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Abstract

Correlation clustering aims at the detection of data
points that appear as hyperplanes in the data space
and, thus, exhibit common correlations between differ-
ent subsets of features. Recently proposed methods for
correlation clustering usually suffer from several severe
drawbacks including poor robustness against noise or
parameter settings, incomplete results (i.e. missed clus-
ters), poor usability due to complex input parameters,
and poor scalability. In this paper, we propose the novel
correlation clustering algorithm COPAC (COrrelation
PArtition Clustering) that aims at improved robustness,
completeness, usability, and efficiency. Our experimen-
tal evaluation empirically shows that COPAC is supe-
rior over existing state-of-the-art correlation clustering
methods in terms of runtime, accuracy, and complete-
ness of the results.

1 Introduction
Correlation clusters [5] appear as lines, planes, or, gen-
erally speaking, hyperplanes of arbitrary dimensional-
ity di < d in the data space, exhibiting a relatively
high density of data points compared to the surrounding
space. Correlation clustering algorithms group the data
sets into subsets called correlation clusters such that the
objects in the same correlation cluster are all associated
to the same hyperplane of arbitrary dimensionality. For
sake of brevity, if we have a correlation cluster associ-
ated to a λ-dimensional hyperplane, we will speak of a
λ-dimensional correlation cluster. We will refer to the
dimensionality of a hyperplane associated to a correla-
tion cluster as correlation dimensionality. Of course, in
applying correlation clustering one must be aware that,
although linear correlation among features may indicate
linear dependencies, the detected correlations can also
be caused by features not comprised in the data set or
they may even occur coincidentally.
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Algorithms for correlation clustering integrate the
concepts of clustering and correlation detection in a
sophisticated way. The first approach that is exclusively
designed to detect correlation clusters is ORCLUS [2]
that integrates PCA into k-means clustering. The
algorithm 4C [5] that integrates PCA into a density-
based clustering algorithm shows superior effectivity
over ORCLUS.

However, existing correlation clustering methods
have several severe problems. The most important prob-
lem is that the correlation dimensionality of the de-
tected correlation clusters heavily depends on a user-
defined input parameter. ORCLUS generates results
such that the correlation dimensionality of the respec-
tive correlation clusters corresponds to a user-provided
parameter l. 4C limits the correlation dimension of the
detected correlation clusters to the user-defined param-
eter λ. In fact, 4C tends to uncover correlation clusters
of a correlation dimensionality that is rather near to λ.
As a consequence, both methods may produce incom-
plete results, i.e. both are not able to find all correlation
clusters of different correlation dimensionality during a
single run, especially if the correlation dimensionalities
of different correlation clusters vary considerably. A sec-
ond drawback related to the first problem is the poor
usability of the exsiting methods because they require
the user to specify parameters that are usually hard to
determine, e.g. the number of clusters, or the “thick-
ness” of the correlation hyperplane. Further limitations
of existing work include a weak robustness against noisy
data and a poor scalability for large databases.

The most straightforward possibility to overcome
the first limitation is to apply one of the existing algo-
rithms multiple times (in fact O(d) times, where d is the
dimensionality of the feature space). Obviously, this is
not a reasonable solution due to the considerable high
computational cost for one single run. In this paper,
we propose the novel correlation clustering algorithm
COPAC (COrrelation PArtition Clustering) that simul-
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taneously searches for correlation clusters of arbitrary
dimensionality. Let us point out that COPAC does not
require the user to specify the number of clusters or any
parameter regarding the correlation dimensionality be-
forehand. In order to further enhance the usability of
COPAC, we will discuss the effect of the input param-
eters of COPAC. In addition, our experimental evalu-
ation shows that COPAC is superior to ORCLUS and
4C in terms of runtime and produces significantly more
accurate and complete results.

2 Related Work

A correlation cluster is a set of points where one or
more features depend on other features or a (linear)
combination of several features. As discussed above,
most traditional clustering algorithms are not designed
to detect correlation clusters.

Existing correlation clustering algorithms are usu-
ally partitioning-based (e.g. the k-means style ORCLUS
[2], CURLER [14] and DIC [7]) or density-based (e.g.
4C [5]). However, the methods of both clustering
paradigms suffer from (i) weak robustness (i.e. high sen-
sitivity against noise and parameter settings), (ii) in-
completeness (i.e. important clusters may be missed),
(iii) poor usability (i.e. the input parameters are hard
to determine), and (iv) bad efficiency (i.e. high run-
times w.r.t. database size and dimensionality). In this
paper, we propose COPAC to overcome these problems
by improved robustness, completeness, usability, and ef-
ficiency.

Subspace clustering algorithms that detect clusters
in axis parallel projections of the original data set
[3, 1, 12, 8, 4] are not able to capture local data
correlations and find clusters of correlated objects since
the principal axes of correlated data are arbitrarily
oriented.

Pattern-based clustering algorithms [16, 15, 9, 11]
limit themselves to a very special form of correlation
where all attributes are positively correlated. Negative
correlations or correlations where one attribute is de-
termined by two or more other attributes cannot be
detected.

3 COPAC

The general idea of COPAC is as follows: We assign
a local correlation dimensionality to each object of the
database representing the dimensionality of the corre-
lation cluster this point fits in best. We partition the
database objects according to their local correlation di-
mensionality in a first step. Database objects of differ-
ent local correlation dimensionality can obviously not
form a common correlation cluster. Therefore, in a sec-
ond step, we apply a novel correlation clustering algo-

rithm to each of the partitions in order to compute cor-
relation clusters of different correlation dimensionalities.
In the following, we describe both steps in more detail.
Thereby, we assume D to be a database of n feature
vectors in a d-dimensional feature space, i.e. D ⊆ R

d.

3.1 Local Correlation Partitioning In general,
one way to formalize the concept of correlation clusters
is to use PCA. Formally, let C be a correlation cluster,
i.e. C ⊆ D, and X̄ denote the centroid of all points in C.
The d × d covariance matrix ΣC of C is defined as:

ΣC =
1
|C| ·

∑
X∈C

(X − X̄) · (X − X̄)T.

Since the covariance matrix ΣC of C is a positive semi-
definite square matrix, it can be decomposed into the
Eigenvalue matrix EC of ΣC and the Eigenvector matrix
VC of ΣC such that ΣC = VC ·EC ·VT

C . The Eigenvalue
matrix EC is a diagonal matrix storing the d non-
negative Eigenvalues of ΣC in decreasing order. The
Eigenvector matrix VC is an orthonormal matrix with
the corresponding d Eigenvectors of ΣC .

The correlation dimensionality of C is the number of
dimensions of the (arbitrarily oriented) subspace which
is spanned by the major axes in VC . If, for instance,
the points in C are located near by a common line, the
correlation dimensionality of C will be 1. One basic
idea is to assign a local correlation dimensionality to all
points in C. This local correlation dimensionality of the
points in C should be equal to the correlation dimension-
ality in C. In the first step of COPAC we partition the
objects of the database according to their local correla-
tion dimensionality. The task is to determine the local
correlation dimensionality for all points p ∈ D before
computing the correlation clusters. In fact, we assume
that the cluster in which any P ∈ D fits best can be
observed from the local neighborhood of P . Thus, we
compute the local correlation dimensionality of P from
the k-nearest neighbors of P , denoted by NP .

Definition 1. (local correlation dimensionality)
Let α ∈ ]0, 1[ , P ∈ D, and NP denote the set of k-
nearest neighbors of P . Then the local correlation
dimensionality λP of the point P is the smallest num-
ber of Eigenvalues ei in the Eigenvalue matrix ENP

explaining a portion of at least α of the total variance,
i.e.

λP = min
r∈{1,...,d}

{
r

∣∣∣∣∣
∑r

i=1 ei∑d
i=1 ei

≥ α

}

Let us note that ENP is the Eigenvalue matrix of
ΣNP which is the covariance matrix of NP . Typically,
values for α are chosen between 0.8 and 0.9. For



example, α = 0.85 denotes that the obtained principal
components explain 85% of the total variance.

Based on Definition 1, the first step of COPAC par-
titions the database objects according to their local cor-
relation dimensionality. All points P sharing a common
local correlation dimensionality λP are assigned to a
partition DλP of the database D. This results in a set
of d disjoint subsets D1, . . . ,Dd of D, where Di con-
tains all points exhibiting a correlation dimensionality
of i. Of course, some partitions may remain empty. In
terms of correlation clustering, Dd contains only noise,
because if λP = d, then there is no linear dependency
of features found among the neighbors of P .

Let us note that by means of this first step of CO-
PAC one does not only yield an appropriate correlation
dimensionality for each point in advance, but presum-
ably also a considerable reduction of the number of data
points n, that are to be processed by each single run of a
correlation clustering algorithm, on average n

d . In fact,
COPAC processes each data object only once during the
second step when determining the correlation clusters.

3.2 Determination of Correlation Clusters
Once we have partitioned the database objects into par-
titions D1, . . . , Dd according to their local correlation
dimensionality in D, we can extract the correlation clus-
ters from each of the partitions. Since each point P ∈ D
can only be part of a correlation cluster of dimensional-
ity λP , we can run the correlation cluster extraction on
each partition D1, . . . ,Dd−1 separately. As discussed
above, the points in Dd are noise because there is no
linear dependency among a set of features in the local
neighborhood of these points. In the following, λC de-
notes the correlation dimensionality of cluster C. Note
that the number of attributes actually involved in linear
dependencies within cluster C is not λC , but d − λC .

To detect the correlation clusters in a given parti-
tion Di, we propose to use a method which is similar to
4C but extends this algorithm in two aspects: First, in
contrast to 4C (and also to ORCLUS), we can restrict
our method to find only correlation clusters of a given
correlation dimensionality, because the points in Di can
only be part of a correlation cluster with correlation di-
mensionality i. Second, 4C limits itself to “connected”
correlation clusters, i.e. points that share a common hy-
perplane but are located significantly far apart are not
assigned to the same cluster. Our method overcomes
this limitation.

For clustering we need to define a distance measure
that assesses the distance between two given points
evaluating how well they share a common hyperplane.
The Euclidean distance between the respective points
is assessed only to measure the deviation orthogonal

to the common hyperplane. To yield such a distance
measure we first define a distance between two points
with respect to one of the points. This distance is based
on a distance matrix for each point P that is derived
by an adaptation of the Eigenvalues of the covariance
matrix of the local neighborhood of P :

Definition 2. (correlation distance matrix)
Let P ∈ D, λP the local correlation dimensionality
of P , and VP , EP the corresponding Eigenvectors
and Eigenvalues of the point P based on the local
neighborhood of P , i.e. NP . An adapted Eigenvalue
matrix ÊP with entries êi ∈ {0, 1}, (i = 1, . . . , d) is
derived according to the following rule:

êi =
{

0 if i ≤ λP

1 if i > λP

The matrix M̂P = VP ÊP VT
P is called the correlation

distance matrix of P .

Using the correlation distance matrix of P one
can easily derive a distance measure that assesses the
distance between P and another point Q w.r.t. P :

Definition 3. (correlation distance measure)
Let P, Q ∈ D. The correlation distance measure
between P and Q w.r.t. point P is given by:

cdistP (P, Q) =
√

(P − Q) · M̂P · (P − Q)T.

Basically, the correlation distance measure w.r.t. a
point P is a weighted distance where the weights are
based on the local neighborhood of P . The weights are
constructed to take into account only distances along
the Eigenvectors that correspond to small Eigenvalues,
while distances along the λP first Eigenvectors of NP

are neglected. Thus, assessing the distance between P
and Q using the correlation distance measure of P will
in general not yield the same result as using the cor-
relation distance measure w.r.t. Q, i.e. cdistP (P, Q) �=
cdistQ(Q, P ). Therefore, given the correlation distance
measures for both points, P and Q, we define a distance
function (i.e. a distance measure that fulfills symmetry
and reflexivity) as follows:

Definition 4. (correlation distance)
Let P, Q ∈ D. The correlation distance between P and

Q is given by:

cdist(P, Q) = max {cdistP (P, Q), cdistQ(Q, P )}
Having defined a suitable distance function for cor-

relation clustering, we can now integrate these con-
cepts into GDBSCAN [13] which is a generalization of



the well-known DBSCAN clustering algorithm [6]. For
that purpose, we need to define a generalized neighbor-
hood of an object O, denoted by NNPred(O), given by
NNPred(O) = {P |NPred(O, P )}, where NPred(O, P ) is
a predicate on O and P that has to be reflexive and sym-
metric. In addition, to decide whether or not object
O is inside a cluster (core point), a generalized mini-
mum weight of NNPred(O) must be defined, denoted by
MinWeight(NNPred(O)).

Intuitively, we define the predicate NPred(P, Q)
analogously to the ε-neighborhood, using the correlation
distance from Definition 4.

Definition 5. (neighborhood predicate)
Let P, Q ∈ D and ε ∈ R

+. The neighborhood predicate
of P and Q is given by: NPred(P, Q) ⇔ cdist(P, Q) ≤
ε.

The neighborhood predicate NPred(P, Q) is reflex-
ive and symmetric, since it is based on the reflexive and
symmetric correlation distance as defined in Def. 4.

The second issue is to define the minimum weight
MinWeight on the neighborhood. Intuitively, if Min-
Weight of the neighborhood of a point P is true, P is
considered as core point by the run of GDBSCAN. Anal-
ogously to traditional clustering, we require that a point
P finds at least µ points in its ε-neighborhood using the
correlation distance as distance function.

Definition 6. (minimum weight)
Let NNPred(P ) be the neighborhood of P based on the

neighborhood predicate as defined in Definition 5 and
µ ∈ N

+. The minimum weight of NNPred (P ) such that
P ∈ D is a core point is given by:

MinWeight (NNPred(P )) ⇔ |NNPred(P )| ≥ µ.

In summary, COPAC partitions the database points
according to their local correlation dimensionality in
step 1 and applies GDBSCAN with NPred and Min-
Weight as defined in Definitions 5 and 6, respectively,
to each partition separately in step 2.

3.3 Parameter Estimation. COPAC has three in-
put parameters. The parameter k ∈ N

+ specifies the
number of points considered to compute the neighbor-
hood NP of a point P ∈ D. From this neighborhood,
the d × d covariance matrix ΣP and, thus, the correla-
tion dimensionality λP of P is computed. As discussed
above, k should not be too small in order to produce a
stable covariance matrix. On the other hand, it should
not be too high in order to reflect only the local cor-
relation. Otherwise, noise points could also destabilize
the correlation matrix and. It turned out that setting
k = 3 · d was robust in all our tests throughout all our
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Figure 1: Runtime vs. data dimensionality.
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Figure 2: Runtime vs. data set size.

experiments. In general, setting 3 · d ≤ k seems to be a
reasonable suggestion. The parameter µ ∈ N

+ specifies
the minimum number of points in a cluster and, there-
fore, is quite intuitive. Obviously, µ ≤ k should hold.
The parameter ε ∈ R

+ is used to specify the neighbor-
hood predicate and can be choosen as proposed in [6]
and [13]. Let us note that we have in fact a fourth pa-
rameter α to compute the correlation dimensionality λP

of a point P ∈ D. As discussed above, this parameter is
very robust in the range between 0.8 ≤ α ≤ 0.9. Thus,
we choose α = 0.85 throughout all our experiments.

4 Evaluation
4.1 Efficiency In our first experiment we compared
the runtime of COPAC, 4C, and ORCLUS w.r.t. the
dimensionality d of the data set. To achieve a fair
comparison, the parameters for all competitors were
choosen such that the quality of the resulting clusterings
was optimized. As it can be seen in Fig. 1, COPAC gains
a significant speed-up over ORCLUS and 4C (note the
logarithmic scale of the runtime).

In our second experiment we evaluated the impact
of the size of the data set on the runtime of COPAC, 4C,
and ORCLUS. Again the parameters for all competitors
were set in order to yield the best clustering. Figure 2
illustrates the runtime of COPAC, 4C, and ORCLUS
w.r.t. the data set size. Again, COPAC clearly outper-
forms ORCLUS and 4C in terms of efficiency.



Table 1: COPAC clustering on breast cancer data.
c ID λ # B # M

1 2 108 0
2 3 12 0
3 4 100 0
4 5 46 0

c ID λ # B # M

5 5 0 113
6 6 0 126

noise 50 2

4.2 Robustness, Completeness, and Usability
To demonstrate the robustness, completeness, and us-
ability of COPAC in comparison to ORCLUS and 4C,
we synthesized a data set D ∈ R

3 with two clusters of
correlation dimensionality 2, three clusters of correla-
tion dimensionality 1, and some points of noise. The
data set is depicted in Fig. 3(a). The clusters partially
intersect making the separation of the clusters a highly
complex task.

The predefined clusters in the synthetic data set
have been separated clearly by COPAC (cf. Fig. 3).
The parameters were choosen as suggested above, in
particular µ = 50, k = 50, and ε = 0.004. Neither
ORCLUS nor 4C were able to find the clusters equally
well, although we test a broad range of parameter
settings. Best results for ORCLUS were reported
setting l = 2 and k = 5 (cf. Fig. 4). For 4C we found the
best results with ε = 0.1, µ = 50, λ = 2, and δ = 0.25
(cf. Fig. 4).

In summary, COPAC shows better robustness
against noise and parameter settings than ORCLUS and
4C. Due to the suggestions presented above, the param-
eter choice for COPAC was very easy and results in a
complete detection of clusters. For both ORCLUS and
4C, we needed several runs with different parameters
in order to produce the best but still not optimal (i.e.
complete) results.

4.3 Results on Real-world Data

Wisconsin Breast Cancer data. The Wisconsin
Breast Cancer database [10] consists of 699 patients
suffering from two types of breast cancer, benign (“B”)
and malignant (“M”). Each patient is represented by
a 9-dimensional vector of specific biomedical features.
COPAC detected six pure correlation clusters in this
data set, the results are summarized in Table 1.
Gene expression data. This data set was donated
by our project partners studying apoptosis (a geneti-
cally controlled pathway of cell death) in human tu-
mor cells. The data set contains the expression level
of 4610 genes at five different time slots after initiating
the apoptosis pathway. COPAC found two different, bi-
ologically relevant clusters of functionally related genes
(cf. Table 2). The first cluster contains negatively corre-

Table 2: COPAC clustering on expression data.
cID sample gene names description

1 NDUFB10, MTRF1, TIMM17A, proteins located

CPS1, NM44, COX10, FIBP, in and/or related

TRAP1, MTERF, HK1, HADHA, to mitochondrial

ASAH2, CPS1, CA5A, BNI3PL, membran

TOM34, ME2

2 TNFRSF6, TNFRSF11A, proteins related

TNFRSF7, TNFRSF1B, to tumor necrosis

TNFRSF5, TNFRSF1A, TRAF5, factor (TNF)

TRAF2, TNFSF12

IL1A, IL1B, IL2, IL6, IL10, IL18, interleukins or

IL24, IL1RN, IL2RG, IL4R, IL6R, their receptors

IL7R, IL10RA, IL10RB, IL12A, activating

IL12RB2, IL15RA, IL22R immune response

lated genes related to the mitochondrion, especially to
the mitochondrion membrane indicating that the vol-
ume of the energy metabolism (which is located in mi-
tochondria) is decreasing during cell death. The second
cluster that contains several genes that are related to
the tumor necrosis factor (TNF) and several interleukin
and interleukin receptor genes. Interleukins play a key
role in the human immune system, especially in cancer
response. The strong negative correlation indicates the
response of the cells to necrosis again with decreasing
activity while cell death proceeds.

5 Conclusions

In this paper, we have proposed COPAC, a novel al-
gorithm for correlation clustering that does not require
any presumptions concerning e.g. the number of clusters
or their dimensionality. The complete cluster informa-
tion is retrieved by one single run of COPAC, while
other algorithms usually need several runs to detect all
clusters. The superiority of COPAC has been shown
both theoretically as well as experimentally: COPAC
clearly outperforms ORCLUS and 4C in terms of ro-
bustness, completeness, usability, and effectivity on syn-
thetic and real world data sets.
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Computing clusters of correlation connected objects.
In Proc. SIGMOD, 2004.

[6] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Proc. KDD, 1996.

[7] A. Gionis, A. Hinneburg, S. Papadimitriou, and
P. Tsaparas. Dimension induced clustering. In Proc.
KDD, 2005.

[8] K. Kailing, H.-P. Kriegel, and P. Kröger. Density-
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