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Subspace Clustering

• In high-dimensional data, meaningful clusters are usually based only on
a subset of all dimensions.

• subspace/projected clustering: axis parallel subspaces (2d possibilities)
• arbitrarily oriented subspaces (infinite, uncountable possibilities)
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What are Correlation Clusters?

• The term “correlation cluster” highlights the opposite viewpoint on
finding arbitrarily oriented subspace clusters:
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(b) λ = 2

• The subspace orthogonal to the subspace, where the points cluster very
dense, appears as a (λ-dimensional) hyperplane accomodating many
data points with a high variance.

• This hyperplane indicates complex linear relationships among the
attributes contributing to a base of the hyperplane.
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Formalizing Correlation Clusters

• derive the local covariance matrix ΣC for cluster C (or for a
representative set, e.g. the local neighborhood of a point)

• decomposition (PCA) of ΣC to eigenvalues E and eigenvectors V
• most of the variance covered by small number of eigenvectors
• number of eigenvectors covering most of the variance is called

correlation dimensionality of a cluster C: λC

• eigenvectors #1 . . .#λC : strong eigenvectors
• eigenvectors #λC + 1 . . .#d : weak eigenvectors
• selection matrix for weak eigenvectors: Ê with entries êij ∈ {0, 1},

i, j = 1, . . . , d:

êij =

{
1 if i = j > λp

0 otherwise

• weak eigenvectors: V · Ê

1 Introduction 1 Correlation Clusters 5



Other Approaches

Several approaches to correlation clustering facilitate PCA to derive local
similarity measures.
• ORCLUS [Aggarwal, Yu (SIGMOD 2000)] incorporates PCA into a

k-means-like approach – drawback: user needs to specify number of
clusters in advance

• 4C [Böhm et al. (SIGMOD 2004)] integrates PCA into density-based
clustering – drawback: user needs to specify global density threshold

Both tend to find clusters of a dimensionality close to a user specified value,
instead of detecting all correlation clusters hidden in the data set.
• HiCO [Achtert et al. (SSDBM 2006)] uses hierarchical clustering to

find correlation clusters over a broad range of intrinsic dimensionalities
– drawbacks:

• very expensive procedure
• limited to strict hierarchies
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Complex Relationships

(a) Sample data set 1 (b) Sample data set 2

Figure: Simple (a) and complex (b) hierarchical relationships among correlation
clusters

• A simple hierarchy of correlation clusters is exemplified in Figure (a):
Two one-dimensional correlation clusters (lines) are embedded in a
two-dimensional correlation cluster (a plane).

• A complex hierarchical relationship is given by an intersection of
multiple correlation clusters (Figure (b)).
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Complex Relationships

(a) (b)

Figure: Results of HiCO on the data sets shown above.

• This embedding can be understood as “multiple inheritance” and, thus,
not as a “pure” hierarchy, but as a complex relationship.

• This kind of relationship among correlation clusters confuses a purely
hierarchical approach like HiCO.
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General Idea

• We would like to find all correlation clusters for all possible correlation
dimensions simultaneously.

• We would like to get information concerning relationships (embedding)
among correlation clusters of different correlation dimensionality.

• Three steps of algorithm ERiC (Exploring Relationships among
Correlation Clusters):

1 Partition the database objects according to their local correlation
dimensionality.

2 Perform a clustering procedure in each partition (flat clustering, but
including information concerning the correlation dimensionality).

3 Construct a relationship graph bottom up based on the information
gathered in step 2.
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Partitioning w.r.t. Correlation Dimensionality

• Basic Assumption: The local neighborhood (e.g. k-NN) of a point
(local correlation dimensionality) reflects the correlation dimensionality
of a cluster, the point may belong to.

• Thus, for the clustering procedure, we need for a point only to consider
those points with equal local correlation dimensionality.

• Having derived the local correlation dimensionality for each point, we
partition the database accordingly:

• A point p ∈ D with λp = i is assigned to a partition Di of the database
D.

• Result: A set of d disjoint subsets D1, . . . ,Dd of D (some may remain
empty).
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Gain of Partitioning the Database

By this preprocessing step, we yield several advantages:
• Each point gets assigned an appropriate local correlation

dimensionality in advance.
• The number n of data points to process in the following clustering step

for each partition is reduced to n
d on the average.

• The clustering procedure can assume all points in a given partition to
share a common correlation dimensionality (although not necessarily to
belong to a common cluster).
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Utilizing the Unified Local Correlation
Dimensionality
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• Each partition of the database can be treated independently in the
clustering step.

• For each point, we discern strong and weak eigenvectors.
• Strong eigenvectors span the hyperplane associated with a possible

correlation cluster containing the point.
• Weak eigenvectors are perpendicular to this hyperplane.
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Approximate Linear Dependency

• Comparing two points p, q, we know that λp ≤ λq (actually λp = λq).
• The strong eigenvectors of p are approximately linear dependent from

the strong eigenvectors of q, iff for all strong eigenvectors vi of p:√
vT

i · Vq · Êq · VT
q · vi ≤ ∆

vq1

2Δ

q

p
vq2

vp2
vp1

• Notation: SPAN(p) ⊆∆
aff SPAN(q)
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Affine Distance

• Two subspaces for the points p and q, λp ≤ λq, may be approximately
linear dependent (SPAN(p) ⊆∆

aff SPAN(q)) but nevertheless p is possibly
not in the subspace of q (p /∈ SPAN(q)).

• In this case, the subspaces are (approximately) parallel, but not
identical.

vq1
δ

q
vq2

p
vp2

vp1

• The distance between p and q along the weak eigenvectors of q discerns
parallel from identical subspaces:

DISTaff(p, q) =
√

(p − q)T · Vq · Êq · VT
q · (p − q)
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Correlation Distance

Combining approximate linear dependency and affine distance we yield as
correlation distance:

Definition
Let δ∈R+

0 , ∆∈ ]0, 1[ , p, q∈D, and w.l.o.g. λp ≤ λq. Then the correlation
distance CORRDIST δ

∆ between two points p, q ∈ D, denoted by
CORRDIST δ

∆(p, q), is defined as follows

CORRDIST δ
∆(p, q) =

 0 if SPAN(p) ⊆∆
aff SPAN(q)

∧ DISTaff(p, q) ≤ δ
1 otherwise

2 Algorithm ERiC 2 Computing Correlation Clusters within each Partition 15



Distance Measure for Clustering

• Obviously, the correlation distance is not symmetric:

vq1
δq

q
vq2

p
vp2

vp1
δp

• Symmetric distance:

dist(p, q) = max
(
CORRDIST δ

∆(p, q), CORRDIST δ
∆(q, p)

)
.

• Using this distance measure in DBSCAN [Ester et al. (KDD 1996)], we
get a set of clusters for each partition Di of the database D.
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Relationships between Clusters of Different
Correlation Dimensionality

• For aggregating the hierarchical relationships among clusters of
different correlation dimensionality, we can employ the definitions
above, since we do not need λp = λq, but only λp ≤ λq.

• Comparing clusters of different correlation dimensionality, λp < λq

holds.
• Each cluster Ci is described by its centroid xi and the set of strong and

weak eigenvectors for the centroid w.r.t. all cluster members as
neighborhood.
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Aggregation of Hierarchical Relationships

• Assuming the clusters being sorted in ascending order w.r.t. their
correlation dimensionality, we start with the first cluster Cm and check
for each cluster Cn with λn > λm whether

• SPAN(xm) ⊆∆
aff SPAN(xn) and

• DISTaff(xm, xn) ≤ δ

(i.e., CORRDIST δ
∆(xm, xn) = 0).

• If so, cluster Cn is treated as parent of cluster Cm, unless Cn is a parent of
any cluster Co that in turn is already a parent of Cm.
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Visualization of the Resulting Hierarchy

(a) Sample data set 2 (b)

Figure: Example dataset and hierarchical relationship among clusters
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Runtime Complexity

• Preprocessing:
• k-nearest neighbor query: O(n)
• Based on k-nearest neighbors: d × d covariance matrix: O(k · d2)
• Decomposition of covariance matrix (PCA): O(d3)

For all points: O(n2 + k · d2 · n) (since d << k)
• Second step (DBSCAN with correlation distance): O(d3 · n2

i )
(ni: number of points in partition i)
Assuming uniform distribution of the points over all possible
correlation dimensionalities: all partitions contain n

d points – for d
partitions the runtime reduces to O(d2 · n2).

• Aggregation considers all pairs of clusters: O(|C|2 · d3)
Due to |C| << n, the complexity is dominated by the second step:
O(n2 · d2)
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Scalability w.r.t. Dimensionality
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Scalability w.r.t. Size of the Data Set
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Scalability w.r.t. Number of Clusters

1

10

100

1000

10000

100000

20 30 40 50 60

number of correlation clusters

ru
nt

im
e 

[s
ec

]

ERiC
HiCO
4C
ORCLUS

3 Evaluation 1 Efficiency 23



Synthetic Example

(a) Data set DS1 (b) Clusters found by
ERiC

(c) Hierarchy generated by
ERiC

(d) Clusters found by 4C (e) Clusters found by OR-
CLUS

(f) Hierarchy generated by
HiCO

Figure: Comparative evaluation of different algorithms on 3D synthetic data set DS1.
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Wages Data Set

(a) Hierarchy generated by ERiC

cluster description
1 0 YE = 12, A = 22, YW = 4
1 1 YE = 12, A = 22, YW = 20
2 0 YE = 14, A = YW + 20
2 1 YE = 12, A = YW+18
2 2 YE = 16, A = YW + 22
2 3 YE = 13, A = YW+19
3 0 YE = A - YW - 6

(b) Contents of found clusters

Figure: Results of ERiC on the wages data set.
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Pendigits Data Set

Figure: Hierarchy generated by ERiC on pendigits data set.
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Conclusions

• Motivation: Search for complex hierarchies of correlation clusters
• Complex task, state-of-the-art approaches fail in many cases to detect

an appropriate clustering structure
• ERiC outperforms the competitors in terms of efficiency and effectivity
• Clear visualization of the cluster hierarchy
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Local Correlation Dimensionality

Definition
Let α ∈ ]0, 1[ , p ∈ D, and let Np denote the set of points in the local
neighborhood of p. Then the local correlation dimensionality λp of the point
p is the smallest number of eigenvalues ei in the eigenvalue matrix ENp

explaining a portion of at least α of the total variance, i.e.

λp = min
r∈{1,...,d}

{
r

∣∣∣∣∣
∑r

i=1 ei∑d
i=1 ei

≥ α

}
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Strong and Weak Eigenvectors

Definition
Let p ∈ D, λp be the local correlation dimensionality of p, and let Vp be the
corresponding eigenvectors of the point p based on the local neighborhood
Np of p. We call the first λp eigenvectors of Vp strong eigenvectors, the
remaining eigenvectors are called weak.
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Selection Matrix for Weak Eigenvectors

Definition
Let p ∈ D, λp be the local correlation dimensionality of p, and let Ep be the
corresponding eigenvectors and eigenvalues of the point p based on the local
neighborhood Np of p. The selection matrix Êp for weak eigenvectors with
entries êij ∈ {0, 1}, i, j = 1, . . . , d, is constructed according to the following
rule:

êij =

{
1 if i = j > λp

0 otherwise
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Approximate Linear Dependency

Definition
Let ∆ ∈ ]0, 1[ , p, q ∈ D, and w.l.o.g. λp ≤ λq. Then the strong eigenvectors
of p are approximately linear dependent from the strong eigenvectors of q if
the following condition holds for all strong eigenvectors vi of p:√

vT
i · Vq · Êq · VT

q · vi ≤ ∆

If the strong eigenvectors of p are approximately linear dependent from the
strong eigenvectors of q, we write

SPAN(p) ⊆∆
aff SPAN(q)
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Affine Distance

Definition
Let p, q ∈ D, w.l.o.g. λp ≤ λq, and SPAN(p) ⊆∆

aff SPAN(q). The affine
distance between p and q is given by

DISTaff(p, q) =
√

(p − q)T · Vq · Êq · VT
q · (p − q)
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Correlation Distance

Definition
Let δ∈R+

0 , ∆∈ ]0, 1[ , p, q∈D, and w.l.o.g. λp ≤ λq. Then the correlation
distance CORRDIST δ

∆ between two points p, q ∈ D, denoted by
CORRDIST δ

∆(p, q), is defined as follows

CORRDIST δ
∆(p, q) =

 0 if SPAN(p) ⊆∆
aff SPAN(q)

∧ DISTaff(p, q) ≤ δ
1 otherwise
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