integer

}
Figure 40: Sructure of the candidate set of the third filter step SC3

3.6.4 SQL statement

Asaready mentioned, there can be several records of LCg, belonging to the same
(database) ID. For each of these IDs we have to decide whether there exists one
record in LCintersecting the corresponding query interval. If we havefound one, we
do not have to examine the other records belonging to thisID. Astherecords of LC;
areordered by I D plusadditional criteria, we can keep in mind thelast ID intersecting
the query interval and skip all the other tests belonging to this database ID. Thus we
can adjust the “ TestCandidates’ algorithm of figure 31 ending up with an algorithm
depicted in figure 41. Note, the adjusted algorithm does not delete the candidates

a) agorithm ThirdFilter Step;
begin
LastFoundDBID := - 1;
LCafirst;
Result :={};
for i :=1to LCz.count() do
if LC4[i].DB_id <> LastFoundDBID then
if IntersectionTest(query interval of LCy[i],database interval of LC[i]) then
Result := Result + LC4[i].DB_id;
LastFoundDBID := LC5[i].DB_id;
end if;
end if;
end for;
end ThirdFilter Step;

b) select distinct (id) from intervalsi,: LC3 ¢, :LQI g

where skiplD(c.DB_id) = 0 /ioptional, can be omitted asit isincluded in the Inter sectionTest procedure as well
andi.rowlD = c.DB_row and q.Q_ref=c.Q_ref
and IntersectionTest (i.lower, i.upper, i.IS, g.lower, g.upper, g.IS, i.ID)=1

C) [SELECT STATEMENT
NESTED LOOPS
NESTED LOOPS
COLLECTION ITERATOR PICKLER FETCH
TABLE ACCESS BY USER ROWID
COLLECTION ITERATOR PICKLER FETCH

Figure 41: Third filter step
a) algorithm, b) SQL statement, and c) execution plan

which are not tested but just ignoresthem. The SQL statement putting thisalgorithm
into practice and the corresponding execution plan are depicted together in the same
figure. Note, the SQL statement only works according to the described agorithm, if
the three different predicates of the where-clause are evaluated in the order they are
written down. The function skiplD corresponds to the first if-statement of the algo-
rithm. If aformer record of LC3, with the same database ID as the actual one, has
aready intersected one of the query intervals, skiplD delivers 1 and the other two
predicates of the where statement are not evaluated. If skiplD = 0, theintersection test
iscarried out. If the IntersectionTest is successful, LastFoundDBID is set to the cur-
rent ID of LC5. Thisisdonein the IntersectionTest procedure. Aswe cannot assume,
that the query optimizer evaluatesthe predicates of the where-clausein the order they
have been written down, we include the skipping aso into the IntersectionTest pro-
cedure. In this case the BLOBs are accessed, as they are passed as parameters to the
stored procedure, but their content is not scrutinized, because the first thing donein
the stored procedure IntersectionTest, is to test whether the parameter value ID, is
equal to the latest successfully tested database ID (cf. figure 42). Thisversion is of
course dlightly slower, but the declarativity of SQL is maintained.

3.6.5 Stored procedure I ntersectionTest

In order to decide whether two interlacing intervals 1,=((l1,u1),S;) and
[,=((I5,u5),S,) intersect each other or not, we haveto carefully examinetheir attached
interval sequences S, and S,. Thisisdonein the procedure | nter sectionTest as shown
in figure 42. First, the fetch-methods of the abstract datatypes DB_1Sand Q_|Sare
invoked. The resulting two interval lists are compared to each other in order to find
out whether they contain interlacing black intervals. If thisis the case, the two grey
intervalsintersect and the procedure stops. If oneinterval list has been tested until its
end, the fetch-method of the corresponding TIS object is called again and the test
proceeds. If aninterval list isempty the procedure stops and the two grey interlacing
intervals do not intersect.

Note, that if an intersection is detected, the IntersectionTest procedure does not
haveto test all intervals of the interlacing area but can stop as soon as an intersection
IS detected. This is the reason, why the loop-operator has been included into the
IntersectionTest procedure. It allows us to fetch small portions of intervals of the
interlacing area. Thus unnecessary disk accesses can be avoided. In the experiments,

algorithm IntesectionTest (DB_lower number, DB_upper number , DB_ISTIS,
Q_lower number, Q_upper number, Q_ISTIS, DB_ID integer);
const N = MAXINT; // number of intervals per fetch;
begin
if LastFoundDBID = DB_ID then
result :=0
else
|_interlace := max (DB_lower, Q_lower);
u_interlace := min (DB_upper, Q_upper);
InterlaceArea := TInterval (I_interlace,u_interlace);
1l we fetch maximum N intervals from the interlacing area.
DB_lIntervalList := DB_|Sfetch (InterlaceArea, N);
Q_IntervalList := Q_IS.fetch (InterlaceArea, N);
TestFinshed ;= falsg;
while not TestFinished do
result := DB_IntervalList.intersects(Q_IntervalList); // parallel run through the lists
if result = 0 then // either DB_IntervalList or Q_IntervalList was empty => no intersection. Test finished
TestFinished := true
elseif result = 1 then // intersection detected. Test finished
TestFinished := true
elseif result = 2 then // DB_IntervalList tested until the end => fetch new one
DB_IntervalList := DB_|Sfetch (InterlaceArea, N);
elseif result = 3 then // Q_IntervalList tested until the end => fetch new one
Q_IntervalList := Q_IS.fetch (InterlaceArea, N);
elseif result = 4 then // DB_IntervalList and Q_IntervalList tested until the end => fetch new ones
DB_IntervalList := DB_|Sfetch (InterlaceArea, N);
Q_IntervalList := Q_IS.fetch (InterlaceArea, N);
end if;
end while;
if result =1 then
LastFoundDBID :=DB_ID;
end if;
end if;
return result;
end IntesectionTest ;

Figure 42: IntersectionTest

presented in the next chapter, we did not exploit this feature. The fetch-method was

aways invoked with asecond parameter equal to MAXINT.

The algorithm of figure 42 can be applied to all subtypes of the ADT TIS In the
next subsubsection we survey the subtypes TBitOrientedl S and TOffsetOrientedl S

which materialize the black interval sequencesand storeitinaBLOB.

3.6.5.1 Accessing an Interval Sequencein aBLOB

Asshown in theorem 3, we can pinpoint for each black interval sequence whether

the offset-oriented approach or the bit-oriented approach is preferable.

Obviously, the number of bytes needed for the storage of ablack interval sequence
correlates with the number of disk accesses which are needed for reading the com-

pleteinterval sequence.

linterlace L Uinterlace
a) interlace

O(l) O(L\nterlacé
Igrey \ |
W E B = T ==
I’ \ |
arey EET 118 mam |
o) O (Linterlace)
linterlace L Uinterlace
interlace
b)
O(logn) O (Mirgerlace)
I | | .

I X =
Y oomm w E = = E == Mineizoe™ 2
I’ ‘ | Winterlace™= 6

grey EET 118 EEm 1 . el

o O (M irterlace)

Figure 43: Accessing the attached interval sequences stored in aBLOB
a) bit-oriented, b) offset-oriented

As shown in figure 43 it is not always necessary to access the whole interval
sequence. It is enough to test those parts of the interval sequence falling into the
interlacing area. Thisimposes atwofold problem:

* Finding the starting point of the interlacing area efficiently.
 Accessing those parts of the black interval sequence efficiently which fall into the
interlacing area.

The following two theorems deal with these questions in case both intervals fol-
low the same storage approach. The theorems can easily be extended to those cases
where oneinterval is bit-oriented and the other offset-oriented organized.

Theorem 4 (bit-oriented approach (access))
Let Igrey = ((Igrey » Ugrey) » Soiack) @nd I grey = (' grey + U grey) » Shiack) be two grey
intervals which interlace. Let Ljperiace D€ the length of the interlacing areaand b the
disk block size. Then O (Ljpteriace ! D) disk accesses are needed for testing these two
intervalsfor intersection.

Proof. We can find the starting point of the interlacing areal;pterjace IN bOth inter-
valsin O(1) timeby using linteriace - 11/2 @s Offset. Wehaveto test at most LjeracePItS
to pinpoint whether the two intervals intersect. This worst case occursif thereis no
intersection. Thuswe need 2-O(1)+ 2:O(Linteriace / P) = O(Linterlace /) disk accesses
for theintersection test, asthe bits are consecutive organized in the BLOB.

Theorem 5 (offset-oriented approach (access))
Letlgrey = ((Igrey » Ugrey) » Solack) @1 grey = (I grey » U grey) + S black) betwointerlac-
ing grey intervals of length Lgq and L' ye. Let b be the disk block size and
linterlace = I grey L€t N be the cardinality of Syjack , and €t Nipjeriace A N jjeriace b€
the number of black intervals of §; o« and Sy, interlacing the interval I er-
lace— (interlace » Yinterlace)- 1 en testing these two intervals for intersection needs the
following number of disk accesses:

O (log n+ (Minteriace 109 Lgrey)/b+ (N interiace 109 L grey)/b)

Proof. The starting point of the interlacing area l;erace Of I’ Can be accessed in
O(2) time. In 1 we can find this point by bipartitioning. We first access the valuein
the middle of the BLOB and compare it to ljpterace- If it IS Smaller we only have to
consider the upper half of the BLOB. If higher, we take the lower half. This test can
be donein 0(1) time and has to be done at most O(log n) times. Thusfinding ljnter|ace
in both intervals needs O(1+1log n) = O(log n) disk accesses. Then we have to access
all black intervalsin the interlacing area until we detect an intersection. These are at
MOSt Nipjerlace™ Minlerlace INt€rvals which are consecutive organized in the BLOB.
Each of these boundary val ues can be expressed by O(log L) respective O(log L) bits
asoutlined in section 2.3.

Thus O (log n + (Ninterlace 109 Lgrey)/b+ (M interiace 109 L' grey)/b) disk accesses are
needed in order to decide whether the two intervalsintersect.

3.7 Dynamically created query objects

3.7.1 Introduction

Asalready mentioned in section 1.3, we can encode a spatial object by an interval
sequence while recursively decomposing the space into an error-bound or a size-
bound approximation of the object. What we did up to now, was using the error-
bound approach by closing small gaps between theintervalsfrom bottom-up, leading
usto grey intervals. Aswe wanted to work error-free, we added the attached interval
sequences to the grey intervals, so that in the third filter step we could determine
exactly whether two grey intervals intersect or only interlace. If we want to know,
which parts in our database are intersected by a query object stemming from the
database as well, we can revert to the attached interval sequences, available in the

database. Thus, we do not have to process the costly step of creating the attached
interval sequences during the collision query process.

Ontheother hand, if auser wantsto know which partsarein an areaof hisinterest,
our system has to decompose this spatial query object into grey intervals and their
corresponding interval sequences before the actual query process can start. This de-
composition, especially of large objects, could cost us minutes or even hours
(cf. section 4.4). Therefore, it isnecessary to provide aconcept for the decomposition
of spatial objects, which are not known in advance. We shortly explain this concept,
using boxes as an example for dynamically created query objects.

3.7.2 Bascidea

The basic ideais to use the error-bound top-down approach with abig MAXGAP
parameter, so that we can quickly receive grey intervals. As most of these spatial
objects can be described with afew parameters (e.g. a box can be described by two
points), the corresponding abstract data types consist only of afew attributes (cf. the
type TBoxOrientedl Sof figure 19).

Note, that the algorithm of figure 6 hasto be adjusted to the needs of the X-Rl-tree.
During the top-down approach we haveto ensure, that our grey intervalsstart and end
with black voxels. Furthermore, we have to compute the density of these intervals
during this processin order to use the X-RI-tree without further changes.

If the query objects are boxes, these restrictions and computations can be easily
integrated in the recursively decompositioning algorithm of figure 6.

3.8 Optimizations

In this section, we want to discuss, how far the optimization rules of the RI-tree,
introduced in subsection 1.5.4 , can be applied to the X-RlI-tree.

3.8.1 Gap optimization

Unfortunately, we cannot apply the gap-optimization of the RI-tree straightfor-
ward to the X-RI-tree, owing to the gapsincluded in the grey intervalsitself.

But if the grey object interval sequence includes black intervals with a length
longer than MAXGAP yatabase WeE Can apply the gap optimization to the X-RI-tree as

grey object interval sequence

43 52 61 77 87 91

root= 128

3

24 join partners

18 join partners

Figure 44: Optimization of the X-RI-tree
a) naive X-RlI-tree b) optimized X-RI-tree

well. The examplein figure 44 shows, that in the case, that the middle interval of the
query sequenceissuch along black interval, we can save aright query of the leftmost
interval from node 128 and two queries of node 64. Unfortunately, the number of
long black intervals decreases very fast with an increasing MAXGAP parameter
(cf. figure 51). Therefore, this optimization is not as beneficial to the X-RI-tree asit
isto the RI-tree.

3.8.2 Integrating Inner Queries

Integrating inner queries does not yield any problems. This optimization can be
appliedto the X-RI-tree without further changes. In the example of figure 44 we save
three more join partners by integrating the inner queries.

Note, that in the experiments we always compare the optimized variant of the RI-
tree to the optimized variant of the X-RlI-tree.

Chapter 4
Experimental Evaluation

4.1 Introduction

In this chapter, we want to eval uate the performance of the X-RI-tree based on two
test data sets CAR and PLANE (cf. figure 15). Thesetest data setswere provided from
our industrial partners, aGerman car manufacturer and an American plane producer,
inform of high resolution voxelized three-dimensional CAD parts. In both cases, the
Z-curve was used as a space filling curve to enumerate the voxels. To express one of
these z-values we had to spend 33 bits in the case of the CAR data and 42 bitsin the
case of the PLANE data. To put it another way, the CAR data space consists of
8.589.934.592 voxels and the PLANE data space of 4.398.046.511.102 voxels. The
voxels were grouped together to black intervals, so that we could use these data as
test sets for the RI-tree. Furthermore, we used different MAXGAP g tapase. Parame-
tersin order to evaluate the X-RI-tree. Note, that the X-RI-tree and the RI-tree coin-
cide if the MAXGAP parameter is 0. In this case we always used the original opti-
mized version of the RI-tree and not the X-RlI-tree.

As the RI-tree outperforms competitive techniques like the Linear Segment Tree
and the Composite Index by factors of up to 4.9 for the query response time and the
Linear Quadtree (Octree) and the Relational R-tree by factors of up to 4.6 and 58.3
[Pot 01] [KPS 014a], the X-RI-tree was only compared to the RI -tree?.

L 1f not otherwise stated, we use the term MAXGAP for denoting a global MAXGAP yapase Parameter.
2 According to the motto:” If you beat the best, you can beat them all.”

We have implemented the optimized RI-tree and the X-Rl-tree for the Oracle
Server Release 8.1.7, using PL/SQL for the computational main memory based pro-
gramming. All experiments have been performed on aPentium I11/700 machine with
IDE hard drives. The database block cache was set to 500 disk blocks with a block
size of 8 KB and was used exclusively by one active session.

As dready mentioned, Fyaxcap IS the only transformation function we want to
investigate in more detail. We apply this function to both example data sets CAR and
PLANE and evaluate both the static and the dynamic behavior of the X-RlI-tree. Be-
fore doing that, we shortly pinpoint in section 4.2, that accessing aBLOB in Oracle
8i isin accordance with our expectations. In section 4.3 we evaluate the static prop-
erties, including the characteristica of the transformed databases, interval histo-
grams and storage requirements. In section 4.4 we concentrate on the dynamic be-
havior of the X-RlI-tree, asfor instance response time, main memory footprint, tested
candidates and number of disk accesses. We conclude this chapter with section 4.5,
where we summarize the main experimental results.

4.2 BL OB access

The only experiment presented in this section generally clarifies a few things
about BLOB accessing in Oracle 8i.

In figure 45a it is shown, that only a few logical reads are necessary to open a
BLOB no matter how large it is. Furthermore you can see, that if you want to read a

a) 10,
100000 -

10000 -

./

number of logical
reads
[6;]

number of logical /
physical reads
[
=)
o o
\

[N

" BLOB'size [bytes]

‘ ‘ ‘ ‘ BLOB size [bytes]
10 1000 100000 10 1000 100000

chunksize = 100 bytes (log.)
——select only —e— chunksize = 100 bytes (phy.)
) chunksize = 1000 bytes (log.)
—a—read first 10 Bytes —a— chunksize = 1000 bytes (phy.)
. . chunksize =10000 bytes (log.)
—m—read 10 Bytes in the middle __e— chunksize =10000 bytes (phy)

Figure 45: BLOB access
a) tiny parts, b) whole BLOB

a) —=—CAR —=—CAR
A pANE| D) PLANE
o 10000007 = 1000000
o = ©]
2 r=
(0] = wn
c 10000 - \\ 2% 10000 - /
= 52
6 [} 2 /-
5 100 - < 1001
£ : <
£ 3 /
< 1+ 1 —
MAXGAP MAXGAP
0 1000 1000000 0 1000 1000000
C) = CAR d) —=— CAR
1,0 PLANE 200 - PLANE
5 S
g 0,8 - 8 _
2, 55 150
é = 0% g § 100
(O] © S B
ez 044 S 4
E - O X
o 02 - 8— 50
3) e
070 -.(Ba E/B—-—E—E—E—_E___E
‘ L T MAXGAP o 0 T T T NAXGAP
0 1000 1000000 0 1000 1000000

Figure 46: Transformed databases
@) Nirans b) Lirans: ©) Diranss @d d) Cirans=Nirans”™ Lirans* Dirans

tiny part out of the middle of aBLOB (e.g. 10 bytes), the system does not have to go
through all the pages, starting from the beginning.

On the other hand, if we want to get all the information included in a BLOB the
number of logical reads linearly increases with the BLOB size (cf. figure 45b) . This
figure also depicts the fact, that if you have to read the whole BLOB, it is advanta-
geousto read with ahigh chunksize (number of bytes per read). For instance, reading
one million bytes of one BLOB with a chunksize of 100 needs 70 times more logical
reads than doing it with a chunksize of 10.000 and still 50 times more physical reads.

All following experiments have been executed with a chunksize of 30.000.

4.3 Evaluation of the static properties of the X-RI-Tree

4.3.1 Characteristica of the transfor med Databases

Obviously, the characteristica of atransformed database strongly depends on the
MAXGAP parameter. As this parameter determines which small intervals are

Gap histogram — _CAR
PLANE

1000000 | N

10000 -

number of gaps

100 4

l+—+—rrrr T gaptength
1 256 65536 16777216 4294967296 2,20E+16

Figure 47: Gap histogram

grouped to large grey intervals, it is not surprising that with increasing MAXGAP
parameter, the number of intervals Ny, s in the transformed database decreases®. It is
also obvious, that their average density Dy, 55 decreases, owing to the fact, that you
include gaps into thelong grey intervals. Thisis also the reason for the increasing of
the average length Ly, 5,5 Of the grey intervals. What you might expect is that the
product Nians - Dirans * LtransiSindependent of the MAXGAP parameter. But thisis
not true as the following unequation clarifies.

d\ltrans Ntrans 0
d g

| d
Nirans Hzl l; . zl I H
ar= | = _ O
Z I| dI # ON x N x Ntrans = Ltrans X Dtrans X Ntranﬂ
~1 I g trans trans 0
i= 0 g
O O
u O

The extreme rise in the C; o5 PLANE curve at very high MAXGAP parameters
(cf. figure 46) is owing to the fact, that we have a few extremely long parts (e.g.
wings of the plane) but still alot of short parts with high density.

4.3.2 Gap and interval histograms

As shown in [Gae95] the number of intervals generated via a space-filling curve
out of areal-world-object, mainly depends on the surface, the shape of the object and
the granularity of the underlying grid approximation. Unfortunately, there is nothing
mentioned about the distribution of the intervals or the corresponding gap distribu-

1 The PLANE curve becomes flatter because we have almost 10.000 objectsin the database and we need
at least one grey interval for each object. If we want to pinpoint the same effect on the CAR data set,

which consists of less than 200 objects, we have to increase the MAXGAP parameter even more.

a) b)

1000000 - 1000000 -

£ 2

s s

€ 10000 | £ 10000 - W

= £ P P

y— L — _ 2N N

S) — o N \

= 100 | \ \ \\\ & 100 -

Q

c \ \\\ g

>

c \ c

1 T ‘mtéf\/a‘-Léhgt‘h‘ 1 LA I ‘Intet*v‘al‘-l_‘éngth
1 1024 1048576 1 1024 1048576
e =0 —_— M=10"1 —— M=10"2 e =0 —_—M=10"1T —— M=10"2
— M=10"3 M=10"4 M=10"5 — M=10"3 M=10"4 M=10"5
M=10"6 M=10"6

Figure 48: Interval length dependent on the MAXGAP parameter
a) CAR, b) PLANE

tion. In[Po6t 01] itisasserted, that the binary logarithms of fractal gapstypically obey
an exponential distribution. Furthermore, histograms on fractal gaps show local
peaks at whole multiples of three (=the original datadimension d), i.e. at gap lengths
around 23K k> 0. This behavior is caused by the fact that many gaps represent
empty cube-like (3D) regions at the boundary of spatial objects. Figure 47 supports
the assertion made in [P6t 01]. Figure 48 depicts the interval distribution. It can be
seen that the bucket which includes most intervals is regularly increasing with in-
creasing MAXGAP. The gap histograms dependent on the MAXGAP parameter are
obviousbecause all gaps smaller than MAXGAP were used to form the grey intervals.
On the other side, the gaps larger than MAXGAP are unused.

4.3.3 Storage Requirements

Although the storage complexity O(n/b) of the native RI-treeis optimal, it seems
rather wasteful to spend a whole row in the Ranges table for a small interval.
Figure 49a shows the different storage requirements for the XRange table with re-
spect to the different organization approaches of the BLOBs. These experiments
were carried out based on subsets of the original test data sets, comprising approxi-
mately 10% of the original data. Asyou can see, the bit-oriented approach isvery bad
for high MAXGAP values, but it is better than the offset-oriented approachl when
using small MAXGAP values. The final approach combines the advantages of both

1 We used the offset-oriented-byte approach throughout the experiments presented in this chapter.

a) XRange table XRange table

bit-oriented T ———
(Subset CAR) appronch . (Subset PLANE) bit-oriented
7] 3 approach
offset-
I " oriented % offset-
S 5 | approach Sy \ oriented
s = —final 58 approach
- O a h 5 S ——final
= S pproac o
° 9 5= approach
o X \ Q .
o =1 4 X £ 1
£ \ 3)
2 — N
A\A/
0 ' T T T MAXGAP 0 i i i —MAXGAP
0 1000 1000000 0 1000 1000000
(RI-tree) (RI-tree)
b) 120 - CAR 160 - PLANE
140 +
o 100 - 9
< | Oindexes | & 120 4 indexes
e S 5100 -
s} table o
~5§ 60 - 8 ‘S§ 80 - table
E 20 E 20
S 0 ; ; ‘ ! c 0
MAXGAP ‘ ‘ ‘ MAXGAP
Q) Q
R Y & & & & & R ¥ & & & S &
YL S M &S
Y ,\9 » .»0

Figure 49: Storage Requirements for the XRange-Table
a) different approaches (subset), b) final approach (al objects)

and can never be worse than the original RI-tree. The curve of the final approach
increasesalittle bit when the MAXGAP parameter exceedsval ues greater than 1.000.
This is due to the fact, that in this case, most intervals follow the offset-oriented
approach, whereas in the case of small MAXGAP parameters, they are organized
according to the bit-oriented approach. In Figure 49b the storage requirementsfor the
sum of the upper- and lowerIndexes as well as for the complete XRange table are
depicted. In the case of small MAXGAP parameters, the number of disk blocks used
by the upper- and lower I ndexes dominate the number of disk blocks for the XRange
table. With increasing MAXGAP parameters the number of disk blocksfor the index-
esdramatically decreases (cf. figure46a) and at high parameter valuesthey yield no
significant contribution any more to the overall sum of used disk blocks.

Lesson 1

With awell parametrized X-RI-tree you can improve the storage behavior at
least by an order of magnitude compared to the RI-tree.

—=a—CAR —=—CAR -

T 2 PLANE T 1000000 | PLAV

L c 8 -

B £%5 = —7

ES 10 E& 10000 |

£ E

5 =

E - E 100 ———

MAXGAP MAXGAP

0 1000 1000000 0 1000 1000000

Figure 50: Minimum and maximum length of interval

4.3.4 Miscellaneous

4.3.4.1 Minimum and maximum length of intervals

As depicted in figure 50, the maximum length of the intervals increases with the
MAXGAP parameter. Note, that the minimum length does not likewise. Although
using great MAXGAP values, there are till intervals of length 1.

4.3.4.2 Black intervals

Figure 51 illustrates, that the number of grey intervals with maximum densityl
decreases faster than the number of all grey intervals, with increasing MAXGAP pa-
rameter. The number of long black intervals, meaning black intervals longer than
MAXGAP, decreases even faster than the number of all black intervals. So with in-
creasing MAXGAP parameter there remain only a very few long black intervals,
which are useful for gap optimization (cf. section 3.8).

. ?r‘\"tervals
10000000)
f o CAR —— It?lfaﬁ;r&/ as 10000000 ¢4 PLANE —o— black

intervals
—o— long black

intervals

intervals
—o—long black|

o intervals

100000 +

100000 -

1000 + ©

=
o
o
o

10 -

number of

intervals

number of

intervals
=)

o

0 . . > © i i i >MAXGAP
0 1000 Mff))égvo% 0 1000 1000000

Figure 51: Black intervals

! Recall that we call Igrey = ((grey » Ugrey) » <S1>) also ablack interval.

a)

—=—CAR
o 2.2
-~ 3 20 PLANE
T2 18
g x 16
cL 14
oo L2
cc 10 . : : Y AXG AP
0 1000 1000000
b — |\|=0 e =0
) ——t ——
—_— M=10N _—
1000000 1 CAR — M:igﬂg 1000000 + PLANE — ME1073
M=10M M=10M
M=1075 M=10%5
8 10000 - M=10v6| 8 10000 - NG M=10"6
8 N 3 _— N
c o O c \
x 100 N < 100
s s N
E 1 Yo level = I tree-Tevel

0 3 6 9 12 15 18 21 24 0 3 6 91215182124

Figure 52: Fork nodes
a) number of different fork nodes/ number of intervals, b) fork node level

4.3.4.3 Fork nodes

Figure 52 depicts in what way fork node properties change with changing MAX-
GAP parameters.

In figure 52a it is shown, that the average number of intervals which share the
same fork nodeis much higher in the case of the CAR datathan it isin the case of the
PLANE data. Thisisrather obvious, as the PLANE spaceis 2(42-33) times larger than
the CAR space, but comprising only marginally more intervals. Note that two grey
intervals sharing the same fork node belong to two different objects and that these
two different objects thus interlace each other. Aswe will seein the next section the
average number of collisions for one part is much higher on the CAR data set than it
ison the PLANE data set. Figure 52b is quite similar to figure 48, thus indicating the
connection between fork nodelevel andinterval length. Thisisdueto thefact, that an
interval of length | cannot belong to a fork node ny which resides on alevel smaller
than log,l. Note, that there still exist fork nodeson theleave-level, evenif rather high
MAXGAP values are applied.

4.3.4.4 Upper- and lower | ndexes

Figure 53 illustrates that we can save one level in the B*-directory, if weincrease
the MAXGAP parameter. It isinteresting that the MAXGAP parameter is aways the

2 : —a— CAR

AN PLANE
1 :

GAP

height of the
B+-trees

: : : : : : MAX
0 1000 1000000

Figure 53: Height of the B*-directory of the upper- and lower Index

same there, where the height of the B*-directory decreases, where we need a mini-
mum of secondary storage (cf. figure 49), and where we get the best response time
(cf. figure 54), e.g. 1.000 on the CAR data and 10.000 on the PLANE data.

4.4 Evaluation of the dynamic properties of the X-RI-Tree

In this section, we want to turn our attention to the different facets related to the
query response behavior of the X-RI-tree. In subsection 4.4.1 we concentrate on
collision queries, whereas in the subsequent subsection, we consider box volume
queries, or more generally spoken dynamically created query objects.

4.4.1 Collison Queries

4.4.1.1 Introduction

All figures presented in this subsection depict the average result yielding from
collision queries, where we have taken every part from both test data sets CAR and
PLANE as query objects and asked, which partsin the associated database are collid-
ing with them. We first discuss the overall runtime behavior and the correlated disk
accesses. Furthermore, we address the issue of main memory session footprint and
number of tested candidates. This subsection isclosed with afew general remarkson
miscellaneous facets'.

4.4.1.2 Responsetime
In figure 54, it is shown in what way the overall response time depends on the
MAXGAP yatabase Parameter. |If we use small MAXGAP parameters, we still need alot

1 We use MAXGAP ey to denote the MAXGAP parameter belonging to the query object and MAX-
GAPyatabase to denote the MAXGAP parameter belonging to the database. If not explicitly stated, these
two values are equal.

50 - CAR

0 3. filter step
O 2. filter step
o 1. filter step
M preparation

40 1

30

response time [sec.]

' ' MAXGAP
10 100 1000 10000 100000 1000000 Ri-tree

b) PLANE

0 3. filter step
O 2. filter step
o 1. filter step

preparation

o o0 o0 o o o
N w A U N

o
i

response time [sec.]

o
[=}

GAP
10 100 1000 10000 100000 1000000 Ri-tree

Figure 54: Response time on collision queries
a) CAR, b) PLANE

of timefor the determination of al transient join partners, i.e. the preparation step. On
the other hand, using big values leads to an expensive third filter step. Fortunately,
using MAXGAP parametersin the middie leads to agood query response time.

Lesson 2

With a well parametrized X-RI-tree you can improve the response time of
collision queries by an order of magnitude compared to the RI-tree.

4.4.1.3 Disk accesses

Analyzing the number of disk accesses (cf. figure 55), reveals, that the number of
logical readsissmaller inthe case of the RI-tree, than it isin the case of the X-RI-tree
with asmall MAXGAP parameter (e.g. MAXGAP=10). Thisisbecause the X-RI-tree
does not benefit as much as the RI-tree from the gap optimization and that conse-

CAR PLANE

1000000 O logical 10000 O logical
100000 physical physical

1000

10000

1000 100

=
o
o

=

o

number of
disk access
G
number of
disk access

[N
[any

AP
1000 1000000

MAXGAP
1000 1000000

0
(Ri-tree)

0
(RI-tree)

Figure55: Logical and physical disk access

quently, we have more join partners in the transient tables left- and rightNodes
(cf. figure 56) yielding to more cached B*-directory |ookups.

4.4.1.4 Main memory footprint

As mentioned in the last subsubsection, we have alot of records in the transient
tables|left- and rightNodes. Fortunately, this number decreases hand in hand with the
number of entriesin LQI (List of Query Intervals), when using large MAXGAP pa-
rameters. Figure 56 depicts, that the number of entriesin LCz (List of Candidates for
the 3" filter step) isneglectable and does not yield any significant contribution to the
overall main memory footprint. Thus, we might have dispensed with the LC3MAX
parameter introduced in subsection 3.5.2.

Lesson 3
With awell parametrized X-RI-tree you can dramatically reduce the session

footprint.

4.4.15 Tested candidates

Figure 57 illustrates the number of candidate pairs of query and database intervals
and the number of the corresponding tests, which were actually carried out in the
second and third filter step.

In the second filter step the number of these candidate pairsrapidly decreaseswith
increasing MAXGAP, although the number of candidate object IDsincreases (cf. fig-
ure 58). Thus the redundancy reduction dominates the effect of falsely detected ob-
jects. At low MAXGAP values we have to test only afractional amount of candidate

150000 3000
CAR
100000 gLcs 2000
% " O left- & rightNodes ~§ P
5T LQI 52
S 550000 Q 2 51000
E O £9
=) e D =
c c
0 MAXGAP 0
0 1000 1000000
(Ri-tree)

(R?—tree)

PLANE

aoLcs3
0O left- & rightNodes
HLQI

1000

AXGAP
1000000

Figure 56: Number of entriesin the transient tables

pairs, asthefast grey test works very successfully with this parametrization (see also
figure 58). Consequently, thereisonly arelative small number of candidate pairs left
for the third filter step. With increasing MAXGAP values this test 1ooses effective-

ness.

In the third filter step the number of both candidate pairs and corresponding tests
do not vary asmuch asin the second step. It isdifficult to make a profound statement

a . .
) 100000 2nd filter step - 1,0 1000 + 3rd filter step + 1,0
10000 + 108 +08
} 100 +)
5 & 1000 + 106 ;35 58 106 53
E-g 100 + + 04 gS Eg ”04§8
£ 2 2l E2 w0 4
28 10l loz € 28§ lo2 £°
! T Maxcab? ! T iaxcaP?
10 10000 10 10000
‘ Candidates —e— Tests/Candidates ‘ ‘ Candidates —e— Tests/Candidates ‘
b) 1000 + 2nd filter step 1,0 37 3rd filter step » + 1,0
08 ‘\k/\/ 108
100 + } +)
=9 106 5T 58 2 1065 T
5 S 28 33 1k
= 4 Qo = 14
‘ég 10l 04 t © E% 1] 0,4,:;
23 o2 =< =0 +02< <
! T axcab? 0 ! — axcal?
10 10000 10 10000

Candidates —e— Tests/Candidates ‘ ‘

Candidates —o—Tests/Candidates‘

Figure 57: Tested candidate pairs of query and database intervals

a) CAR, b) PLANE

40 CAR 40,31 4 - PLANE

333

30 28,08

[[
?_ 20,91 ?_ 187 2,27
°© 20t 16,40 °© 27 161
© 13,68 © 137 145 131
o 12,00 11 Qo
IS - - - - u €
5 107 s 1 Ta2s 113 107
c 08 Lo c 103 103 103
k 263 2,57 174 137
0 ‘ ‘ ‘ " MAXGAP 0 ‘ ‘ ‘ " MAXGAP
10 10000 10 10000
Cand. after 1.step Hits after 2. step Cand. after 1.step Hits after 2. step
—s— Hits after 3. step —s— Hits after 3. step

Figure58: Candidate | Ds and result sets

inthis case, but we can still see, that in the case of the best response time on the CAR
data(i.e. MAXGAP equals 1.000), we only haveto test 40% of all candidates and thus
benefit in the third step as well from the skipping principal introduced in section 3.6.

Infigure58, itisillustrated, that at small MAXGAP valuesthe number of different
objects IDsresulting from thefirst filter step isonly marginally higher than the num-
ber of different IDsin thefinal result set. Likewise, the number of detected hitsin the
second filter step is only marginaly smaller. With increasing MAXGAP values the
two curves disperse.

4.4.1.6 Miscellaneous

The size of the partsin the PLANE data set vary very much. We have alot of small
partsand only afew very large ones. In the case of the CAR datathis peculiarity isfar
less distinctive. Aslarge query parts produce alarge number of query intervals, itis
obvious that the size part correlates with the response time. In figure 59ait is shown
that for most parts out of the PLANE data set, the X-RI-tree outperforms the Rl-tree
“only” by afactor of 2.9, whereasthere are some parts, for which thisfactor ishigher
than 100. In figure 59b it isillustrated that the high response time of the RI-treeis
mainly owing to the high preparation time, which naturally correlates with the num-
ber of intervals of the query object. In the case of the RI-tree we have to wait for more
than five minutes for some collision queriesin order to get the response. On the other
hand, using the X-RI-tree yields almost interactive response time for all collison
queries (cf. figure 59).

a) 10000 - PLANE + 150 400 - PLANE

750 XRiree Rltree

O
~

1000 + 060 - 300 4

56,3

\

\
=
o
o

100 + ¢ - 200 |

260,2

=
o
I
\
*
I
®
(=}
a1
o

100 4

resp. time X-Rl-tree
response time [sec]

| 23,0

219 D
1+ %o of max. rasoponse—time
10 20 30 40 50 60 70 80 90 100
1 number of parts

& resp. time Ri-tree / resp. time X-RI-tree ‘ preparation O query
————— trend response-time-ratio

number of query parts

\

\
*
M
o
]

resp. time RI-tree

Figure 59: Response time
a) |resp. time RI-tree |/ |resp. time X-RI-tree|, b) maximum response times

Lesson 4
If the overall response time of the RI-tree is extremely high, we particularly
benefit from the X-RI-tree.

4.4.2 Box queries

In this subsection we discuss box volume queries. All remarks in this subsection
can be generalized to other dynamically created query objects. The tests have been
carried out only on the PLANE data set because we focus on the decompositioning of
the boxesrather than on the underlying database. The preparation step comprisestwo
steps, the decompositioning of the boxes according to the algorithm of figure 6 and
the creation and registration of the transient join partners.

Infigure 60 it is shown that the decompositioning of the boxesinto black interval
sequences takes very long, even if the box size is relatively small. With increasing
box size the preparation time increases as well 1 Note, that with an X-RI-tree with a
high MAXGAP value, the preparation time can be reduced by more than two orders
of magnitude leading to a much better overall response time.

In alast experiment we carried out box queries on databases where the two values
MAXGAP ey @Nd MAXGAP ot apase Might differ. The resultsin figure 61 show, that

1 The number of intervalslinearly depend on the surface of the query object [Gae95].

a)

10000 +

1000 1 box size equals
100 109 0,00002% of data space
=10 i yielding to
il 0.03% selectivity
E 11 19
0,2
0 ‘ ‘ ‘ ‘ " MAXGAP
0 1000 1000000
b) 10000 4
1000 L__ 8% box size equa]s
100 i 0,003% of data space
=10 yielding to
> 5o 0.1% selectivity
g ! 09
0 . |
0 1000 MA:EE)%%SOO
c)
10000 -
1000 =204 box size aqua]s
100 m\ 0,008% of data space
=10 53 2 Yieldingto
- 1.0% selectivity
£l 19
0 : : !
MAXGAP
0 1000 1000000
Figure 60: Box queries on the PLANE data (preparation and response time)
at MAXGAP 1y Val ues of 1.000.000 and at @ MAXGAP jatapase Value of 10.000, we

get the best response time. The optimal value for MAXGAP ytapase 1S the same as the
one, we evaluated during the collision testsin thelast subsection. Asarule-of-thumb

we can say that it is good to use high MAXGAP

query

values for the dynamically

created query objects, so that the preparation time is reduced, whereas for the data-
base we can use MAXGAP y4tabase Val Ues Which lead to an optimal storage exploita-
tion and furthermore to an optimum response time for collision queries.

100,0 +

—a— MAXGAP=1.000

— -a - - MAXGAP=10.000
—_——, ---® - .. MAXGAP=100.000
A A A .—-—A
10,0 & MAXGAP=1.000.000
R AREREE T) PO MAXGAP=10.000.000

MAXGAP=100.000.000

response time [sec]

=
[=}

‘ ‘ ‘ ‘ " MAXGAP,
10 10000 database

Figure 61: Box queries with different query and database MAXGAP parameters

Lesson 5

In the case of dynamically created query objects, we particularly benefit from
the X-RI-tree compared to the RI-tree.

4.5 Summary

We have seen, that the X -RI-treeworkswell on our test datasets CAR and PLANE.
With MAXGAPcpr = 1.000 and MAXGAPp ane = 10.000 we outperform the opti-
mized version of the RI-tree with respect to storage expl oitation and response time by
an order of magnitude. Using the X-RI-tree gains the following advantages over the
RI-tree:

* Only afractal of secondary storageis occupied.

» The session footprint is less. Therefore the X-RI-tree is better qualified for a
multi-user environment.

* The query response time is much better.

* The concept of grey intervals is particularly useful for dynamically created
guery objects, which are resolved into grey interval sequences in a top-down
approach.

Chapter 5

| ncor poration of Spatial Objects
Inan ORDBM S

A lot of traditional database servers have evolved into an Object-Relational Data-
base Management System (ORDBMS). This means that in addition to the efficient
and secure management of data ordered under the relational model, these systems
now also provide support for data organized under the object model . Object typesand
other features, such as large objects (LOBS), external procedures, extensible index-
ing and query optimization, can be used to build powerful, reusable server-based
components.

In this chapter we pursue atwofold plan.

In the first two sections, which are more or less areformulation and summary of
what can befound in[Po6t 01], we want to talk generally about extensible OBRDMS.
In section 5.1, we shortly introduce the object-relational data model among other
approaches and talk about abstract datatypes. In section 5.2, we turn our attention to
the extensible query language, enabling the declarative embedding of abstract data
types within the built-in optimizer and query processor.

In section 5.3 we describe in detail how the X-RlI-tree can be integrated into the
extensible indexing framework of the Oracle8i server, using the conceptsintroduced
in the foregoing sections.

Thismix of Oracle specific and more general information, should enablethe read-
er to implement the X-RlI-tree on top of any other ORDBMS such as IBM DB2 or
Informix IDSUDO.

5.1 Extensible Data M odel

In this section, we shortly point out, why the object-relational data model is pref-
erable to other existing approaches. Furthermore, we show how abstract data types
can be integrated into object-relational servers.

5.1.1 Classification of Data M odels

Stonebraker and Brown [SB 98] considered the complexity of the stored data and
submitted queries to classify some common data models. Four major groups were
identified (cf. figure 62):

* Filesystem

» Relational DBMS (RDBMYS)
» Object-oriented DBMS (OODBMYS)
» Object-relational DBMS (ORDBMYS)

We focus on object-relational database management systems, asthey combine the
advantages of both, the object-oriented and the relational datamodel. Their extensi-
ble design enables usto integrate new access methods, e.g. the X-RI-tree. In addition,
the practical impact of ORDBMSs is very strong as object-relational functionality
has been added to most commercially availablerelational database servers, including
Oracle[Doh 98], IBM DB2 [CCN+ 99], and Informix IDSUDO [Bro 01].

Simpledata Complex data

i i : Object-oriented
Simple queries File system e

Complex queries Relationa Object-relational
HE DBMS DBMS

Figure 62: Classification of data models

5.1.2 Abstract Data Types
DDL statements like CREATE, ALTER, and DROP have been extended in
SQL:1999 [SQL 99] to support the declaration and implementation of abstract data
types[Bro 01] [CZ 01], often also referred to as object types. According to [Ora 99b]
an object type is a schema object with three kinds of components:
» A name, which identifies the object type uniquely within that schema.

* Attributes, which model the structure and state of the real-world entity. Attributes
can be built-in types or object types.

» Methods of an object type are functions or procedures that are called by the appli-
cation to model the behavior of the objects. Methods can be stored in the database,
which is preferable for data-intensive procedures and short procedures that are
called frequently.

5.2 Extensible Query Language

Most ORDBMSs, including Oracle [Ora99a] [SMS+ 00], IBM DB2 [IBM 99]
[CCF+ 99], or Informix IDS/UDO [Inf 98] [BSSJ 99], provide extensibility interfac-
esin order to enable database devel opers to seamlessly integrate custom object types
and predicates within the declarative DDL and DML. The resulting custom server
components, built on theseinterfaces, are called data cartridges, database extenders,
and data blades, respectively.

5.2.1 ExtensbleIndexing

In order to guarantee an efficient evaluation of user-defined predicates, the exten-
sibility services of the ORDBMS offer a conceptual framework to supplement the
functional evaluation of user-defined predicates with index-based lookups. Thisisin
accordance with the extensible indexing frameworks proposed by Stonebraker
[Sto 86], enabling developers to register custom secondary access methods at the
database server in addition to the built-in index structures. An object-relational in-
dextype encapsul ates stored functions for creating and dropping a custom index and
for opening and closing index scans. Figure 63 shows some basi ¢ indextype methods,
invoked by extensible indexing frameworks. Furthermore, there exist additional
functions to support query optimization. Most ORDBM Ss support both rule-based

and cost-based query optimization, whereby the cost-based approach is preferable to
the rule-based approach when referencing user-defined methods as predicates (cf.
[BO 99], [HS 93]). Therefore most ORDBM Ss provide cost-based functions, which
areinvoked by the extensible indexing framework (for alist of such functionshave a
look at [Pot 01] or [Ora99a)).
Some main advantages of extensible indexing frameworks are:
» Themaintenance and accessof acustomindex structureiscompletely hidden from
the user, achieving thereby dataindependence.

» Any redundant index data remains consistent with the user data.

» The declarative paradigm of SQL is preserved.

5.3 Implementation of the X-RI-tree on top of Oracle 8i

In section 5.3 we describe how the X-RI-tree can be integrated into the extensible
indexing framework of the Oracle8i server, using the conceptsintroduced in thefore-
going sections.

5.3.1 Declarativeintegration of the abstract datatype TOIS

As aready mentioned, an interval sequence is a basic data type for temporal and
spatial data, which can efficiently be managed with the X-RI-tree. In order to seam-

Function Task

index_create(), | Creates and drops a custom index.
index_drop()

index_open(), Opens and closes a custom index.

index_close()

index_start(), Starts an index scan.

index_fetch() Fetches the next record from the index that meets
the query predicate.

index_insert(), | Adds, deletes, and updates arecord of the index.
index_delete(),
index_update()

Figure 63: Methods for extensible index definition and manipulation

lessly embed it into an ORDBM S we need an abstract data type for such an interval
sequence. We call this type TSpatialObject, or a bit more general TOIS (Type of
Object Interval Sequence). Instances of thiscustom object type are stored as elements
of relational tuples. Figure 64 depicts some of the required object-relational DDL
statements in pseudo SQL. By using the functional binding of the user-defined pred-
icate INTERSECTS, object-relational queries can be expressed in the usual declara-
tivefashion (cf. figure 64).

5.3.2 Extensble Indexing

In subsection 5.2.1 we discussed from a genera point of view the extensible in-
dexing framework, whereas in this subsection we want to show exemplary, how the
X-RI-tree can be embedded into the Oracle 8i extensible indexing framework. We

I/ Type declaration

CREATE TYPE INTERVAL AS OBJECT (lower NUMBER, upper NUMBER);
CREATE TYPE INTERVAL_TABLE AS TABLE OF INTERVAL;
CREATE TYPE TOISAS OBJECT (

intervals INTERVAL_TABLE,

MEMBER FUNCTION intersects (Aois TOIS) RETURN BOOLEAN

);

I/ Type implementation
...
/l Functional predicate binding

CREATE OPERATOR INTERSECTS (A0isl TOIS, Aois2 TOIS)
RETURN BOOLEAN

BEGIN RETURN Aoisl.intersects(Aois2); END;

I/ Table SpObjs (Spatial Objects) definition

CREATE TABLE $0bjs (id NUMBER PRIMARY KEY, SpObj TOIS);

Il I ntersection query

SELECT id FROM SpObjs
WHERE INTERSECTS(SpObj, :q) = TRUE;

Figure 64: Object-relational DDL and DML statements for TOIS

CREATE TYPE XRltree im AS OBJECT (
/I attributes

crslStep NUMBER, Il cursor for thefirst filter step

Crs38tep NUMBER, I cursor for the third filter step

XRIM etadata TXRIMETADATA , /I metadata for this index object (resolution, DB_MAXGAP)
LC3 TLC3, Ji List of candidatesfor the third filter step

LC3Cnt number , /I counter for the above collection set

L Q| TL Q| /I List of the input query sequence

F2ActiD number, 111D of actual part in the second filter step
F2ActIDStart number , /I position of the first record of this part stored in F2ResTab
LastHitID number, /I Last 1D, added to the result set

X RangeTab varchar 2(100)) /I Name of the XRange-Table

/Il ODCII-Functions

STATIC FUNCTION ODCIlIndexCreate ...,
STATIC FUNCTION ODClIndexStart
MEMBER FUNCTION ODCIIndexFetch
MEMBER FUNCTION ODClIndexClose ...,

/I Additional functions

);....

CREATE INDEXTY PE XRltree
FOR intersects (TOIS, TOIS)
USING XRltree im;

Figure 65: Indextype XRltree

will mention afew technical detailsin connection with index creation and intersec-
tion queries.

5.3.2.1 Indextype XRItree

The first thing we have to do, is to encapsulate the X-RI-tree within the custom
indextype XRltree. Figure 65 gives arough impression of what this means.

First, the ODClIndex interface (Oracle Data Cartridge Interface Index), whichisa
set of index definition, maintenance and scan routine specifications, hasto beimple-
mented. This interface does not refer to a separate schema object but rather to a
logical set of documented method specifications (for detailed documentation see
[Ora 99a]). To accomplish this task, you can add different attributes and additional
functionsto your indextype.

/I Index creation

CREATE INDEX spatial_idx ON SoObjs (SpObj) INDEXTY PE IS XRItree
parameters (‘33; 10000’);

Figure 66: Creation of a custom index on spatial data

Secondly, a new indextype has to be created by specifying the list of operators
supported by the indextype and referring to the type that implements the index inter-
face. In figure 65 the DDL statement for defining the new indextype XRItree, which
supports the inter sects operator and whose implementation is provided by the type
XRltree im, is depicted.

5.3.2.2 Createindex statement

In figure 66 it is shown that we can create an index spatial_idx on the SpObj
attribute on the SpObj s table by submitting the usual DDL statement. We can append
to this create-statement a parameter-clause, specifying the resolution and the MAX-
GAPyatabase Parameter. The ODClIndexCreate method is called when a CREATE IN-
DEX statement isissued. Upon invocation, any parameters specified in the parame-
ter-clause are passed in along with a description of the index. Based on this
information we can start grouping the black intervals together to grey intervals,
which isthe essential part of the implementation of the ODClIndexCreate functionin
the case of the X-RlI-tree.

5.3.2.3 Select statement

After having issued an intersection query, asillustrated in figure 64, an index scan
is executed, which is specified through three routines, ODClIndexSart, ODCIIn-
dexFetch, and ODCIlIndexClose. These routines perform initialization, fetch rows
(essentialy row identifiers) satisfying the predicate, and clean-up once all rows are
returned.

ODClIndexStart: ODClIndexStartisinvoked toinitialize any datastructuresand
start an index scan. Since the index and operator related information are passed in as
arguments to ODClIndexStart and not to the other index scan routines (ODCIIn-
dexFetch and ODClIndexClose), any information needed in the later routines must
be saved. Thisisreferred to as the state that has to be shared among the index scan
routines. Oracle RDBM S will pass the SELF value to subsequent ODCIIndexFetch

and ODCIlIndexClose calls which can then be used to access the relevant context
information.

In the case of the X-RlI-tree, we usethe ODClIndexStart routinetofill thetransient
left- and rightNodes tables and then post the query statement of the first filter step.
Furthermore, we save all necessary state attributes (cf. attribute list in figure 65).

ODCIIndexFetch: ODCIlIndexFetch returns the next row identifier of the row
that satisfiesthe operator predicate. The operator predicateisspecified intermsof the
operator expression (name and arguments) and alower and upper bound on the oper-
ator return values. Thus, an ODCIIndexFetch call returnsthe row identifier of those
rows for which the operator return value falls within the specified bounds. A NULL
isreturned to indicate the end of an index scan. The fetch-method supports returning
abatch of rowsin each call. The state returned by ODClIndexStart or apreviouscall
to ODClIndexFetch is passed in as an argument.

In the case of the X-RlI-tree, the second and the third filter step are executed inter-
leaved as shown in figure 38. Note, that we might benefit from the fast grey test
because we can deliver results without accessing the BLOB. Therefore, we might
accomplish an ODClIndexFetch call without executing the third filter step at al. As
the introductory example of figure 30 shows, the result set has not to be ordered by
the object ID attribute, as we return results as soon as they are available. Neverthe-
less, we have to save the transient table LC5 (cf. figure 65) for further ODCIIn-
dexFetch calls, where we might have to execute the SQL statement of the third step.
If we have already executed this statement, we save the corresponding cursor for
further ODClIndexFetch calls.

ODCIlIndexClose: ODClIndexClose is invoked when the cursor is closed or re-
used. In this call the indextype can perform any clean-ups, etc. The current state is
passed in as an argument.

In the case of the X-RI-tree, we just close open cursors.

5.4 Conclusions

In thischapter, we have shown, that we can seamlessly integrate the X-RlI-treeinto
amodern extensible ORDBMS. It is beneficial, that the second filter step of the X-
RI-tree, yields very fast first results, without knowing the complete result set.

In order to enablethe optimizer of the database system to place the X-RI-tree at its
optimal positioninthe query execution plan, westill haveto develop acost model for
the X-RI-tree. Thisis deferred to future work (cf. chapter 6), but certainly will not
pose any insuperable problems, as a cost model for the RI-tree has aready been
developed (cf. [Pot 01]) and can serve asaguideline.

Chapter 6
Conclusions

In this chapter we first turn our attention to a list of open problems. For alot of
these problems, there already exist methods of resolution, which have not yet been
implemented and evaluated. Nevertheless, we will sketch the rough ideas, so that
others can take these thoughts as a starting point for future elaborations. At the end of
the last chapter we have already pursued this approach, where we suggested that it is
a good idea to develop a cost model for the X-RlI-tree, based on the available cost
model for the RI-tree.

In section 6.2 we summarize the work presented in the foregoing chapters, putting
emphasize on the advantages of the X-Rl-tree.

6.1 Futurework

In this section, we list a few open problems and shortly outline solutions to the
posted problems, but no detailed elaboration and verification.

In subsection 6.1.1 we introduce a new auspicious idea called, self-adapting in-
dexing, where we try to combine the strengths of both, linear scan and (X-)RI-tree.
We will see, that we already used this concept to some extent in the case of the X-RI-
tree, without being aware of it. In subsection 6.1.2 we write down a few thoughts
about a constructive computation method of an optimum global MAXGAP parame-
ter, whereas in the following subsection we glance at optimum local MAXGAP pa-
rameters combined with the idea of integrating bounding boxes into the upper- and
lowerIndexes. Thisaims at minimizing the candidates for the second and third filter
step. Inthelast subsection, we shortly summarize our annotations about future work.

6.1.1 Self-adapting indexing

Ashaving seen in the foregoing chapters, the transformed database contains much
less intervals, and furthermore, the fork nodes of these intervals reside much closer
to the root. To put it another way, the tree levels close to the leaves of the virtual
backbone are only sparsely occupied, although there are still some leaves with inter-
valsregistered at them (cf. figure 52). Thisraisesthe question, whether it isbeneficial
to use the full path from the root of the virtual backbone to the leaves in order to
generate the necessary join partners. A lot of them will not contribute to the result set.
Therefore, it might be much better to stop the process of generating join partnersat a
higher level of the tree and scanning the index from this point onward.

This principal seems to be useful not only for transformed databases, but it can
also be applied to the RI-tree, especiadly if the underlying data spaces are sparsely
occupied. For example, imagine the data space of an airplane (e.g. 100 m in each
dimension). If you put abox volume query returning no results (e.g. Z-value> 50 m),
it isdesirable that the system recognizes this at an early stage of the query process.

We will shortly introduce four closely linked approaches, where we stop generat-
ingjoin partners, somewhere between the root and the leaves of the virtual backbone.

We call this new index method S-RI-tree (Scan-Relation-Interval-tree), or XS-RI-
tree respectively. The first two approaches totaly disregard the data stored in the

virtual enlarged T root
virtual backbone _T_ - O
 —————]
u T

NScanR

Figure 67: Determination of Ngg, and Nggnr, i.€. the truncation level

database for the determination of the scan nodes Ngy, @nd Ngyr (cf. figure 67),
whereas the other two approaches take them into account.

6.1.1.1 S-RI-treebased on fixed truncation levels

Asaready described, we can stop collecting join partnersif the nodes are beneath
afixed truncation level. In addition to the already collected join partners, we produce
two more range queries ‘node BETWEEN Ng,y AND |, AND upper 2 1,” and ‘node
BETWEEN Ng,r AND u, AND lower= u, ’. Note, that intervals registered at N’
(cf. figure 67) can never contributeto the result set. Thus, we can no longer guarantee
blocked output.

6.1.1.2 S-RI-tree based on query dependent truncation levels

Potke presentsin [Pot 01] an architecture for the Database Integration of Virtual
Engineering (DIVE) for existing Engineering Data Management systems (EDM). In
thiswork, emphasis was put on the efficient embedding of the RI-treeinto an off-the-
shelf object-relational database system. A prototype of the DIVE system has been
evaluated in cooperation with the Volkswagen AG, Wolfsburg [KMPS01a]
[KMPS 01b]. Inthese testsit emerged, that the RI-tree works more efficiently, if we
virtually enlarge the query intervals by a constant factor (cf. figure 67). If we find
nodesin thisvirtually enlarged area (€.9. Nggy @nd Ngorr), We stop the collecting of
further transient join partners and produce range queries as described in the last sub-
subsection.

6.1.1.3 S-RI-tree based on data dependent truncation levels

We could compute the truncation level dependent on the histogram of the fork-
node levels (cf. figure 52). If there are only few fork-nodes close to the leave level,
we might use a higher truncation level. In this approach, we use (few) data in the
database to assess the truncation level but neglect any information stemming from
the query intervals (e.g. the position of the intervals).

6.1.1.4 S-RI-tree based on data and query dependent truncation levels

In [P6t 01] effective and efficient methods to estimate the selectivity and the
performance of interval intersection queries are presented. The developed appropri-
ate 1/0O and CPU cost model s can be invoked by common extensible indexing frame-
works (cf. remarks at the end of chapter 5). These models immediately exploit the
built-in statistics facilities of the database server, to cope with arbitrary interval dis-
tributions. For instance, histograms or quantiles can be employed to capture the data
characteristics at any desired resolution.

In order to compute the optimum truncation level, we could pursue a similar ap-
proach. At each node, we could compute the number of remaining nodes, which still
have to bevisited in the preparation step. Each of these nodesislinked to at |east one
disk access of the leaves of the upper- and lower I ndexes.

On the other hand, we could estimate the number of blocks between the actual
node and the interval boundary, based on built-in statistics. Comparing these two
values helps us to decide, whether we should further randomly access the leaves of
the upper- and lowerIndex by means of further collected transient join partners, or
just scan contiguous leaf blocks of these relational indexes, taking into account, that
we do not have blocked output.

Note, that random accessto aleaf block isonly beneficial with respect to I/0 cost,
if the preceding block gap islarger than the size of adisk block [Pt 01].

6.1.1.5 Summary

We have shortly sketched four different approaches to determine the scan nodes
Ngan 8nd Nggnr, 1-€- thetruncation level s, of the S-RI-tree. For the classification of the
different approaches, we can use the information stored in the database and theinfor-
mation stemming from the query object. The result of this classification, applied to
our four approachesis depicted in figure 68.

no query information

qguery information

no DB infor mation

SRI-tree based on fixed
truncation levels

SRI-tree based on query
dependent truncation levels

DB information

SRI-tree based on data
dependent truncation

S-RI-tree based on data and
guery dependent truncation

levels levels

Figure 68: Classification of self-adapting indexing (2-dimensional)

Adjusting this self-adapting indexing approach to other access methods as for in-
stance the Linear Quadtree (Octree) and the Relational R-tree could also be very
beneficial and lead to ageneral concept.

Finally, we would like to stress, that the X-RI-tree and the S-RI-tree, have a few
things in common, indicating, that the runtime behavior of the S-RI-treeislikely to
be much better as the one of the RI-tree.

* In both cases the number of transient join partners can be dramatically reduced.
In the case of the X-RlI-tree, thisis owing to the lower number of query intervals,
whereasinthe caseof the S-RI-treeitisowingto the abbreviated virtual backbone.

* Note, that due to possible fruitless scans, both indexes do not guarantee blocked
output, whereasthe RI-tree does. Aswe have seenin the case of the X-RlI-tree, this
drawback does not seem to be grave.

» Both indexes use linear scan. In the case of the X-RI-tree this scan is confined to
partsof one database object stored inaBL OB, whereasin the case of the S-RI-tree
several database objects might be affected. Nevertheless, in both cases, we have
to cope with the same problem: What is the optimum level for switching between
the RI-tree and a linear scan? In thiswork we pursued the approach comparable
to the one of the S-RI-tree based on fixed truncation levels. The variation of the
MAXGAP parameter can be compared tothevariation of thetruncationlevel. Thus,
athird dimension could be added to the classification of figure 68, dealing withthe
question, whether we use linear scan for one or all objects. The main difference
between thisclassification of the X-RI-tree and the S-Rl-treeis, that the MAXGAP
parameter isfixed after the grey intervals have been inserted, whereas the trunca-
tion level has nothing to do with theinsertion of intervals, but only with the query

response behavior. If we could access concurrently several databases, containing
the same objects, but based on different MAXGAP parameters, we could also
choose the optimum one, dependent on database and/or query data, at the begin-
ning of the query processl.

6.1.2 Mathematical approach for Fyaxcap

In this work, we pursued a global empirical approach concerning the determina-
tion of an optimum MAXGAP yatabase Parameter. We applied the Fy axgap function to
different MAXGAP parameters, yielding different transformed databases, which we
empirically evaluated. To find an optimum global MAXGAP parameter, it could be
helpful to investigate in more detail the interval histogramsresulting from the differ-
ent MAXGAP values. They could provide anindication of which parameter isthe best
one. We will now introduce a mathematical approach for Fyaxgap, by means of
which we could determinetheresulting interval histograms, dependent on MAXGAP.
Drawing conclusions from these interval histogramsis afurther unsolved task.

Notethat theinterval histograms correlate closely with the distribution of the for k-
node-levels (cf. section 4.3). By intensifying this mathematical approach, you should
be able to answer questions like: How probable isit, to find all objects intersecting
aninterval query, if you neglect the last ten layers of the virtual backbone? Further-
more, this approach could build a sound foundation for the process of information
retrieval which itself is an interesting topic for future research.

The now presented computational model is deferred to the section dealing with
future work, because the model has not yet been empirically analyzed. Neverthel ess,
we introduce the basic idea of it and a corresponding algorithm for the computation

of Fyaxcap

6.1.2.1 Algorithm for the computation of Fy axcap

Thebasic ideais, to put all the intervalsinto a bucket;eryvals @d all the gapsinto

abucketg,ps: Then you haveto draw by turnsout of the two buckets, starting with the

1 'You could also think of amore sophisticated concept, where the different tables, containing grey inter-
vals, are hierarchically linked. In this case only the one with the smallest MAXGAP parameter may con-
tain an additional BLOB, whereas al the others only store the hulls of the grey intervals. Here we omit
redundancy because we only store the complete information of the grey intervals with their attached
interval sequences in one table. On the other hand we still introduce redundancy compared to the
approach of this work because we additionally store the hulls of the grey intervals based on different
MAXGAP parameters.

bucket of intervals. The drawn intervals and gaps are concatenated to a long grey
interval. If agap isdrawn from bucketg,,s, which islonger than MAXGAP, the algo-
rithm stops.

The now introduced model assumes that both the gap and the interval sequence
form ani.i.d. sequence (independent, identically distributed sequence). This means,
that if you repeatedly draw intervals and gaps out of the two buckets, the probability
distribution of both does not change. To put it an other way, if you have drawn an
interval or gap, the model assumes, that you put it back. Of course, thisis not really
done, thus the model simplifies the real world (cf. subsection 3.1.5). If you do not
assume that you put the intervals back into the buckets, you have to apply a hyper
geometric model or use transition probabilities, which is much more complicated.

Figure 69 depicts the gap and interval histogram, both normalized to 1. The two
distribution functions are called X and Y. Furthermore, let py, be the probability that
agap issmaller than MAXGAP and gy, the probability that itisgreater than MAXGAP
(Ppmtav=21). In afirst step, we create the function ™ by omitting the gaps greater
than MAXGAP from Y and normalizeit to 1. In a second step, we create the function
f by convoluting YMand X: .

f (9 = Y00 X = 5 Y9 X(x-y)
y

Thisfunctionf describes the probability distribution of grey intervals, consisting
of one black interval and one gap (so they are“no real” grey intervalswith respect to
definition three, because they do not end with ablack interval).

The now introduced algorithm (cf. figure 69) is based on thisfunctionf and on Py
the probability of drawing k-1 gaps with alength smaller than MAXGAP and then an
interval with alength greater than MAXGAP. For Py the two following statements
hold:

[e0)
_, k-1 and - - 1.
Pe=Py Xdy D A T Erovie U

1

number of interval
>
number of gaps
!)
o)
< -
Qa
(728
3
number of gaps
=

interval Tength

y
Py = au
P, = OybPm
Ps = qufA
*
*
Fuaxcap® = 3 BimPm g% f®) 3 1
k=1 Es

“length of grey intervals

Figure 69: Algorithm for computing Fyyaxcap

The algorithm is based on recursive convolution. We start with f; = X and form
each f, . by convoluting f_1 with f*. Each of the so generated functions is
weighted with P, . Adding all these functions, leadsto:

o]

Fuaxeap® = 3 P> i)
k=1
You can stop the algorithm at any point k with a controlled error:
(0]
(K) oy —
RY " (x) = | > Pj ij(x)
j=k+1

Theerror over al x can be estimated by:
(00]
k
S R()(x) = S Pj
X J =k+1
Of course, the more natural way is, to allow amaximum error € and compute the
number of necessary stepsk , so that the following holds:

zR(k)(x) <g
X

The mathematical approach, indicated above, complements the empirical ap-
proach, which has been mainly pursued throughout this work. The future work con-
sists in uniting the both approaches and verifying the mathematical approach by
means of empirical results.

6.1.3 An optimum local MAXGAP parameter

6.1.3.1 Using different MAXGAP parameters

Up to now we have always used a global MAXGAP value for the whole database.
In this subsection, we want to talk about an intermediate and alocal approach for an
optimum MAXGAP parameter (cf. figure 70). In afirst step, we only allow different
MAXGAP parametersfor the different objectsin the database, but not for their corre-
sponding grey intervals, leading usto an intermediate approach. In asecond step, we
alow different parametersfor each grey interval, leading usto alocal approach.

Finding such optimal local or intermediate MAXGAP parameters, would certainly
reduce the response time of intersection queries.

One very important task is to define quality criterions for the local, intermediate
and global approach which for instance take into account the average density and the

level of different MAXGAP name of approach
parameters
database global approach
database object intermediate approach
grey interval local approach

Figure 70: Global, intermediate and local MAXGAP parameters

overall number of intervals. This criterion should help us to assess whether a frag-
mentation of an object into grey intervalsis good or not.

6.1.3.2 Bounding boxesfor grey intervals

Not only could we allow different MAXGAP parametersfor each grey interval, we
could also add bounding boxes to the grey intervals. These bounding boxes could
easily be integrated into the TAIS-structure which itself is a part of the upper- and
lowerIndexes of the XRange table. This approach, depicted in figure 71, might con-
tribute to an enormous reduction of the candidate pairsfor the second and third filter

step.

grey ipterval and bounding box from object A

grey interval and bounding box from object B

Figure 71: Bounding boxes for the grey intervals (2-dimensional)

Figure 71 illustrates that although the grey intervals of the objects A and B inter-
lace, the corresponding bounding boxes do not. In this example, we do not have to
test this pair of grey intervals in the expensive third filter step, but can exclude it
aready inthefirst or second step, whichis still only based on the upper- and lower -
Indexes.

Furthermore we could include progressive approximationsinto the TAI S-structure
(cf. subsection 1.4.2) in order to detect more hitsin the second filter step.

Thusthe detection of an optimum local MAXGAP parameter for each grey interval
should consider the bounding boxes as well as progressive approximations, as for
instance minimum bounding 5-corners and maximum enclosed rectangles
(cf. [BKKS 94]), in order to improve the efficiency of the second filter step.

6.1.4 Summary

In this section we presented alist of open problems. We do not claim that thislist
is exhaustive. It could be arbitrarily extended by topics like information retrieval or
general interval relationships! based on the X-Rl-tree. Furthermore, you could apply
the X-RlI-tree to object interval sequences, not stemming from CAD data, but from
temporal applications or any other area, where objects can be expressed by means of
interval sequences. Another interesting topic would be, to use other transformation
functions than Fy,axcap (Cf. figure 25) to group the black intervals together to grey
intervals.

A nice side-effect of our reflections about future work is, that we deepened our
understanding of the X-RI-tree, by comparing it to the S-RI-tree. Both trees use the
RI-tree index to some extent before switching to alinear scan.

L In addition to the intersection query predicate, there are 13 more fine-grained topological and direc-
tional relationships between intervals [Allen 83], which are of practical relevance, as a subset of them
has been introduced into the new SQL :1999 standard [Sno 00]. We do have to investigate, whether que-
ries based on these predicates are also efficiently supported by the X-RI-tree. The paper from Kriegel,
Potke and Seidl on “object relational indexing for general interval relationships’ [KPS 01b] could serve
as orientation.

6.2 Summary

In this master thesis, a new indexing method for object interval sequences was
presented, called X-RI-tree. The X-RI-treeisamulti step index, which isbased on the
RI-tree. To minimize the number of intervals for each object, we close small gaps,
with amaximum length of MAXGAP. Aswe do not want to loose any information, we
connect to each of these newly created grey intervals an attached interval sequence,
stored in aBLOB. This structure of the grey intervalsis reflected in the query pro-
cess, which is based on three major steps.

* Inafirst filter step, we usethe dightly modified RI-treeto determineall interlacing
pairs of grey database and query object intervals. These interval pairs are ordered
by database I D and avalue P, indicating how probabl e an intersection between the
two intervals might be.

* |n asecond step we perform the so called fast grey test to determine intersecting
intervals without examining the attached interval sequences. All necessary infor-
mation for thisstep is provided by thefirst filter step, so that no additional 1/0 ac-
CESSES are necessary.

 Finally, we carry out the expensive BLOB test, scrutinizing the attached interval
sequences.

The X-RI-tree has been implemented on top of an Oracle8i Server, exploiting its
extensibleindexing framework. The experimental evaluation of awell parameterized
X-RI-tree, compared to the optimized version of the RI-tree, can be summarized as
follows:

» Using the X-RI-tree improves the secondary storage behavior at |east by an order
of magnitude.

» Using the X-RI-tree dramatically reduces the session footprint.

» Using the X-RI-treeimprovesthe responsetime of collision queries by an order of
magnitude.

» Using the X-RI-treeimprovesthe response time of box queriesby an order of sev-
eral magnitudes, because the concept of grey intervalsis especially beneficia for
top-down dynamically created query objects.

List of Figuresand Tables

1 Introduction

[

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

© 00 NO Ol WDN

T i
N~No o~ wWwNRO

Digital mock-up (DMU) [IWB O1]o 1
Spatial querieson a Spatial Database System. 2
Examples of space-filling curvesin the two-dimensional case. 5
Conversion pipeline from triangulated surfaces to interval sequences. .. 5
Decomposition of aspatial object L 6
Recursive decomposition of a spatial object into an interval sequence .. 7
Multi-Step qUErY ProCESSING . . v v v vt vttt e 9
Conservative and progressive approximations 10
Four-color raster SIgnature.cov v 10
Polygonboundary test. i 11
ExampleforanRI-tree 13
SQL statement for interval intersectionqueries 14
Optimizationof theRI-tree. i 15
Final SQL statement for interval sequencequeries. 17
Highresolution CAD testdatasets., 18
The different parts of a grey interval with the correspondent filter steps 19
Storing one object interval sequenceinthe (X-)RI-tree............. 20

2 Storage of Spatial Objectsin an ORDBMS

Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Grey objectinterval sequence.t 26
Modelling of aSpatial Objecto 27
Storing the attached interval sequenceinaBLOB 30
Implementation of the ADT TIS. 33

Implementation oriented ADT TAIS. 34

Fig. 23
Fig. 24
Fig. 25

SQL statements to instantiate an (X-)RI-tree with secondary indexes . . 34
Fork node of aninterval inthevirtual backbone. 35
Transformation functionst e 37

3 Intersection of Spatial Objectsin an ORDBM S

Fig. 26
Tab. 1
Tab. 2
Tab. 3
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44

Interval interlacing and intersection 41
Intersection between an overlapping black and grey interval. 42
Intersection between two overlapping grey intervals 43
No intersection between two overlapping grey intervals. 43
Computation of P (first probability model)....................... 45
Computation of P (second probability model) 46
Algorithm for the computation of P (second probability model) 46
General Survey of theQuery Process viiiii it 48
Algorithm TestCandidates. 49
Ranking of thefirstfilterstepo 50
Structure of the transient table left- & rightNodes 51
Interval intersection query (firststeponly) 52
Final SQL statement of thefirstfilterstep 53
Structure of the candidate set for the second filter step SC2.......... 54
Procedure SecondFilterStep ... 54
Connection between second and thirdstep 56
Structureof Query Interval SQI 57
Structure of the candidate set of the third filter step SC3............ 58
Thirdfilterstep 58
IntersectionTesto 60
Accessing the attached interval sequences storedinaBLOB. 61
Optimization of the X-RI-tree.........o .. 64

4 Experimental Evaluation

Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54

BLOB @CCESS. . . .ttt it it 66
Transformed databases i 67
Gaphistogram 68
Interval length dependent on the MAXGAP parameter 69
Storage Requirementsfor the XRange-Table 70
Minimum and maximum length of interval. 71
Black intervals. 71
FOrk nodes.o 72
Height of the B+-directory of the upper- and lowerindex. 73
Responsetimeon collisionqueries., 74

Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61

Logical and physical disk @CCeSS.o v v i 75

Number of entriesinthetransienttables. 76
Tested candidate pairs of query and databaseintervals. 76
Candidate IDsandresult sets. 77
RespoNsetimeo 78
Box queries on the PLANE data (preparation and responsetime) 79
Box queries with different query and database MAXGAP parameters. . 80

5 Incorporation of Spatial Objectsin an ORDM S

Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66

Classification of datamodels. o i 82
Methods for extensible index definition and manipulation. 84
Object-relational DDL and DML statementsfor TOIS. 85
Indextype XRItree. 86
Creation of acustomindexonspatialdata 87

6 Conclusions

Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71

Determination of NSanL and NSanR, i.e. thetruncation level 92
Classification of self-adapting indexing (2-dimensional) 94
Algorithm for computing FMAXGAPo 97
Global, intermediate and local MAXGAP parameters 99
Bounding boxes for the grey intervals (2-dimensional) 99

List of Definitions

Def.1 (blackinterval)co i e e 24
Def.2 (blackinterval sequence) ... 24
Def. 3 (grey interval with an attached black interval sequence) 24
Def.4 (density of agreyinterval) ... 25
Def.5 (maximumgap parameter)cov vt 25
Def. 6 (characteristicaof adatabase) 38
Def. 7 (interval interlacing)t 40
Def. 8 (interval intersection)ot 40

List of Theorems

Theorem 1(density of agreyinterval), 26
Theorem 2(offset-oriented approach (storage))o oo i i 31
Theorem 3(bit-oriented approach versus offset-oriented approach (storage)). . .. 32
Theorem 4(bit-oriented approach (aCCESS)) . . . v v v v v et 61

Theorem 5(offset-oriented approach (acCess))ovvviii ... 62

List of Lessons

With awell parametrized X-RlI-tree you can improve the storage behavior at
least by an order of magnitude compared to the RI-tree.

LESS0N 2. o ottt e e e

With a well parametrized X-RI-tree you can improve the response time of
collision queries by an order of magnitude compared to the RI-tree.

With awell parametrized X-RI-tree you can dramatically reduce the session

footprint..

LESSON 4 . . oot e e

If the overall response time of the RI-treeis extremely high, we particularly
benefit from the X-Rl-tree.

Inthe case of dynamically created query objects, we particularly benefit from
the X-RI-tree compared to the RI-tree.

References

[Allen 83]

[BKK 99]

[BKSS90]

[BKSS94]

[BO 98]

[BO 99

[Bro 01]

[BSS199]

Allen J. F.: Maintaining Knowledge about Temporal Intervals. Commu-
nications ACM 26(11), 832-843, 1983.

Bohm C., Klump G., Kriegel H.-P.: XZ-Ordering: A Space-Filling
Curvefor Objectswith Spatial Extension. Proc. 6th Int. Symp. on Large
Spatia Databases, LNCS 1651, 75-90, 1999.

Beckmann N., Kriegel H.-P, Schneider R., Seeger B.: The R*-tree: An
Efficient and Robust Access Method for Points and Rectangles. Proc.
ACM SIGMOD Int. Conf. on Management of Data, 322-331, 1990.

Brinkhoff T., Kriegel H.-P.,, Schneider R., Seeger B.: Multi-Sep Pro-
cessing of Spatial Joins. Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, 197-208, 1994.

BozkayaT., Ozsoyoglu Z. M.: Indexing Valid Time Intervals. Proc. 9th
Int. Conf. on Database and Expert Systems Applications, LNCS 1460,
541-550, 1998.

BoulosJ., Ono K.: Cost Estimation of User-Defined Methodsin Object-
Relational Database Systems. ACM SIGMOD Record, 28(3), 22-28,
1999,

Brown P.: Object-Relational Database Development — A Plumber’s
Guide. Informix Press, Menlo Park, CA, 2001.

Blivjute R., Saltenis S., Slivinskas G., Jensen C.S.: Developing a Dat-
aBlade for a New Index. Proc. 15th Int. Conf. on Data Engineering
(ICDE), 314-323, 1999.

[CCF+ 99]

[CCN+ 99]

[CZ 01]

[Dat 99]

[Doh 98]

[Ede 80]

[FFS00]

[FIM 97]

[FR 89]

[Gae 95]

[GG 98]

[GR 94]

[Gut 84]

[Gitt 94]

ChenW.,, Chow J.-H., Fuh Y.-C., Grandbois J., Jou M., Mattos N., Tran
B., Wang Y.: High Level Indexing of User-Defined Types. Proc. 25th Int.
Conf. on Very Large Databases (VLDB), 554-564, 1999.

Carey M. J., ChamberlinD. D., Narayanan S., VanceB., DooleD., Rie-
lau S., Swagerman R., MattosN.: O-O, What Have They Doneto DB2?
Proc. 25th Int. Conf. on Very Large Databases (VLDB), 542-553, 1999.

Chaudhri A. B., Zicari R.: Succeeding with Object Databases. Wiley,
New York, NY, 2001.

DateC. J.: Anlntroductionto Database Systems. AddisonWes ey L ong-
man, Boston, MA, 1999.

Doherty C. G.: Database Systems Management and Oracle8. Proc.
ACM SIGMOD Int. Conf. on Management of Data, 510-511, 1998.

Edelsbrunner H.: Dynamic Rectangle Intersection Searching. Institute
for Information Processing Report 47, Technical University of Graz,
Austria, 1980.

Freytag J.-C., FlaszaM., Stillger M.: Implementing Geospatial Opera-
tions in an Object-Relational Database System. Proc. 12th SSDBM,
2000.

FaloutsosC., JagadishH. V., ManolopoulosY.: Analysisof then-Dimen-
sional Quadtree Decomposition for Arbitrary Hyperrectangles. IEEE
TKDE 9(3): 373-383, 1997.

Faloutsos C., Roseman S.: Fractals for Secondary Key Retrieval. Proc.
ACM Symposiumon Principlesof Database Systems (PODS), 247-252,
1989.

Gaede V.: Optimal Redundancy in Spatial Database Systems. Proc. 4th
Int. Symp. on Large Spatial Databases(SSD), LNCS 951, 96-116, 1995.

Gaede V., Gunther O.: Multidimensional Access Methods. ACM Com-
puting Surveys 30(2), 170-231, 1998.

GaedeV., Riekert W.-F.: Spatial Access Methodsand Query Processing
inthe Object-Oriented GISGODOT. Proc. AGDM Workshop, Geodetic
Commission, 1994.

Guttman A.: R-trees: A Dynamic Index Sructure for Spatial Searching.
Proc. ACM SIGMOD Int. Conf. on Management of Data, 47-57, 1984.

GutingR. H.: AnIntroductionto Spatial Database Systems. VL DB Jour-
nal , 3(4), 357-399, 1994.

[HJR 97]

[HS93]

[IBM 99]

[Inf 98]

[IWB 01]

[Jag 90]

[Jen 99]

[KHS91]

Huang Y.-W., Jones M.C., Rundensteiner E. A.. Improving Spatial
Intersect JoinsUsing Symbolic Intersect Detection. Proc. 5th Int. Symp.
on Large Spatial Databases (SSD), LNCS 1262, 165-177, 1997.
Hellerstein J., Stonebraker M.: Predicate Migration: Optimizing Que-
ries with Expensive Predicates. Proc. ACM SIGMOD Int. Conf. on
Management of Data, 267-276, 1993.

IBM Corp.: IBM DB2 Universal Database Application Devel opment
Guide, Version 6. Armonk, N, 1999.

Informix Software, Inc.: DataBlade DevelopersKit User’s Guide, Ver-
sion 3.4. Menlo Park, CA, 1998.

Digital Mock-up Process Simulation For Product Conception and
Downstream Processes (Brite-Euram Project BRPR-CT95-0066)
http://ww.iwb.tum.de/projekte/dmu-ps

Jagadish H. V.: Linear Clustering of Objects with Multiple Attributes.
Proc. ACM SIGMOD Int. Conf. on Management of Data, 332-342,
1990.

Jensen C. S.: Review - Multi-Step Processing of Spatial Joins. ACM
SIGMOD Digita Review 1, 1999.

Kriegel H.-P, Horn H., Schiwietz M.: The Performance of Object
Decomposition Techniquesfor Spatial Query Processing. Proc. 2nd Int.
Symp. on Large Spatia Databases (SSD), LNCS 525, 257-276, 1991.

[KMPS 014] Kriegel H.-P, Mdller A., Potke M., Seidl T.: DIVE: Database Integra-

tion for Virtual Engineering (Demo). Demo Proc. 17th Int. Conf. on
Data Engineering (ICDE), 15-16, 2001.

[KMPS 01b] Kriegel H.-P, Mller A., Ptke M., Seidl T.: Spatial Data Management

[Kor 99]

[KPS004]

[KPS00b]

[KPSO014]

for Computer Aided Design (Demo). Proc. ACM SIGMOD Int. Conf. on
Management of Data, 2001.

Kornacker M.: High-Performance Extensible Indexing. Proc. 25th Int.
Conf. on Very Large Databases (VLDB), 699-708, 1999.

Kriegel H.-P, Pdtke M., Seidl T.: Managing Intervals Efficiently in
Object-Relational Databases. Proc. 26th Int. Conf. on Very Large Data-
bases (VLDB), 407-418, 2000.

Kriegel H.-P, Potke M., Seidl T.: Relational Interval Tree. European
Patent Office, Patent Application No. 00112031.0, 2000.

Kriegel H.-P.,, P6tke M., Seidl T.: Interval Sequences. An Object-Rela-
tional Approach to Manage Spatial Data. Proc. 7th Int. Symposium on
Spatial and Temporal Databases (SSTD), LNCS, 2001.

[KPS01b]

[MH 99]

[MJFS 96]

[MTT 00]

[OM 88

[Ora99a)

[Ora99b]

[Ora99c]

[Ore89]

[P6t 01]

[PS93]

[Ram 97]

[RS99]

[Sam 904]

[Sam 900

Kriegel H.-P, Potke M., Seidl T.: Object-Relational Indexing for Gen-
eral Interval Relationships. Proc. 7th Int. Symposium on Spatial and
Temporal Databases (SSTD), LNCS, 2001.

Moller T., Haines E.: Real-Time Rendering. A K Peters, Natick, MA,
1999.

Moon B., Jagadish H. V., Faloutsos C., Saltz J. H.: Analysis of the Clus-
tering Propertiesof Hilbert Space-filling Curve. Techn. Report CS-TR-
3611, University of Maryland, 1996.

Manolopoulos Y., Theodoridis Y., Tsotras V. J.: Advanced Database
Indexing. Kluwer, Boston, MA, 2000.

Orenstein J. A., Manola F. A.: PROBE Spatial Data Modeling and
Query Processing in an Image Database Application. IEEE Trans. on
Software Engineering, 14(5): 611-629, 1988.

Oracle Corp.: Oracle8i Data Cartridge Developer’s Guide, Release 2
(8.1.6). Redwood Shores, CA, 1999.

Oracle Corp.: Oracle8i Object-Relational Features, Release 2 (8.1.6).
Redwood Shores, CA, 1999.

Oracle Corp.: Oracle Spatial User’'s Guide and Reference, 8.1.6. Red-
wood City, CA, 1999.

Orenstein J. A.: Redundancy in Spatial Databases. Proc. ACM SIG-
MOD Int. Conf. on Management of Data, 294-305, 1989.

Potke M.: Spatial Indexing for Object-Relational Databases, Ph.D.
Thesis, Faculty for Mathematics and Computer Science, University of
Munich, 2001.

Preparata F. P, Shamos M. |.: Computational Geometry: An Introduc-
tion. 5th ed., Springer, 1993.

Ramaswamy S.: Efficient Indexing for Constraint and Temporal Data-
bases. Proc. 6th Int. Conf. on Database Theory, LNCS 1186, 419-431,
1997.

Ravada S., Sharma J.: Oracle8i Spatial: Experiences with Extensible
Databases. Proc. 6th SSD, LNCS 1651, 355-359, 1999.

Samet H.: The Design and Analysis of Spatial Data Sructures. Addison
Wesley Longman, Boston, MA, 1990.

Samet H.: Applications of Spatial Data Sructures. Addison Wesley
Longman, Boston, MA, 1990.

[SB 98]

[SK 93]

[SMS+ 00]

[Sno 00]

[SOL 94]

[SQL 99]

[Sto 86]

[TCG+ 93]

[TH 81]

[2S 98]

Stonebraker M., Brown P.. Object-relational DBMSs — Tracking the
Next Great Wave. Morgan Kaufmann, San Francisco, CA, 1998.

SchiwietzM., Kriegel H.-P.: Query Processing of Spatial Objects: Com-
plexity versus Redundancy. Proc. 3rd Int. Symp. on Large Spatial Data-
bases (SSD), LNCS 692, 377-396, 1993.

Srinivasan J., Murthy R., SundaraS., Agarwal N., DeFazio S.: Extensi-
ble Indexing: A Framework for Integrating Domain-Specific Indexing
Schemes into Oracle8i. Proc. 16th Int. Conf. on Data Engineering
(ICDE), 91-100, 2000.

Snodgrass R. T.: Developing Time-Oriented Database Applicationsin
L. Morgan Kaufmann, San Francisco, CA, 2000.

Shen H., Ooi B. C., Lu H.: The TP-Index: A Dynamic and Efficient
Indexing Mechanism for Temporal Databases. Proc. 10th Int. Conf. on
DataEngineering (ICDE), 274-281, 1994.

American National Standards Institute: ANS/ISO/IEC 9075-1999
(SQL:1999, Parts 1-5). New York, NY, 1999.

Stonebraker M.: Inclusion of New Types in Relational Data Base Sys-
tems. Proc. 2nd Int. Conf. on DataEngineering (ICDE), 262-269, 1986.

Tansel A. U., Clifford J,, Gadia S., JgjodiaS., Segev A., Snodgrass R.:
Temporal Databases: Theory, Design and Implementation. Redwood
City, CA, 1993.

Tropf H., Herzog H.: Multidimensional Range Search in Dynamically
Balanced Trees. Angewandte Informatik, 81(2), 71-77, 1981

Zimbrao G., Moreirade Souza J.: A Raster Approximation for the Pro-
cessing of Spatial Joins. Proc. 24th Int. Conf. on Very Large Databases
(VLDB), 558-569, 1998.

