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ABSTRACT

Though subspace clustering, ensemble clustering, alterna-
tive clustering, and multiview clustering are different ap-
proaches motivated by different problems and aiming at dif-
ferent goals, there are similar problems in these fields. Here
we shortly survey these areas from the point of view of sub-
space clustering. Based on this survey, we try to identify
problems where the different research areas could probably
learn from each other.

1. INTRODUCTION

Clustering is the problem of finding a set of groups of simi-
lar objects within a data set while keeping dissimilar objects
separated in different groups or the group of noise. Two
major issues can be distinguished in the clustering problem
in general, namely (i) the adopted paradigm and algorith-
mic approach to clustering and (ii) the definition and as-
sessment of similarity vs. dissimilarity. Although clustering
in general is a rather dignified data mining task, different
specialized techniques to enhance clustering solutions have
been recently brought forward in the literature. Here we
shortly survey the techniques named ensemble clustering,
alternative clustering, multiview clustering, and subspace
clustering. Each of these techniques has been developed
with different motivations yet there are striking similarities.
However, there are also — plain as well as subtle — dif-
ferences. In this contribution, we want to shed only some
light on these differences and similarities by highlighting the
problems occurring in several of these areas. It is our hope
that we can trigger discussion among researchers active in
these different areas. Although these areas aim at different
goals, researchers may learn from each other how to treat
similar problems.

As we are active in research on subspace clustering [32] yet
only observing so far research on ensemble clustering, alter-
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native clustering, or multiview clustering, we try to survey
these fields of research mainly from the point of view of sub-
space clustering. In the following, we first give an overview
of the problems and basic solutions of subspace clustering
(Section 2). Afterwards we discuss ensemble clustering ap-
proaches (Section 3) and touch alternative clustering (Sec-
tion 4) and multiview clustering (Section 5). Finally (Sec-
tion 6), we collect questions in these areas where answers
from other areas may be helpful in improving the field. Let
us emphasize, however, that we do not aim at solving all
the open questions or at unifying different research areas
but just hope to inspire discussion between different research
areas.

2. SUBSPACE CLUSTERING

Subspace clustering refers to the task of identifying clus-
ters of similar vectors where the similarity is defined w.r.t. a
subspace of the data space. The subspace is not necessarily
(and actually is usually not) the same for different clusters
within one clustering solution. The key-issue in subspace
clustering is the definition of similarity taking into account
only certain subspaces. Different weighting, different selec-
tions, or different combinations of attributes of a data set are
equivalent to defining or deriving different subspaces where
the desired properties of a model of similarity suitable to a
given application domain may be expressed appropriately.
Which subspaces are important for the similarity measure is
to be learned during the clustering process, since for different
clusters within one and the same clustering solution usually
different subspaces are relevant. Hence subspace clustering
algorithms cannot be thought of as usual clustering algo-
rithms using just a different definition of similarity but the
similarity measure and the clustering solution are derived
simultaneously and depend on each other.

In [33], a short theoretical overview is provided on this topic.
In [32], the problem is discussed in depth, also differentiating
several subproblems and surveying a number of example al-
gorithms. Although there is a wide variety of task definitions
for clustering in subspaces, the term “subspace clustering”
in a narrower sense does also relate to a special category
of clustering algorithms in axis-parallel subspaces. Another
family of clustering in axis-parallel subspaces is called “pro-
jected clustering”. Recent experimental evaluation studies
covered some selections of these specific subtypes of sub-
space clustering [38, 40] and these subtypes may be the most



interesting ones for considering relationships with the other
research areas discussed in this survey.

Clustering in axis-parallel subspaces is based on the distinc-
tion between relevant and irrelevant attributes. This distinc-
tion generally assumes that the variance of attribute values
for a relevant attribute over all points of the corresponding
cluster is rather small compared to the overall range of at-
tribute values whereas the variance for irrelevant attributes
within a given cluster is high or indistinguishable from the
values of the same attribute for other clusters. For exam-
ple, one could assume a relevant attribute for a given cluster
being normally distributed with a small standard deviation
whereas irrelevant attribute values are uniformly distributed
over the complete data space. The geometrical intuition of
these assumptions relates to the points of a cluster being
widely scattered in the direction of irrelevant axes while be-
ing densely clustered along relevant attributes. When select-
ing the relevant attributes only, the cluster would appear as
a full-dimensional cluster, while in the full dimensional space
(including also the irrelevant attributes) the cluster points
form a hyperplane parallel to the irrelevant axes. Due to this
geometrical appearance, this type of cluster is addressed as
“axis-parallel subspace cluster”.

Since the number of possible axis-parallel subspaces where
clusters could reside is exponential in the dimensionality of
the data space, the main task of research in the field was
the development of appropriate subspace search heuristics.
Starting from the pioneering approaches to axis-parallel sub-
space clustering, there have been pursued two opposite ba-
sic techniques for searching subspaces, namely (a) top-down
search [1] and (b) bottom-up search [2].

(a) The rational of top-down approaches is to determine
the subspace of a cluster starting from the full dimen-
sional space. This is usually done by determining a
subset of attributes for a given set of points — poten-
tial cluster members — such that the points meet the
given cluster criterion when projected onto the corre-
sponding subspace. Obviously the dilemma is that for
the determination of the subspace of a cluster at least
some cluster members must be identified. On the other
hand, in order to determine cluster memberships, the
subspace of each cluster must be known. To escape
from this circular dependency, most of the top-down
approaches rely on a rather strict assumption, which
has been called the locality assumption [32]. It is as-
sumed that the subspace of a cluster can be derived
from the local neighborhood (in the full dimensional
data space) of the cluster center or the cluster mem-
bers. In other words, it is assumed that even in the
full dimensional space, the subspace of each cluster
can be learned from the local neighborhood of cluster
representatives or cluster members. Other top-down
approaches that do not rely on the locality assump-
tion use random sampling as a heuristic in order to
generate a set of potential cluster members.

(b) For a bottom-up search, the exponential search space
of all possible subspaces of a data space that needs to
be traversed is seen as being equivalent to the search
space of the frequent item set problem in analysis of

market baskets in transaction databases [3]. Each at-
tribute represents an item and each subspace clus-
ter is a transaction of the items representing the at-
tributes that span the corresponding subspace. Find-
ing item sets with frequency 1 then relates to finding
all combinations of attributes that constitute a sub-
space containing at least one cluster. This observation
is the rational of most bottom-up subspace clustering
approaches. The subspaces that contain clusters are
determined starting from all 1-dimensional subspaces
that accommodate at least one cluster by employing a
search strategy similar to frequent itemset mining al-
gorithms. To apply any efficient frequent itemset min-
ing algorithm, the cluster criterion must implement a
downward closure property (also called monotonicity
property): If subspace S contains a cluster, then any
subspace T' C S must also contain a cluster. The anti-
monotonic reverse implication, if a subspace T does
not contain a cluster, then any superspace S 2 T also
cannot contain a cluster, can be used for pruning, i.e.
excluding specific subspaces from consideration. Let
us note that there are bottom-up algorithms that do
not use an APRIORI-like subspace search but instead
apply other search heuristics.

Subspace clustering in a narrower sense pursues the goal to
find all clusters in all subspaces of the entire feature space.
This goal obviously is defined to correspond to the bottom-
up technique used by these approaches, based on some anti-
monotonic property of clusters allowing the application of
the APRIORI search heuristic. The pioneer approach for
finding all clusters in all subspaces coining the term “sub-
space clustering” for this specific task has been CLIQUE [2].
Variants include [11, 41, 31, 4, 37, 5, 39, 35]. Since the
initial problem formulation of finding “all clusters in all sub-
spaces” is rather questionable since the information gained
by retrieving such a huge set of clusters with high redun-
dancy is not very useful, subsequent methods often concen-
trated on possibilities of concisely restricting the result set of
clusters by somehow assessing and reducing the redundancy
of clusters, for example to keep only clusters of highest di-
mensionality. It also should be noted that the statistical
significance of subspace clusters (as defined in [37]), is not
an anti-monotonic property and hence does in general not
allow for APRIORI-like bottom-up approaches finding only
meaningful clusters.

3. ENSEMBLE CLUSTERING

In the area of supervised learning, combining several self-
contained predicting algorithms to an ensemble to yield a
better performance in terms of accuracy than any of the base
predictors, is backed by a sound theoretical background[16,
17, 47]. In short, a predictive algorithm can suffer from sev-
eral limitations such as statistical variance, computational
variance, and a strong bias. Statistical variance describes
the phenomenon that different prediction models result in
equally good performance on training data. Choosing ar-
bitrarily one of the models can then result in deteriorated
performance on new data. Voting among equally good clas-
sifiers can reduce this risk. Computational variance refers to
the fact, that computing the truly optimal model is usually
intractable and hence any classifier tries to overcome com-



putational restrictions by some heuristics. These heuristics,
in turn, can lead to local optima in the training phase. Ob-
viously, trying several times reduces the risk of choosing the
wrong local optimum. A restriction of the space of hypothe-
ses a predictive algorithm may create is referred to as bias
of the algorithm. Usually, the bias allows for learning an
abstraction and is, thus, a necessary condition of learning a
hypothesis instead of learning by heart the examples of the
training data (the latter resulting in random performance
on new data). However, a strong bias may also hinder the
representation of a good model of the true laws of nature
one would like to learn. A weighted sum of hypotheses may
then expand the space of possible models.

To improve over several self-contained classifiers by building
an ensemble of those classifiers requires the base algorithms
being accurate (i.e., at least better than random) and di-
verse (i.e., making different errors on new instances). It
is easy to understand why these two conditions are neces-
sary and also sufficient. If several individual classifiers are
not diverse, then all of them will be wrong whenever one
of them is wrong. Thus nothing is gained by voting over
wrong predictions. On the other hand, if the errors made
by the classifiers were uncorrelated, more individual clas-
sifiers may be correct while some individual classifiers are
wrong. Therefore, a majority vote by an ensemble of these
classifiers may be also correct. More formally, suppose an
ensemble consisting of k£ hypotheses, and the error rate of
each hypothesis is equal to a certain p < 0.5 (assuming a di-
chotomous problem), though errors occur independently in
different hypotheses. The ensemble will be wrong, if more
than k/2 of the ensemble members are wrong. Thus the
overall error rate p of the ensemble is given by the area un-
der the binomial distribution, where k > [k/2], that is for
at least [k/2] hypotheses being wrong:

k AN .
pkp)= <i>pz(1—p)k_’

i=[k/2]

The overall error-rate is rapidly decreasing for an increasing
number of ensemble members.

In the unsupervised task of clustering, the theory for build-
ing ensembles is less clear yet. Improvement by application
of ensemble techniques have been demonstrated empirically,
though. Approaches have concentrated on creating diverse
base clusterings and then combining them somehow to a uni-
fied single clustering. The approaches differ in (a) how to
create diversity and (b) how to combine different clusterings.

(a) As sources of diversity, [44] discuss (i) non-identical
sets of features, (ii) non-identical sets of objects, and
(iii) different clustering algorithms. Obviously, the
first of these strategies is somehow related to subspace
clustering and has been pursued in different ensemble
clustering approaches [20, 45, 8]. Usually, however, the
projections used here are random projections and not
different clusters are sought in different subspaces but
true clusters are supposed to be more or less equally
apparent in different random projections. It is prob-
ably interesting to account for the possibility of dif-
ferent yet meaningful clusters in different subspaces.

For example, the authors of [20] are aware of possi-
bly different clusters existing in different subspaces.
Nevertheless, their approach aims at a single unified
clustering solution, based on the ensemble framework
of [44].

(b) How to derive the correspondence between different
clustering solutions in order to combine them is the
other dominant question in research on clustering en-
sembles, see e.g. [46, 45, 36, 10, 18, 26, 29, 43]. The
correspondence between different clusterings is a prob-
lem not encountered in classification ensembles. From
the point of view of subspace clustering, the correspon-
dence problem in ensemble clustering is also an inter-
esting topic as there are no suitable automatic evalu-
ation procedures for the possibly highly complex and
overlapping clusters obtained in different subspaces.

It is our impression that these two topics in research on
ensemble clustering directly relate to certain questions dis-
cussed in subspace clustering:

(a) A lesson research in ensemble clustering may want to
learn from subspace clustering could be that diversity
of clusterings could be a worthwhile goal in itself. We
should differentiate here between significantly differ-
ing clusterings and just varying yet similar (i.e., corre-
lated) clusterings [34, 6]. We believe, however, that it
can be meaningful to unify the latter by some sort of
consensus while it is in general not meaningful to try
to unify substantially different clusterings.

(b) As we have seen above (Section 2), redundancy is a
problem in traditional subspace clustering. Possibly,
subspace clustering can benefit from advanced clus-
tering diversity measures in ensemble clustering [44,
20, 28, 23, 21]. These measures, however, are usually
based on some variant of pairwise mutual information
where the overlap of clusters (i.e., the simultaneous
membership of some subsets of objects in different clus-
ters) is a problem.

4. ALTERNATIVE CLUSTERING

One direction in clustering based on constraints has been
the constraint of diversity or non-redundancy, resulting in
the discovery of different clustering solutions, sequentially
or simultaneously [24, 25, 7, 14, 15, 13]. The motivation
behind these approaches is that some results may already
be known for a specific data set yet other results should
be obtained that are new and interesting (cf. the classical
definition of knowledge discovery in data as “the non-trivial
process of identifying valid, novel, potentially useful, and ul-
timately understandable patterns in data” [19]). Reproduc-
ing known or redundant patterns by clustering algorithms
does not qualify as identifying novel patterns. A problem
could be that the already known facts are dominant in a
data set. The idea is, thus, to constrain some clustering al-
gorithm by a set of patterns or links between objects that
are not to identify. As they put in in [25]: “users are often
unable to positively describe what they are looking for, yet
may be perfectly capable of expressing what is not of interest
to them”.



Some of these approaches again use ensemble techniques.
Here, however, we are more interested in the relationship
between these approaches and the area of subspace cluster-
ing. Hence, for our context, the interesting idea in this area
is to use different subspaces as one possibility to find differ-
ent clustering solutions [42]. As these approaches seek di-
versity usually constrained by non-redundancy, clearly sub-
space clustering research tackling the high redundancy level
of subspace clusters can learn from these approaches. How-
ever, to allow a certain degree of redundancy could be mean-
ingful as in turn can be learned from subspace clustering,
allowing the overlap of clusters. In different subspaces, one
subset of objects could belong to two different but mean-
ingful clusters and hence increase the redundancy level of
these clusters without rendering the report of both over-
lapping clusters meaningless. Indeed, considerations in this
direction can actually be found in the research area of sub-
space clustering [27]. Also on part of alternative clustering
research it has been conceded that it may be desirable to
enable the conservation of certain already known properties
of known concepts while seeking different clusters [42].

5. MULTIVIEW CLUSTERING

Multiview clustering [9, 12, 30] seeks clusterings in different
subspaces of a data space. This kind of approach can be
seen as a special case of seeking alternative clusterings (the
constraint being the orthogonality of the subspaces) or as a
special case of subspace clustering allowing maximal overlap
yet seeking minimally redundant clusters by accommodat-
ing different concepts (as proposed e.g. in [27]). Because
of these close relationships, we do not go into detail here.
Let us note, though, that these approaches shed light on the
observation learned in subspace clustering that highly over-
lapping clusters in different subspaces (i.e., certain subsets of
objects may belong to several clusters simultaneously) need
not be redundant nor meaningless.

6. CONCLUSION

In this paper, we shortly surveyed the research areas of sub-
space clustering, ensemble clustering, alternative clustering,
and multiview clustering. We restricted our survey to the
essential parts in order to highlight where similar problems
are touched in different areas. As possible topics for the
discussion between different areas we have identified:

1. How to treat diversity of clustering solutions? Should
diverse clusterings always be unified? Allegedly, they
should not — but under which conditions is a unifica-
tion of divergent clusterings meaningful and when is it
not?

2. Contrariwise, can we learn also from diversity itself?
If in an ensemble of several clusterings in several ar-
bitrary random subspaces, one clustering is exception-
ally different from the others, it will be outnumbered
in most voting procedures and lost. Could it not be
especially interesting to report?

3. How to treat redundancy of clusters, especially in the
presence of overlap between clusters? When does a
cluster qualify as redundant w.r.t. another cluster, and
when does it represent a different concept although
many objects are part of both concepts? We have seen

research on subspace clustering more and more trying
to get rid of too redundant clusters while research on
alternative clustering recently tends to allow some de-
gree of redundancy. May there be a point where both
research directions meet?

4. How to assess similarity between clustering solutions
or single clusterings? Again, the presence of overlap
between clusters increases the complexity of a map-
ping of clusters where the label correspondence prob-
lem makes it already non-trivial.

A problem unresolved so far and relevant for Multiview Clus-
tering, Alternative Clustering and Subspace Clustering is
how to evaluate clusterings that can overlap and relate to
different concept levels. This problem is discussed more de-
tailed (though without a concrete solution yet) in [22].

Although our perspective may be biased from the point of
view of subspace clustering, we hope to stimulate discus-
sion among researchers from different fields and encourage
to learn from each other.
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