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ABSTRACT
Detecting outliers in a large set of data objects is a major data
mining task aiming at finding different mechanisms responsible for
different groups of objects in a data set. All existing approaches,
however, are based on an assessment of distances (sometimes in-
directly by assuming certain distributions) in the full-dimensional
Euclidean data space. In high-dimensional data, these approaches
are bound to deteriorate due to the notorious “curse of dimension-
ality”. In this paper, we propose a novel approach named ABOD
(Angle-Based Outlier Detection) and some variants assessing the
variance in the angles between the difference vectors of a point to
the other points. This way, the effects of the “curse of dimensional-
ity” are alleviated compared to purely distance-based approaches.
A main advantage of our new approach is that our method does
not rely on any parameter selection influencing the quality of the
achieved ranking. In a thorough experimental evaluation, we com-
pare ABOD to the well-established distance-based method LOF for
various artificial and a real world data set and show ABOD to per-
form especially well on high-dimensional data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing

General Terms
Algorithms

Keywords
outlier detection, high-dimensional, angle-based

1. INTRODUCTION
The general idea of outlier detection is to identify data objects

that do not fit well in the general data distributions. This is a major
data mining task and an important application in many fields such
as detection of credit card abuse in financial transactions data, or
the identification of measurement errors in scientific data. The rea-
soning is that data objects (observations) are generated by certain
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mechanisms or statistical processes. Distinct deviations from the
main distributions then are supposed to originate from a different
mechanism. Such a different mechanism may be a fraud, a dis-
turbance impairing the sensors, or simply incorrect reading of the
measurement equipment. But it could also be an unexpected and
therefore interesting behavior requiring an adaptation of the the-
ory underlying to the experiment in question. This ambivalence
in the meaning of outliers is expressed in the frequently cited sen-
tence “one person’s noise is another person’s signal”. Thus, a well
known characterization of an outlier is given by Hawkins as being
“an observation which deviates so much from other observations
as to arouse suspicions that it was generated by a different mecha-
nism” [12].

This general idea has been addressed by very diverse approaches
pursuing very different intuitions and sometimes also different no-
tions of what exactly constitutes an outlier. We will discuss dif-
ferent approaches in more detail in Section 2. Some approaches
are, due to their computational complexity, simply not applicable
to high-dimensional data. However, all known methods that are,
at least theoretically, applicable to high-dimensional data are based
on the evaluation of ε-range queries or k-nearest neighborhoods
for local methods, or, in general, assessments of differences in dis-
tances between objects (e.g. in computing data distributions). This
makes all approaches known so far more or less unsuitable for high-
dimensional data due to the notorious “curse of dimensionality”.
One of the most thoroughly discussed effects of this malediction of
mining high-dimensional data is that concepts like proximity, dis-
tance, or nearest neighbor become less meaningful with increasing
dimensionality of data sets [7, 13, 1]. Roughly, the results in these
studies state that the relative contrast of the farthest point and the
nearest point converges to 0 for increasing dimensionality d:

lim
d→∞

distmax − distmin

distmin
→ 0

This means, the discrimination between the nearest and the farthest
neighbor becomes rather poor in high dimensional space. These
observations are valid for a broad range of data distributions and
occur simply based on the mere number of dimensions even if all
attributes are relevant.

Independently, the problem worsens with irrelevant attributes
which are likely to emerge in high-dimensional data. Such at-
tributes are related to as “noise”. However, global feature reduction
methods may be inadequate to get rid of noise attributes because,
often, there is no global noise, but certain attributes are noisy only
w.r.t. certain sets of objects.

All these effects are far more fundamental problems then mere
complexity issues and trigger the exploration of data mining meth-
ods that are less dependent on the mere distances between objects.
In this paper, we propose a new method of outlier detection that
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still takes distances into account, but only as a secondary measure
to normalize the results. The main contribution to detecting outliers
is in considering the variances of the angles between the difference
vectors of data objects. This measure appears to be far less sen-
sitive to an increasing dimensionality of a data set than distance
based criteria.

In the remainder of this paper, we will first discuss different ap-
proaches to outlier detection in more detail in Section 2. In Section
3, we introduce our new approach and discuss its properties. We
evaluate the proposed method in Section 4. In Section 5, we con-
clude the paper.

2. RELATED WORK
The general problem of identifying outliers has been addressed

by very different approaches that can be roughly classified as global
versus local outlier models. A global outlier model leads to a bi-
nary decision of whether or not a given object is an outlier. A local
outlier approach rather assigns a degree of outlierness to each ob-
ject. Such an “outlier factor” is a value characterizing each object
in “how much” this object is an outlier. In those applications where
it is interesting to rank the outliers in the database and to retrieve
the top-n outliers, a local outlier approach is obviously preferable.

A different classification of outlier approaches discerns between
supervised and unsupervised approaches. A supervised approach is
based on a set of observations where the status of being an outlier
or not is known and the differences between those different types
of observations is learned. An example for this type of approaches
is [33]. Usually, supervised approaches are also global approaches
and can be considered as very unbalanced classification problems
(since the class of outliers has inherently relatively few members
only). However, in most cases outlier detection is encountered as
an unsupervised problem since one does not have enough previous
knowledge for supervised learning.

Statistical approaches to the identification of outliers are based
on presumed distributions of objects. The classical textbook of
Barnett and Lewis [5] discusses numerous tests for different distri-
butions. The tests are optimized for each distribution dependent on
the specific parameters of the corresponding distribution, the num-
ber of expected outliers, and the space where to expect an outlier.
Problems of these classical approaches are obviously the required
assumption of a specific distribution in order to apply a specific
test. Furthermore, all tests are univariate and examine a single at-
tribute to determine an outlier. Related approaches combine given
models and supervised learning methods but still assume the dis-
tribution of objects to be known in advance [31, 32]. Sometimes,
the data are assumed to consist of k Gaussian distributions and the
means and standard deviations are computed data driven. However,
these methods are not really robust, since mean and standard devia-
tion are rather sensitive to outliers and the potential outliers are still
considered for the computation step. In [25], a more robust estima-
tion of the mean and the standard deviation is proposed in order to
tackle this problem.

Depth based approaches organize data objects in convex hull lay-
ers expecting outliers from data objects with shallow depth values
only [30, 26, 16]. These approaches from computer graphics are in-
feasible for data spaces of high dimensionality due to the inherent
exponential complexity of computing convex hulls.

Deviation-based outlier detection groups objects and considers
those objects as outliers that deviate considerably from the general
characteristics of the groups. This approach has been pursued e.g.
in [4, 27]. The forming of groups at random is rather arbitrary
and so are the results depending on the selected groups. Forming
groups at random, however, is inevitable in order to avoid exponen-

tial complexity.
The distance based notion of outliers unifies distribution based

approaches [17, 18]. An object x ∈ D is an outlier if at least a
fraction p of all data objects in D has a distance above D from
x. Variants of the distance based notion of outliers are [24], [20],
and [6]. In [24], the distances to the k nearest neighbors are used
and the objects are ranked according to their distances to their k-
th nearest neighbor. A partition-based algorithm is then used to
efficiently mine top-n outliers. An approximation solution to en-
able scalability with increasing data dimensionality is proposed in
[3]. However, as adaptation to high-dimensional data, only the
time-complexity issue is tackled. The inherent problems of high-
dimensional data are not addressed by this or any other approach.
On the contrary, the problems are even aggravated since the approx-
imation is based on space filling curves. Another approximation
based on reference points is proposed in [23]. This approximation,
too, is only on low-dimensional data shown to be valuable.

The idea of using the k nearest neighbors already resembles den-
sity based approaches that consider ratios between the local den-
sity around an object and the local density around its neighboring
objects. These approaches therefore introduce the notion of local
outliers. The basic idea is to assign a density-based local outlier
factor (LOF) to each object of the database denoting a degree of
outlierness [8]. The LOF compares the density of each object o of a
database D with the density of the k nearest neighbors of o. A LOF
value of approximately 1 indicates that the corresponding object is
located within a region of homogeneous density (i.e. a cluster). If
the difference between the density in the local neighborhood of o
and the density around the k nearest neighbors of o is higher, o
gets assigned a higher LOF value. The higher the LOF value of an
object o is, the more distinctly is o considered an outlier.

Several extensions and refinements of the basic LOF model have
been proposed, e.g. a connectivity-based outlier factor (COF) [29]
or a spatial local outlier measure (SLOM) [28]. Using the concept
of micro-clusters to efficiently mine the top-n density-based local
outliers in large databases (i.e., those n objects having the highest
LOF value) is proposed in [14]. A similar algorithm is presented
in [15] for an extension of the LOF model using also the reverse
nearest neighbors additionally to the nearest neighbors and consid-
ering a symmetric relationship between both values as a measure
of outlierness.

In [22], the authors propose another local outlier detection schema
named Local Outlier Integral (LOCI) based on the concept of a
multi-granularity deviation factor (MDEF). The main difference
between the LOF and the LOCI outlier model is that the MDEF of
LOCI uses ε-neighborhoods rather than k nearest neighbors. The
authors propose an approximative algorithm computing the LOCI
values of each database object for any ε value. The results are dis-
played as a rather intuitive outlier plot. This way, the approach be-
comes much less sensitive to input parameters. Furthermore, an ex-
act algorithm is introduced for outlier detection based on the LOCI
model.

The resolution-based outlier factor (ROF) [9] is a mix of the local
and the global outlier paradigm. The outlier schema is based on the
idea of a change of resolution. Roughly, the “resolution” specifies
the number of objects considered to be neighbors of a given data
object and, thus, is a data driven concept based on distances rather
than on concepts like the k nearest neighbors or an ε-neighborhood
that rely on user-specified parametrization.

An approach claimed to be suitable for high dimensional data is
proposed in [2]. The idea resembles a grid-based subspace clus-
tering approach where not dense but sparse grid cells are sought to
report objects within sparse grid cells as outliers. Since this is ex-
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Figure 1: Intuition of angle-based outlier detection.

ponential in the data dimensionality, an evolutionary algorithm is
proposed to search heuristically for sparse cells.

As an extension of the distance based outlier detection, some al-
gorithms for finding an explanation for the outlierness of a point
are proposed in [19]. The idea is to navigate through the lattice of
combinations of attributes and to find the most significant combina-
tion of attributes where the point is an outlier. This is an interesting
feature because an explicit and concise explanation why a certain
point is considered to be an outlier (so that a user could conve-
niently gain some insights in the nature of the data) has not been
provided by any other outlier detection model so far.

In summary, we find all outlier models proposed so far inherently
unsuitable for the requirements met in mining high-dimensional
data since they rely implicitly or explicitly on distances. Aiming to
explain why a point is an outlier, we found only one other approach
proposed in the literature deriving subsets of attributes where an ob-
ject is an outlier most significantly, based on a global outlier model.

In the classification of outlier models, our new approach is unsu-
pervised and can be regarded as a local approach. Generally, local
outlier detection models have shown better accuracy than global
outlier detection models. Therefore, as one of the most prominent
local methods, LOF will be used as competitor in comparison to
our new approach.

3. ANGLE-BASED OUTLIER DETECTION

3.1 General Idea
As elaborated above (see Section 1), comparing distances be-

comes more and more meaningless with increasing data dimen-
sionality. Thus, mining high-dimensional data requires different
approaches to the quest for patterns. Here, we propose not only
to use the distance between points in a vector space but primarily
the directions of distance vectors. Comparing the angles between
pairs of distance vectors to other points helps to discern between
points similar to other points and outliers. This idea is motivated
by the following intuition. Consider a simple data set as illustrated
in Figure 1. For a point within a cluster, the angles between differ-
ence vectors to pairs of other points differ widely. The variance of
the angles will become smaller for points at the border of a cluster.
However, even here the variance is still relatively high compared
to the variance of angles for real outliers. Here, the angles to most
pairs of points will be small since most points are clustered in some
directions.

The corresponding spectra for these three types of points are il-
lustrated for a sample data set in Figure 2. As the graph shows, the
spectrum of angles to pairs of points remains rather small for an
outlier whereas the variance of angles is higher for border points of
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Figure 2: Spectra of angles for different types of points.

a cluster and very high for inner points of a cluster.
As a result of these considerations, an angle-based outlier factor

(ABOF) can describe the divergence in directions of objects rel-
atively to one another. If the spectrum of observed angles for a
point is broad, the point will be surrounded by other points in all
possible directions meaning the point is positioned inside a cluster.
If the spectrum of observed angles for a point is rather small, other
points will be positioned only in certain directions. This means, the
point is positioned outside of some sets of points that are grouped

together. Thus, rather small angles for a point �P that are rather

similar to one another imply that �P is an outlier.

3.2 Angle-based Outlier Detection (ABOD)
As an approach to assign the ABOF value to any object in the

database D, we compute the scalar product of the difference vec-

tors of any triple of points (i.e. a query point �A ∈ D and all pairs

( �B, �C) of all remaining points in D \ { �A}) normalized by the
quadratic product of the length of the difference vectors, i.e. the
angle is weighted less if the corresponding points are far from the
query point. By this weighting factor, the distance influences the
value after all, but only to a minor part. Nevertheless, this weight-
ing of the variance is important since the angle to a pair of points
varies naturally stronger for a bigger distance. The variance of this

value over all pairs for the query point �A constitutes the angle-

based outlier factor (ABOF) of �A. Formally:

DEFINITION 1 (ABOF).
Given a database D ⊆ d, a point �A ∈ D, and a norm ‖.‖ :

d → +
0 . The scalar product is denoted by 〈., .〉 : d × d →

. For two points �B, �C ∈ D, BC denotes the difference vector
�C − �B.

The angle-based outlier factor ABOF( �A) is the variance over the

angles between the difference vectors of �A to all pairs of points in
D weighted by the distance of the points:

ABOF( �A) = VAR �B, �C∈D

„ 〈AB, AC〉
‖AB‖2 · ‖AC‖2

«

=

P
�B∈D

P
�C∈D

“
1

‖AB‖·‖AC‖ · 〈AB,AC〉
‖AB‖2·‖AC‖2

”2

P
�B∈D

P
�C∈D

1

‖AB‖·‖AC‖

−

0
BB@

P
�B∈D

P
�C∈D

1

‖AB‖·‖AC‖ · 〈AB,AC〉
‖AB‖2·‖AC‖2

P
�B∈D

P
�C∈D

1

‖AB‖·‖AC‖

1
CCA

2



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

66.0

67.0

68.0

69.0

70.0

71.0

72.0

73.0

31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0

Figure 3: Ranking of points in the sample data set according to
ABOF.

Note that for each triple of points in question, ( �A, �B, �C), the three

points are mutual different. This means, instead of �B ∈ D and
�C ∈ D, the definition more exactly reads as �B ∈ D \ { �A} and
�C ∈ D\{ �A, �B}, respectively. We spared this in favor of readability
in this definition as well as in the following ones.

The algorithm ABOD assigns the angle-based outlier factor ABOF
to each point in the database and returns as a result the list of points
sorted according to their ABOF. Consider again the sample data
set in Figure 1. The ranking of these points as provided by ABOD
is denoted in Figure 3. In this toy-example, the top-ranked point
(rank 1) is clearly the utmost outlier. The next ranks are taken by
border points of the cluster. The lowest ranks are assigned to the
inner points of the cluster.

Since the distance is accounted for only as a weight for the main
criterion, the variance of angles, ABOD is able to concisely detect
outliers even in high-dimensional data where LOF and other purely
distance-based approaches deteriorate in accuracy. Furthermore, as
illustrated above, ABOD allows also a different ranking of border
points versus inner points of a cluster. This is not possible for most
of the other outlier models.

Most outlier detection models require the user to specify param-
eters that are crucial to the outcome of the approach. For unsuper-
vised approaches, such requirements are always a drawback. Thus,
a big advantage of ABOD is being completely free of parameters.

On the fly, ABOD retrieves an explanation why the point is con-
sidered to be an outlier. The difference vector to the most similar
object in the nearest group of points provides the divergence quan-
titatively for each attribute and, thus, explains why (i.e., in which
attributes by how much) the point is an outlier. For the running ex-
ample, the explanation for the top-ranked outlier is that it deviates
from the nearest point of the nearest cluster by the difference vector
as illustrated in Figure 4.

3.3 Speed-up by Approximation (FastABOD)
A problem of the basic approach ABOD is obvious: since for

each point all pairs of points must be considered, the time-comple-
xity is in O(n3) which is not attractive compared e.g. to LOF which
is in O(n2 ·k). In this section, we therefore discuss also an approx-
imation algorithm. This approximation algorithm, FastABOD, ap-
proximates ABOF based on a sample of the database. We propose
to use the pairs of points with the strongest weight in the variance,
e.g. pairs between the k nearest neighbors. Let us note that a ran-
dom set of k arbitrary data points could be used as well for this
approximation. However, the nearest neighbors have the largest
weights in the ABOF. Thus, employing the nearest neighbors might
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Figure 4: Explanation for an outlier as provided by ABOD.

result in a better approximation, especially in data sets of low di-
mensionality where the distance is more meaningful.

The ABOF relaxes to an approximate ABOF as follows:

DEFINITION 2 (APPROXIMATE ABOF).
Given a database D ⊆ d, a point �A ∈ D, and a norm ‖.‖ :

d → +
0 . The scalar product is denoted by 〈., .〉 : d × d →

. For two points �B, �C ∈ D, BC denotes the difference vector
�C − �B. Nk( �A) ⊆ D denotes the set of the k nearest neighbors of
�A.

The approximate angle-based outlier factor approxABOFk( �A) is

the variance over the angles between the difference vectors of �A to

all pairs of points in Nk( �A) weighted by the distance of the points:

approxABOFk( �A) = VAR �B, �C∈Nk( �A)
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This approximation results in an acceleration of one order of
magnitude. The resulting algorithm FastABOD is in O(n2+n·k2).
This makes FastABOD suitable for data sets consisting of many
points. However, the quality of the approximation depends on the
number k of nearest neighbors and the quality of the selection of
nearest neighbors. This quality usually deteriorates with increas-
ing data dimensionality, as discussed above. Indeed, our experi-
ments show that the quality of the approximation and therefore the
ranking of outliers becomes worse for higher dimensional data (see
Section 4).

3.4 Approximation as Filter-Refinement Ap-
proach (LB-ABOD)

We have seen that the approximation FastABOD is not suitable
directly for high-dimensional data. Nevertheless, the outliers are
usually still on a high rank, albeit occasionally not at the top rank.
This observation motivates finally another approximation which is
also suitable as a lower bound for ABOF. Having a lower bound
approximation for the exact ABOF allows us to retrieve the best



outliers more efficiently. In other words, we select candidates for
the top l outliers w.r.t. the lower-bound and afterwards refine the
candidates until none of the remaining candidates can have a lower
ABOF the largest of the best already examined data objects.

To gain a lower bound based on the FastABOD approach, we
estimate approxABOF conservatively as follows:

DEFINITION 3 (LB-ABOF).
Given a database D ⊆ d, a point �A ∈ D, and a norm ‖.‖ :

d → +
0 . The scalar product is denoted by 〈., .〉 : d × d →

. For two points �B, �C ∈ D, BC denotes the difference vector
�C − �B. Nk( �A) ⊆ D denotes the set of the k nearest neighbors of
�A.

The lower-bound for the angle-based outlier factor

LB-ABOFk( �A) is the conservatively approximated variance over

the angles between the difference vectors of �A to all pairs of points
in D weighted by the distance of the points:
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In Definition 3, the remainders R1 and R2 are responsible for the
difference between the approximation based on the sample of the
k nearest neighbors and the complete ABOF. Note that this ap-
proximation is normalized by the sum of the inverse norms of the
difference vectors of all pairs of the complete database, not only all
pairs of the set of k nearest neighbors as in the approximate ABOF.
However, the sum and squared sum necessary for calculating the
variance are approximated only over the k nearest neighbors. Thus,
a difference remains to the complete ABOF. We have to make sure

that ABOF( �A)− LB-ABOFk( �A) ≥ 0. Furthermore, this conserva-
tive approximation must be computable much more efficiently than
calculating the ABOF. This way, LB-ABOF can serve as a lower
bound for a filter-refinement approach.

Since the normalization factor is built by summing up the weights

for each angle being observed at �A, a straight forward calculation
would have a quadratic complexity. Thus, a first step to efficiently
calculating LB-ABOF is to find a linear method to compute the
normalization factor. This is possible because of the following ob-
servation:X

�B∈D

X
�C∈D

1

‖AB‖ · ‖AC‖ =
X
�B∈D

1

‖AB‖ ·
X
�C∈D

1

‖AC‖

Thus, we can calculate the sum of the inverse distances over all
objects first, and afterwards, we add up the products of the inverse

distance vectors of each object �B with this sum.
To guarantee that LB-ABOF is a conservative approximation of

ABOF, we have to find conservative estimates for the remainders
R1 and R2. R1 is the remainder of the squared sum. This means,
the larger R1 is the larger is the complete variance. Thus, R1 has
to be selected as small as possible. Since R1 is a sum of weighted
angles, R1 has to be approximated by 0 which would be the case
if all of the observed missing angles would be orthogonal. The
second remainder R2 increases the weighted sum over all angles

being squared and subtracted from the square sum. Thus, in order
to find a conservative approximation of the ABOF, R2 has to be
as large as possible. To find the largest possible value of R2, we
start by assuming the maximum value of the angle, which is 1, for
each addend. However, we have a weighted sum and thus, R2 is
given by the sum of weights for all unknown angles. To efficiently
compute R2, we calculate the complete sum over all possible pairs
of objects which can be done in linear time, as shown above. By
subtracting the already observed factors from this sum, we can find
a maximum approximation of R2:

X
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−
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Based on the conservative approximation LB-ABOF, we propose
the following procedure LB-ABOD as efficient algorithm to find
the top l outliers w.r.t. to the ABOF :

1. For each point �A ∈ D, derive the k points of highest impact
(i.e., the k nearest neighbors).

2. Compute LB-ABOF for each point �A ∈ D.

3. Organize the database objects in a candidate list ordered as-
cendingly w.r.t. their assigned LB-ABOF.

4. Determine the exact ABOF for the first l objects in the candi-
date list, remove them from the candidate list and insert them
into the current result list.

5. Remove and examine the next best candidate �C from the can-
didate list and determine the exact ABOF. If the ABOF of �C
is smaller than the largest ABOF of an object �A in the result

list, remove �A from the result list and insert �C into the result
list.

6. If the largest ABOF in the result list is smaller than the small-
est approximated ABOF in the candidate list, terminate. Else,
proceed with step 5.

This procedure combines the gains of FastABOD in terms of
scalability with the size of the data set with the robustness of ABOD
w.r.t. the dimensionality of the data set. The time complexity of the
filter step is in O(n2+n·k2) (equal to FastABOD). The refinement
for r objects to be refined is in O(r ·n2). Thus, the eventual accel-
eration w.r.t. ABOD depends on the quality of the lower bound and
the resulting number r of objects to refine. We show in Section 4
that the lower bound indeed allows for a considerable speed-up.

3.5 Generalization for Arbitrary Data Types:
Kernel-based ABOF

An advantage of distance based approaches to outlier detection is
that they are often not restricted to vector spaces. As long as there is
a suitable distance function for comparing two objects, it is usually
possible to apply these methods. For ABOD, on the other hand, it
is necessary to provide a scalar product for comparing the data ob-
jects which seems to be more restricting than providing a distance
measure. However, due to the recent interest in maximum margin
learners and kernel methods in machine learning, a wide variety
of meaningful kernel functions for varying types of data has been
proposed [11]. Since a kernel function is basically a scalar product
in a kernel space, it is possible to find outliers in a wide variety of
applications whenever a suitable kernel function is available.
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(a) 25 dimensions and 1000 data points.
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(b) 50 dimensions and 1000 data points.
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(c) 100 dimensions and 1000 data points.
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(d) 25 dimensions and 5000 data points.
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(e) 50 dimensions and 5000 data points.
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(f) 100 dimensions and 5000 data points.

Figure 5: Precision-Recall graphs on artificial data sets for 25, 50 and 100 dimensions. The upper row describes the behavior on
1000 data points and the lower row the behavior on 5000 data points

4. EVALUATION
We implemented our new algorithms in Java 1.5. As the most

established example for distance based local outlier ranking, we
additionally implemented LOF [8] into our framework. All experi-
ments were run on a Dell Precision 690 workstation with 2 XEON
3.0 Ghz CPUs and 16Gb main memory.

4.1 Artificial Data
A large problem when evaluating outlier detection methods is

that there are very few real world data sets where it is exactly known
which objects are really behaving differently due to belonging to
a different mechanism. Though there exist multiple case studies
on outlier detection, the question whether an object is an outlier
or not is often depending on the point of view. Another problem
is that the list of possible outliers is often incomplete making it
hard to evaluate whether the algorithm ranked all outliers in the
database properly. Therefore, we decided to evaluate our methods
on artificially generated data. Thus, we can generate outliers and
ordinary data points with respect to the initial definition, i.e. an
outlier is a point being generated by a different mechanism than the
majority of data objects. To exactly evaluate the behavior of our
new method for different dimensionalities and database sizes, we
generated multiple data sets having 25, 50 and 100 dimensions. As
database sizes (dbsize) we selected 500, 1,000, 5,000 and 10,000
data objects.

In order to find data sets having well-defined but not obvious
outliers, we proceeded as follows. First of all, we randomly gener-
ated a Gaussian mixture model consisting of five equally weighted
processes having random mean and variance values. This mixture
model now describes the ordinary data points, i.e. the none-outlier
data points. To build the outliers corresponding to another mecha-
nism that does not assign all the outliers to an additional cluster, we
employed a uniform distribution on the complete data space. This
way we generated 10 outliers for each data set which are totally
independent on the mixture model describing the general data dis-
tribution. Let us note that it is possible that some outliers might be
generated in an area being populated by none-outlier objects drawn

from the Gaussian mixture model. Thus, even if an outlier detec-
tion mechanism works well, it does not necessarily have to rank all
outliers into top positions.

4.2 Effectiveness
In this set of experiments, we compared the quality of the rank-

ing provided by our new algorithms to each other and to LOF. To
measure the capability of each algorithm to retrieve the most likely
outliers first, we used precision and recall graphs. In other words,
we successively retrieve the most likely outlier until all ten outliers
are retrieved. For each result set, we measured precision and re-
call. Since the recall is the percentage of all outliers in the data
set which were already retrieved, we can observe a new recall level
for each additional outlier being found. For each of these recall
levels, we now measure the precision, i.e. how many objects in
the current result set are indeed outliers. In our experiments, we
compared FastABOD, ABOD and LOF for multiple database sizes
and dimensionalities. For LOF, we varied the parameter MinPts
from 10 to 25. The sample size of FastABOD was determined by
0.1 · dbsize.

Figure 5 displays the observed precision recall graphs for two
different database sizes, 1000 and 5000 data points. For each size,
we compare three different dimensionalities: 25, 50 and 100. Start-
ing with the comparably low dimensionality of 25 (cf. Figure 5(a)
and Figure 5(d)), it can be observed that all methods had difficul-
ties in both data sets with detecting all ten outliers. In Figure 5(a),
ABOD clearly offered the best ranking while both other methods
FastABOD and LOF did not perform very well for the larger recall
levels. In Figure 5(d), all three methods offered comparable results.
To conclude the advantage of angle based outlier detection are not
very evident on this comparably low dimensional data set. The next
two data sets contain 50 dimensional feature points (cf. Figure 5(b)
and Figure 5(e)). In this medium dimensionality, ABOD starts to
display its advantages for high-dimensional data. While LOF per-
forms very bad on both data sets, FastABOD still can compete with
ABOD for small recall levels. However, while ABOD performs al-
most perfect on the smaller data set (cf. Figure 5(b) ) by ranking all
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Figure 6: Comparison of CPU times of LOF, LB-ABOD, FastA-
BOD and ABOD for 4 sizes of databases.

ten outliers between the top 11 objects, FastABOD only retrieves
two outliers before retrieving a none-outlier object. In the larger
data set (cf. Figure 5(e)), ABOD achieves a perfect performance
for the first five recall levels. However, for the remaining 5 objects
the ranking of ABOD contains some none-outliers before retrieving
all outliers. Nevertheless, ABOD provides the best outlier ranking
for the 50 dimensional data sets.

Finally, we tested the methods on a high dimensional data set
of about 100 dimensions. In both data sets, ABOD ranked all ten
outliers first, i.e. ABOD achieved the maximum possible perfor-
mance. For the smaller data set, FastABOD performed rather bad,
being even overtaken by LOF for the larger recall values. For the
large data set, FastABOD performed almost perfect with only one
non-outlier object at the tenth position of the ranking before re-
trieving all ten outliers. As expected LOF performed significantly
worse on the high dimensional data. Let us note that it is not fea-
sible to compare the performance of the methods between the dif-
ferent plots because the test data set were generated independently.
Thus, it is possible that LOF performs better on the larger 100 di-
mensional data set compared to some lower dimensional data sets.
The reason for this effect is that the generated outliers sometimes
might be more difficult to detect. In other words, the difficulty
of the problem is randomly determined for each data set and can-
not easily be adjusted to be comparable between data sets. The
strongly varying performance of FastABOD can be explained by
the fact that FastABOD is strongly dependent on a suitable selec-
tion of the sample size which will be discussed more deeply in a
later experiment. In contrast, ABOD is not dependent on finding a
suitable parametrization. Therefore, it is more suitable for applica-
tions where it is not obvious whether the given object is an outlier
or not. To conclude, ABOD provided a better ranking w.r.t. the
precision of the top ranked objects. As can be seen in our experi-
ments the performance of ABOD is constantly good even for large
dimensionalities where LOF and the partly distance-based FastA-
BOD approach do not provide top quality outlier rankings.

4.3 Efficiency
In this section, we compare the cpu time of each algorithm for

selecting the n best outliers. Therefore, we perform experiments
on four different database sizes: 500, 1000, 5000 and 10000. For
this experiment, we compared ABOD, with and without the filter
refinement approach LB-ABOD, to FastABOD and LOF on a data
set of 25 dimensions. The sample size for FastABOD as well as the
sample size for LB-ABOD were selected to be 0.1 · dbsize .

The results are illustrated in Figure 6. Let us note that we used a
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of refinements for LB-ABOD.

logarithmic time scale in this figure because even the fastest method
in the experiment, LOF, has a quadratic and therefore, super linear
time complexity. As can be seen LOF ran significantly faster on
all four data sets as expected. However, we can also observe that
both accelerated angle based methods, FastABOD and LB-ABOD,
have a comparable increase in runtime between the data sets. This
underlines that both methods have also a quadratic runtime com-
plexity. Due to the refinement step in LB-ABOD and the usually
larger sample set in FastABOD, both methods need additional time
to find a ranking.

Considering the runtime of an naive application of ABOD, we
observe that the cubic runtime is a large restriction when directly
applying ABOD to larger data sets. For example, the straight for-
ward calculation of ABOD on a data set of 5000 data objects takes
more than eight hours. Let us note that the reason for the missing
value for ABOD on the data set containing 10,000 objects is that the
algorithm did not finish its computations after 24 hours and, thus,
we cannot name a valid runtime. Therefore, to use ABOD with
data sets having larger cardinalities, it is mandatory to employ LB-
ABOD. To further underline the increased efficiency in calculating
the ABOF using LB-ABOD, Figure 7 displays the speed-up fac-
tor of LB-ABOD compared to a straight forward computation. For
the data set containing 5000 data points, LB-ABOD computed the
ranking of the top 100 outliers up to 120 times faster than ABOD.
Let us note again that the only difference in the result is that LB-
ABOD only provides the l top ranked results instead of ordering
the complete data set with respect to the ABOF.
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Our next experiment examines the influence of the sample size
being considered in the filter step of LB-ABOD. Therefore, we
compared the runtime and the number of refined candidates for 4
different sample sizes on the 50 dimensional data set containing
1000 data points. The results can be seen in Figure 8 displaying the
complete cpu time for finding the top 100 outliers. Additionally, the
number of refined candidates is shown for each sample size. The
results indicate that if the size of the sample is selected too small
( in this case 80) the number of refined candidates comprises the
complete data set leading to a cubic runtime. On the other hand,
selecting the size of the sample set too large might cause only a
small reduction of candidates but also increases the computation
time of the filter step. Having a properly selected sample size, the
filter step efficiently ranks candidates and the refinement step has to
examine only a small portion of the data set. In the majority of our
experiments, we usually selected the sample size to be 0.1 · dbsize
which led to the already displayed speed-up factors. Let us note
that for larger data sets smaller sample sizes often offered a com-
parable performance.

In a final experiment on artificial data sets, we demonstrate the
effect of the sample size on the simple approximation method FastA-
BOD. We ran FastABOD with 3 different sample sizes, 100, 200
and 400 data points, on the 50 dimensional data set containing 1000
data points. Figure 9 displays 3 curves. Each curve is labeled by
the used sample size and the cpu time in ms that was measured for
FastABOD in this experiment. As expected there is a clear depen-
dency between the sample size and the quality of the results; the
larger the sample is the better is usually the ranking. Furthermore,
we can additionally see that the size of the sample significantly
increases the runtime. Thus, FastABOD runs 9 times faster, i.e.
2 ms instead of 18 ms, when having only 100 sample points in-
stead of 400. To conclude, for high dimensional data FastABOD
seems to be rather unsuitable due to its dependency on the dis-
tance based concept of nearest neighbors. Additionally, the quality
of the outlier ranking provided by FastABOD is strongly depen-
dent on a large enough sample size because unlike LB-ABOD the
method does not correct its approximative ranking in a refinement
step. Furthermore, a too large sample size leads to a strong in-
crease of the computation time. However, for smaller dimensional-
ities FastABOD offers a simple way to efficient angle based outlier
detection.

Let us finally remark that the effect of the dimensionality to the
runtime of all four algorithms is negligible because all of the com-
pared methods need to store distances or scalar product values, re-
spectively, in order to assure a fast computation.

LOF

ABOD

Figure 10: Top 5 ranked outliers by LOF and ABOD on the
Caltech 101 image data set and a 2D shape representation.

4.4 Real World Data
In this section, we provide experiments on real world data in

order to demonstrate that there is some semantic meaning behind
the proposed outlier ranking. In our first experiment, we employ
the caltech 101 data set [10]. The data set consists of 101 classes
comprising 8674 images. For each image the object of interest is
annotated by a polygon comprising its borders. Based on these
outline, we built a 200 dimensional 2D shape descriptor describ-
ing the border of each object. Thus, in our experiments, we want
to extract the 10 most uncommon 2D shapes in the data set. We
again compare the result of ABOD to LOF to have a reference out-
lier ranking. Figure 10 contains the top 5 ranked outliers by each
method. Both methods decided that the top 3 outlier shapes in the
data set belong to the same images of menorahs. However, while
ABOD consistently ranked further menorah images as outliers with
respect to their very special 2D shape, LOF started to rank much
more common forms of dollar bills or sun flowers before ranking
other menorahs.

In a final experiment, we tested the explanation component of
ABOD on the zoo data set from the UCI machine learning reposi-
tory [21] and received the following outliers for which we derived
the following explanations by building the difference vector to the
most similar other data object. RANK1: Scorpion. Its most similar
animal in the data set is the termite. Thus, the scorpion is an outlier
because it has 8 instead of 6 legs, it is venomous and does have
a tail. RANK2: Octopus. The most similar animal is the cancer.
However, the octopus has 2 more legs and is cat sized.

5. CONCLUSION
In this paper, we introduced a novel, parameter-free approach to

outlier detection based on the variance of angles between pairs of
data points. This idea alleviates the effects of the “curse of dimen-
sionality” on mining high-dimensional data where distance-based
approaches often fail to offer high quality results. In addition to the
basic approach ABOD, we proposed two variants: FastABOD as an
acceleration suitable for low-dimensional but big data sets, and LB-
ABOD, a filter-refinement approach as an acceleration suitable also
for high-dimensional data. In a thorough evaluation, we demon-
strate the ability of our new approach to rank the best candidates
for being an outlier with high precision and recall. Furthermore,
the evaluation discusses efficiency issues and explains the influence
of the sample size to the runtime of the introduced methods.
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