

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality' Efficiency and Effectiveness Subspace Outlier Discussion References

## Outlier Detection in High-Dimensional Data Tutorial

Arthur Zimek<sup>1</sup>, Erich Schubert<sup>2</sup>, Hans-Peter Kriegel<sup>2</sup>

<sup>1</sup>University of Alberta Edmonton, AB, Canada

<sup>2</sup>Ludwig-Maximilians-Universität München Munich, Germany

ICDM 2012, Brussels, Belgium





# Coverage and Objective of the Tutorial

Outlier Detection in High-Dimensional Data A. Zimek,

E. Schubert, H.-P. Kriegel

Introduction

| Coverage and<br>Objective       |
|---------------------------------|
| Reminder on Classi<br>Methods   |
| Outline                         |
| "Curse of<br>Dimensionality"    |
| Efficiency and<br>Effectiveness |
| Subspace Outlier                |
| Dissussion                      |

References

- We assume that you know in general what outlier detection is about and have a rough idea of how classic approaches (e.g., LOF [Breunig et al., 2000]) work.
- We focus on unsupervised methods for numerical vector data (Euclidean space).
- We discuss the specific problems in high-dimensional data.
- We discuss strategies as well as the strengths and weaknesses of methods that specialize in high-dimensional data in order to
  - enhance efficiency or effectiveness and stability
  - search for outliers in subspaces



# Coverage and Objective of the Tutorial

Outlier Detection in High-Dimensional Data A. Zimek,

E. Schubert, H.-P. Kriegel

Introduction

Coverage and Objective Reminder on Classic Methods Outline "Curse of Dimensionality" Efficiency and

Effectiveness Subspace Outlier Discussion References These slides are available at:

http://www.dbs.ifi.lmu.de/cms/Publications/
OutlierHighDimensional

- This tutorial is closely related to our survey article [Zimek et al., 2012], where you find more details.
- Feel free to ask questions at any time!





# Reminder: Distance-based Outliers

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data |          |
|---------------------------------------------------------|----------|
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel                |          |
| Introduction                                            | ÷.       |
| Coverage and<br>Objective                               |          |
| Reminder on Classic<br>Methods                          |          |
| Outline                                                 | 1        |
| "Curse of<br>Dimensionality"                            |          |
| Efficiency and<br>Effectiveness                         | ii<br>ii |
| Subspace Outlier                                        | Ï        |
| Discussion                                              | ii<br>Ii |
| References                                              | 11       |
|                                                         | 11       |

## $\mathsf{DB}(\varepsilon, \pi)$ -outlier [Knorr and Ng, 1997]

- given  $\varepsilon$ ,  $\pi$
- A point p is considered an outlier if at most π percent of all other points have a distance to p less than ε





# Reminder: Distance-based Outliers

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction Coverage and Objective Reminder on Classic Methods Outline 'Curse of Dimensionality' Efficiency and Effectiveness Subspace Outlier Discussion References Outlier scoring based on *k*NN distances:

- Take the kNN distance of a point as its outlier score [Ramaswamy et al., 2000]
- Aggregate the distances for the 1-NN, 2-NN, ..., kNN (sum, average) [Angiulli and Pizzuti, 2002]





# Reminder: Density-based Local Outliers



ÌΠ



Figure from Breunig et al. [2000].

 DB-outlier model: no parameters ε, π such that o<sub>2</sub> is an outlier but none of the points of C<sub>1</sub> is an outlier

# kNN-outlier model: kNN-distances of points in C<sub>1</sub> are larger than kNN-distances of o<sub>2</sub>



# Reminder: Density-based Local Outliers

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

Coverage and Objective Reminder on Classic

Methods Outline "Curse of Dimensionality" Efficiency and Effectiveness

Subspace Outlier

References

Local Outlier Factor (LOF) [Breunig et al., 2000]:

- reachability distance (smoothing factor): reachdist<sub>k</sub>(p, o) = max{kdist(o), dist(p, o)}
- ► local reachability distance (*lrd*)  $lrd_k(p) = 1/\frac{\sum_{o \in kNN(p)} reachdist_k(p,o)}{Cardinality(kNN(p))}$
- Local outlier factor (LOF) of point p: average ratio of *lrds* of neighbors of p and *lrd* of p

$$OF_k(p) = rac{\sum_{o \in kNN(p)} rac{lrd_k(o)}{lrd_k(p)}}{Cardinality(kNN(p))}$$

- LOF  $\approx$  1: homogeneous density
- ► LOF ≫ 1: point is an outlier (meaning of "≫" ?)

each-dist\_(p\_2, 0)

Figure from [Breunig et al., 2000]



## Outline

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction Coverage and Objective Reminder on Classic Methods Outline "Curse of

im.

HI.

ίπ.

111

Ш

HII.

HII.

Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion References Introduction

The "Curse of Dimensionality"

Efficiency and Effectiveness

Subspace Outlier Detection

**Discussion and Conclusion** 



Outlier Detection in High-Dimensional

## Outline

### Introduction

#### Data A. Zimek, E. Schubert, H.-P. Kriegel

#### Introduction

| "Curse of<br>Dimensionality"    |
|---------------------------------|
| Concentration                   |
| Irrelevant Attributes           |
| Discrimination                  |
| Combinatorics                   |
| Hubness                         |
| Consequences                    |
| Efficiency and<br>Effectiveness |
| Subspace Outlier                |
| Discussion                      |
| References                      |
|                                 |

## The "Curse of Dimensionality"

Concentration of Distances and of Outlier Scores Relevant and Irrelevant Attributes Discrimination vs. Ranking of Values Combinatorial Issues and Subspace Selection Hubness

Consequences

Efficiency and Effectiveness

Subspace Outlier Detection



## Outline

#### Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Efficiency and Efficiency and Subspace Outlier Discussion References

111

ÎΠ

ШU

III.

ШI

## Introduction

## The "Curse of Dimensionality"

#### Concentration of Distances and of Outlier Scores

Relevant and Irrelevant Attributes Discrimination vs. Ranking of Values Combinatorial Issues and Subspace Selection Hubness

Consequences

### Efficiency and Effectiveness

## Subspace Outlier Detection



# **Concentration of Distances**

Theorem 1 (Beyer et al. [1999])

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

Dimensionality" Concentration

Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Effectiveness

Subspace Outlier Discussion

Data A. Zimek, . Schubert.

> y" m tributes

dimensionality. Consequence The proportional difference between the farthest-point distance  $D_{max}$  and the closest-point distance  $D_{min}$  (the relative

contrast) vanishes.

Assumption The ratio of the variance of the length of any

point vector (denoted by  $||X_d||$ ) with the length

of the mean point vector (denoted by  $E[||X_d||]$ )

converges to zero with increasing data

If 
$$\lim_{d\to\infty} \mathsf{var}\left(\frac{\|X_d\|}{E[\|X_d\|]}\right) = 0$$
, then  $\frac{D_{max} - D_{min}}{D_{min}} \to 0$ .



# Vector Length: Loss of Contrast





# Vector Length: Loss of Contrast





I M

## Pairwise Distances





## **Pairwise Distances**





## **50-NN Outlier Score**

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality' Concentration Irrelevant Attributes Discrimination Combinatorics Hubness ΪΠ. Consequences ш ÌΠ. Efficiency and Effectiveness III. Subspace Outlier ШI Discussion ÎΠ References

Sample of  $10^5$  instances drawn from a uniform [0,1] distribution, normalized  $(1/\sqrt{a})$ . *k*NN outlier score [Ramaswamy et al., 2000] for k = 50.





## **50-NN Outlier Score**



Sample of  $10^5$  instances drawn from a Gaussian (0, 1) distribution, normalized  $(1/\sqrt{a})$ . *k*NN outlier score [Ramaswamy et al., 2000] for k = 50.





## LOF Outlier Score

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness ΪΠ. Consequences ШU ÌΠ Efficiency and HII. Effectiveness ΪŬ. III. Subspace Outlier ÎΠ ШI Discussion ÎΠ HH. References

Sample of  $10^5$  instances drawn from a uniform [0, 1] distribution, LOF [Breunig et al., 2000] score for neighborhood size 50.



15



## LOF Outlier Score





# Pairwise Distances with Outlier

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences ш Efficiency and Effectiveness Subspace Outlier Discussion References

# Sample of $10^5$ instances drawn from a uniform [0, 1] distribution, normalized $(1/\sqrt{a})$ . Outlier manually placed at 0.9 in every dimension.





# Pairwise Distances with Outlier



Sample of  $10^5$  instances drawn from a Gaussian (0, 1) distribution, normalized  $(1/\sqrt{a})$ . Outlier manually placed at  $2\sigma$  in every dimension.





# LOF Outlier Score with Outlier

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences ш Efficiency and Effectiveness III. Subspace Outlier Discussion References

Sample of  $10^5$  instances drawn from a uniform [0, 1] distribution.

Outlier manually placed at 0.9 in every dimension, LOF [Breunig et al., 2000] score for neighborhood size 50.





# LOF Outlier Score with Outlier





# Conclusion

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data<br>A. Zimek,<br>E. Schubert,<br>HP. Kriegel |      |
|-----------------------------------------------------------------------------------------------------|------|
|                                                                                                     | Ξ.   |
| Introduction                                                                                        | Ш.   |
| "Cureo of                                                                                           |      |
| Dimensionality"                                                                                     | ÷.   |
| Dimensionality                                                                                      | 11   |
| Concentration                                                                                       |      |
| Irrelevant Attributes                                                                               | 100  |
| Discrimination                                                                                      | 111  |
| Combinatorics                                                                                       | 111  |
| Hubness                                                                                             | 111  |
| 0                                                                                                   | 111  |
| Consequences                                                                                        | ΠĒ.  |
| Efficiency and                                                                                      | 111  |
| Effectiveness                                                                                       | 111  |
|                                                                                                     | iiii |
| Subspace Outlier                                                                                    | 111  |
| Discussion                                                                                          | 100  |
| Diacussion                                                                                          | 100  |
| References                                                                                          | 111  |
|                                                                                                     | 111  |
|                                                                                                     | iiii |
|                                                                                                     | Ш    |
|                                                                                                     |      |

- The concentration effect per se is not the main problem for mining high-dimensional data.
- If points deviate in every attribute from the usual data distribution, the outlier characteristics will become more pronounced with increasing dimensionality.
- More dimensions add more information for discriminating the different characteristics.



## Outline

#### Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Effectiveness Subspace Outlier Discussion References

111

ÎΠ

ШU

III.

ШI

L L L

## Introduction

## The "Curse of Dimensionality"

Concentration of Distances and of Outlier Scores Relevant and Irrelevant Attributes

Discrimination vs. Ranking of Values Combinatorial Issues and Subspace Selection Hubness

Consequences

Efficiency and Effectiveness

Subspace Outlier Detection



# Separation of Clusters – "Meaningful" Nearest Neighbors

Theorem 2 (Bennett et al. [1999])

cluster distance.

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion

 This is the case if enough information (relevant attributes) is provided to separate different distributions.

Assumption Two clusters are pairwise stable, i.e., the

Consequence We can meaningfully discern "near"

between cluster distance dominates the within

neighbors (members of the same cluster) from

"far" neighbors (members of the other cluster).

 Irrelevant attributes can mask the separation of clusters or outliers.

References



# **Relevant and Irrelevant Attributes**

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction

"Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion References

Sample of  $10^5$  instances drawn from a uniform [0, 1] distribution. Fixed dimensionality d = 100.

Outlier manually placed at 0.9 in relevant dimensions, in irrelevant dimensions the attribute values for the outlier are drawn from the usual random distribution.





# **Relevant and Irrelevant Attributes**

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction

"Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion References

Sample of  $10^5$  instances drawn from a Gaussian (0, 1) distribution. Fixed dimensionality d = 100.

Outlier manually placed at  $2\sigma$  in relevant dimensions, in irrelevant dimensions the attribute values for the outlier are drawn from the usual random distribution.





# Conclusion

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data |
|---------------------------------------------------------|
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel                |
| ntroduction                                             |
| Curse of                                                |
| Concentration                                           |
| Concentration                                           |
| Irrelevant Attributes                                   |

Discrimination Combinatorics Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion References

Г

- Motivation for subspace outlier detection: find outliers in the relevant subspaces
  - Challenge of identifying relevant attributes
- even more: *different* attributes may be relevant for identifying *different* outliers



## Outline

#### Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Efficiency and Efficiency and Efficiency and Efficiency and Efficiency and

ÎΠ

ШU

III.

ШI

L L L

References

## Introduction

## The "Curse of Dimensionality"

Concentration of Distances and of Outlier Scores Relevant and Irrelevant Attributes

## Discrimination vs. Ranking of Values

Combinatorial Issues and Subspace Selection Hubness

Consequences

### Efficiency and Effectiveness

### Subspace Outlier Detection



# **Discrimination of Distance Values**

Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discriminatorics Hubness Combinatorics Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion References

- distance concentration: low contrast of distance values of points from the same distribution
- other side of the coin: hard to choose a distance threshold to distinguish between near and far points (e.g. for distance queries)











#### UNIVERSITY OF ALBERTA

I MU

# Illustration: "Shrinking" (?) Hyperspheres




# Meaningful Choice of Distance Thresholds?

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion References

- distance values are not comparable over data (sub-)spaces of different dimensionality
- ε-range queries for high-dimensional data are hard to parameterize
- Some change of ε may have no effect in some dimensionality and may decide whether nothing or everything is retrieved in some other dimensionality
- density-thresholds are in the same way notoriously sensitive to dimensionality



# Distance Rankings – "Meaningful" Nearest Neighbors

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatoris Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion References

- Even if absolute distance values are not helpful, distance rankings can be.
- Shared-neighbor information is based on these findings [Houle et al., 2010].
- In the same way, often
  - outlier rankings are good but
  - the absolute values of the outlier scores are not helpful.



# Conclusion

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion References

a sample containing outliers would show up such characteristics as large gaps between 'outlying' and 'inlying' observations and the deviation between outliers and the group of inliers, as measured on some suitably standardized scale [Hawkins, 1980]

- outlier rankings may be still good while the underlying outlier scores do not allow to separate between outliers and inliers
- outlier scores are in many models influenced by distance values, that substantially vary over different dimensionality – how can these scores be compared?



#### Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion References

III.

ÎΠ

ШU

III.

ШI

L L L

## Introduction

#### The "Curse of Dimensionality"

Concentration of Distances and of Outlier Scores Relevant and Irrelevant Attributes Discrimination vs. Ranking of Values

# Combinatorial Issues and Subspace Selection

Hubness

Consequences

#### Efficiency and Effectiveness

#### Subspace Outlier Detection



# Combinatorial Explosion: Statistics

- Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert, H.-P. Kriegel
- Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Elidicancy and Elidican

For a normal distribution, an object is farther away from the mean than 3 × σ in a single dimension with a probability of ≈ 0.27% = 1 − 0.9973

► for *d* independently normally distributed dimensions, the combined probability of an object appearing to be normal in every single dimension is  $\approx 0.9973^d$ 

> d = 10:97.33%d = 100:76.31%d = 1000: 6.696%

- in high-dimensional distributions, every object is extreme in at least one dimension
- selected subspaces for outliers need to be tested independently



Combinatorial Explosion: Subspace Selection

Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

"Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Efficiency and

Subspace Outlier Discussion

- ► 2<sup>d</sup> axis-parallel subspaces of a *d*-dimensional space
- grid-based approaches: 10 bins in each dimension

 $d = 2:10^2$  cells (i.e., one hundred)  $d = 100:10^{100}$  cells (i.e., one googol)

- need at least as many objects for the cells to not already be empty on average
- need even more to draw statistically valid conclusions



# Conclusion

Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert, H.-P. Kriegel Introduction "Curse of Dimensionality" Concentration

Discrimination

Combinatorics Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion References

- exploding model search space requires improved search heuristics, many established approaches (thresholds, grids, distance functions) no longer work
- evaluating an object against many possible subspaces can introduce a statistical bias ("data snooping")
- Try to do proper statistical hypothesis testing!
- Example: choose *few* candidate subspaces without knowing the candidate object!



#### Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimitation Combinatorics Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion

1111

111

ШU

III.

L L L

## Introduction

#### The "Curse of Dimensionality"

Concentration of Distances and of Outlier Scores Relevant and Irrelevant Attributes Discrimination vs. Ranking of Values Combinatorial Issues and Subspace Selection Hubness

Consequences

Efficiency and Effectiveness

Subspace Outlier Detection



## Hubness

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data |
|---------------------------------------------------------|
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel                |
| Introduction                                            |
| 'Curse of<br>Dimensionality"                            |
| Concentration                                           |
| Irrelevant Attributes                                   |
| Discrimination                                          |
| Combinatorics                                           |
| Hubness                                                 |
| Consequences                                            |
| Efficiency and<br>Effectiveness                         |
| Subspace Outlier                                        |
| Discussion                                              |
| References                                              |
|                                                         |

- k-hubness of an object o: Nk(o): the number of times a point o is counted as one of the k nearest neighbors of any other point in the data set
- with increasing dimensionality, many points show a small or intermediate hubness while some points exhibit a very high hubness [Radovanović et al., 2009, 2010]
  - related to Zipf's law on word frequencies
- Zipfian distributions frequently seen in social networks
- interpreting the kNN graph as social network, 'hubs' as very popular neighbors
- "Fact or Artifact?" [Low et al., 2013] not necessarily present in high-dimensional data, and can also occur in low-dimensional data



# Conclusion

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data |      |
|---------------------------------------------------------|------|
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel                |      |
| ntroduction                                             |      |
| 'Curse of<br>Dimensionality"                            |      |
| Concentration                                           | ÷.   |
| Irrelevant Attributes                                   |      |
| Discrimination                                          | ij   |
| Combinatorics                                           | - ii |
| Hubness                                                 | H    |
| Consequences                                            | ij   |
|                                                         | - ii |
| Effectiveness                                           | 1    |
| Subspace Outlier                                        | - ii |
| Discussion                                              | - ii |
|                                                         | -11  |
| helefelices                                             | ÷    |
|                                                         | ÷    |
|                                                         | ÷    |
|                                                         | ł    |
|                                                         |      |

- what does this mean for outlier detection?
  - it is the "Hubs" which are infrequent, but central!
- the other side of the coin:

anti-hubs might exist that are far away from most other points (i.e., qualify as *k*NN outliers) yet they are not unusual



#### Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness ÎΠ Consequences ШU Efficiency and HII. Effectiveness III. Subspace Outlier ÎΠ ШI Discussion ÎΠ HH.

ÌΠ.

Beferences

## Introduction

#### The "Curse of Dimensionality"

Concentration of Distances and of Outlier Scores Relevant and Irrelevant Attributes Discrimination vs. Ranking of Values Combinatorial Issues and Subspace Selection Hubness

#### Consequences

Efficiency and Effectiveness

#### Subspace Outlier Detection



#### Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction
"Curse of
Dimensionality"
Concentration
Irrelevant Attributes
Discriminatoria
Hubness
Efficiency and
Efficiency and
Efficiency and
Efficiency and
Efficiences
Subspace Outlier
Discussion
References

III.

### Problem 1 (Concentration of Scores)

Due to the central limit theorem, the distances of attribute-wise i.i.d. distributed objects converge to an approximately normal distribution with low variance, giving way to numerical and parametrization issues.



Outlier Detection

in High-Dimensional

## Consequences

### Problem 2 (Noise attributes)

Data A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Effectiveness Subspace Outlier Discussion References

ш

III.

A high portion of irrelevant (not discriminative) attributes can mask the relevant distances. We need a good signal-to-noise ratio.



Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Effictiveness Subspace Outlier Discussion References

#### Problem 3 (Definition of Reference-Sets)

Common notions of locality (for local outlier detection) rely on distance-based neighborhoods, which often leads to the vicious circle of needing to know the neighbors to choose the right subspace, and needing to know the right subspace to find appropriate neighbors.



Outlier Detection

in High-Dimensional

## Consequences

#### Problem 4 (Bias of Scores)

Data A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Efficien Scores based on  $L_p$  norms are biased towards high dimensional subspaces, if they are not normalized appropriately. In particular, distances in different dimensionality (and thus distances measured in different subspaces) are not directly comparable.



#### Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Hubness Consequences Efficiency and Efficien

## Problem 5 (Interpretation & Contrast of Scores)

Distances and distance-derived scores may still provide a reasonable ranking, while (due to concentration) the scores appear to be virtually identical. Choosing a threshold boundary between inliers and outliers based on the distance or score may be virtually impossible.



Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatories 

ш

III.

## Problem 6 (Exponential Search Space)

The number of potential subspaces grows exponentially with the dimensionality, making it increasingly hard to systematically scan through the search space.



#### Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Concentration Irrelevant Attributes Discrimination Combinatorics Discrimination Consequences Efficiency and E

III.

## Problem 7 (Data-snooping Bias)

Given enough subspaces, we can find at least one subspace such that the point appears to be an outlier. Statistical principles of testing the hypothesis on a different set of objects need be employed.



Outlier Detection

in High-Dimensional

## Consequences

#### Problem 8 (Hubness)

Data A. Zimek, E. Schubert, H.-P. Kriegel

Introduction
"Curse of
Dimensionality"
Concentration
Irrelevant Attributes
Discrimination
Combinatorics
Hubness
Consequences
Efficiency and
Efficiences

Subspace Outlier Discussion References III.

What is the relationship of hubness and outlier degree? While antihubs may exhibit a certain affinity to also being recognized as distance-based outliers, hubs are also rare and unusual and, thus, possibly are outliers in a probabilistic sense.



Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

"Curse of Dimensionality" Efficiency and Efficiency Techniques Methods: Efficiency Methods: Efficiency Methods: Effectiveness and Stability Subspace Outlier Discussion References

111

ÌΠ

III.

ШI

### Introduction

The "Curse of Dimensionality"

#### Efficiency and Effectiveness

Fundamental Efficiency Techniques Outlier Detection Methods Enhancing Efficiency Outlier Detection Methods Enhancing Effectiveness and Stability

Subspace Outlier Detection

#### Discussion and Conclusion

45



# Efficiency and Effectiveness

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data<br>A. Zimek,<br>E. Schubert,<br>HP. Kriegel |    |
|-----------------------------------------------------------------------------------------------------|----|
| Introduction<br>"Curse of<br>Dimensionality"                                                        |    |
| Efficiency and<br>Effectiveness                                                                     |    |
| Fundamental<br>Efficiency<br>Techniques                                                             |    |
| Methods: Efficiency<br>Methods:<br>Effectiveness and<br>Stability                                   |    |
| Subspace Outlier                                                                                    | 11 |
| Discussion                                                                                          | ii |
| References                                                                                          |    |
|                                                                                                     |    |

- dimensionality reduction / feature selection (e.g., Vu and Gopalkrishnan [2010]) – find all outliers in the remaining or transformed feature space
- global dimensionality reduction (e.g., by PCA) is likely to fail in the typical subspace setting [Keller et al., 2012]
- here, we discuss methods that
  - try to find outliers in the full space (present section) and
    - enhance efficiency
    - enhance effectiveness and stability
  - identify potentially different subspaces for different outliers (next section)



Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality" Efficiency and Effectiveness Fundamental in r Efficiency III. Techniques in i Methods: Efficiency Methods: ÌΠ Effectiveness and Stability III. Subspace Outlier ШI Discussion ÎΠ

References

HH.

### Introduction

The "Curse of Dimensionality"

#### Efficiency and Effectiveness Fundamental Efficiency Techniques

Outlier Detection Methods Enhancing Efficiency Outlier Detection Methods Enhancing Effectiveness and Stability

Subspace Outlier Detection

#### Discussion and Conclusion

47



# Approximate Neighborhoods: Random Projection

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

"Curse of Dimensionality"

Efficiency and Effectiveness

Fundamental

Techniques

Methods: Efficiency Methods: Effectiveness and Stability Subspace Outlier

Discussion

References

 Locality sensitive hashing (LSH) [Indyk and Motwani, 1998]: based on approximate neighborhoods in projections

key ingredient:

## Lemma 3 (Johnson and Lindenstrauss [1984])

There exist projections of *n* objects into a lower dimensional space (dimensionality  $O(\log n/\epsilon^2)$ ) such that the distances are preserved within a factor of  $1 + \epsilon$ .

- note: reduced dimensionality depends on number of objects and error-bounds, but *not* on the original dimensionality
- popular technique: "database-friendly" (i.e., efficient) random projections [Achlioptas, 2001]



# Approximate Neighborhoods: Space-filling Curves

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality" Efficiency and Effectiveness Fundamental Techniques Methods: Efficiency Methods: Effectiveness and Stability Subspace Outlier Discussion

References

- space-filling curves, like Peano [1890], Hilbert [1891], or the Z-curve [Morton, 1966], do not directly preserve distances but – to a certain extend – neighborhoods
- a one-dimensional fractal curve gets arbitrarily close to every data point without intersecting itself
- intuitive interpretation: repeated cuts, opening the data space
- neighborhoods are not well preserved along these cuts
- number of cuts increases with the dimensionality





Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Fundamental Efficiency Techniques 111 ш Methods: Efficiency Methods: ÌΠ Effectiveness and Stability III. Subspace Outlier ШI Discussion ÎΠ HH. References ÌШ 1111

### Introduction

The "Curse of Dimensionality"

# Efficiency and Effectiveness

#### Fundamental Efficiency Techniques

Outlier Detection Methods Enhancing Efficiency

Outlier Detection Methods Enhancing Effectiveness and Stability

Subspace Outlier Detection

#### Discussion and Conclusion

50



# Recursive Binning and Re-projection (RBRP)

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Efficiency Techniques Methods: Efficiency Methods: Efficiency Methods: Effectiveness and Stability Subspace Outlier Discussion References RBRP [Ghoting et al., 2008]: adaptation of ORCA [Bay and Schwabacher, 2003] to high-dimensional data, based on a combination of binning and projecting the data

- first phase: bin the data, recursively, into k clusters results in k bins, and again, in each bin, k bins and so forth, unless a bin does not contain a sufficient number of points
- second phase: approximate neighbors are listed following their linear order as projected onto the principal component of each bin

within each bin (as long as necessary): a variant of the nested loop algorithm [Bay and Schwabacher, 2003] derives the top-*n* outliers

 resulting outliers are reported to be the same as delivered by ORCA but retrieved more efficiently in high-dimensional data





Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Effectiveness Effectiveness and Stability Subspace Outlier Discussion References LSOD [Wang et al., 2011]: combination of approximate neighborhood search (here based on LSH) and data partitioning step using a *k*-means type clustering

- idea of outlierness: points in sparse buckets will probably have fewer neighbors and are therefore more likely to be (distance-based) outliers
- pruning is based on a ranking of this outlier *likelihood*, using statistics on the partitions
- the authors conjecture that their approach "can be used in conjunction with any outlier detection algorithm"
- actually, however, the intuition is closely tied to a distance-based notion of outlierness



Outlier

# Projection-indexed Nearest Neighbors (PINN)

| Detection<br>in High-<br>Dimensional<br>Data<br>A. Zimek,<br>E. Schubert,<br>HP. Kriegel |  |
|------------------------------------------------------------------------------------------|--|
| Introduction                                                                             |  |
| "Curse of<br>Dimensionality"                                                             |  |
| Efficiency and<br>Effectiveness                                                          |  |
| Fundamental<br>Efficiency<br>Techniques                                                  |  |
| Methods: Efficiency                                                                      |  |
| Methods:<br>Effectiveness and<br>Stability                                               |  |
| Subspace Outlier                                                                         |  |
| Discussion                                                                               |  |
| References                                                                               |  |
|                                                                                          |  |

- PINN [de Vries et al., 2010, 2012] uses Johnson and Lindenstrauss [1984] lemma
- random projections [Achlioptas, 2001] preserve distances approximately
- preserve also *neighborhoods* approximately [de Vries et al., 2010, 2012]
- use projected index (kd-tree, R-tree), query more neighbors than needed
- refine found neighbors to get almost-perfect neighbors







# Projection-indexed Nearest Neighbors (PINN)

#### Outlier Detection in High-Dimensional Data

**Advertisement** 

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Efficiency Authods: Efficiency Methods: Efficiency Methods: Efficiency Methods: Efficiency Subspace Outlier Discussion References

111

ÌΠ

III.

ÎΠ

L L L

fundamentals on generalized expansion dimension: Houle et al. [2012a] at yesterday's workshop application to similarity search: Houle et al. [2012b] (talk tomorrow morning)



# Space-filling Curves

| Detection<br>in High-<br>Dimensional<br>Data   |     |
|------------------------------------------------|-----|
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel       |     |
| Introduction                                   | į   |
| "Curse of                                      | ÷.  |
| Dimensionality"                                | 1   |
| Efficiency and<br>Effectiveness<br>Fundamental |     |
| Efficiency                                     | i   |
| recnniques                                     | ň   |
| Methods: Efficiency                            | - j |
| Methods:<br>Effectiveness and<br>Stability     |     |
| Subspace Outlier                               | ł   |
| Discussion                                     | ł   |
| References                                     | į   |
|                                                |     |

- Angiulli and Pizzuti [2002, 2005] find top N
   k-NN-outliers exactly, saves by detecting true misses
- project data to Hilbert curve [Hilbert, 1891]
- sort data, process via sliding window
- multiple scans with shifted curves, refining top candidates and skipping true misses
- good for large data sets in *low* dimensionality:
- Minkowski norms only suffers from distance concentration: few true misses in high-dimensional data
- Hilbert curves ~ grid based approaches:
   l<sup>d</sup> bits when l bits per dimension



Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Fundamental Efficiency Techniques 111 Methods: Efficiency Methods: le u 100 Effectiveness and Stability ш. III. Subspace Outlier ШI Discussion ÎΠ HH. References ÌΠ. III.

#### Introduction

The "Curse of Dimensionality"

#### Efficiency and Effectiveness

Fundamental Efficiency Techniques Outlier Detection Methods Enhancing Efficiency

Outlier Detection Methods Enhancing Effectiveness and Stability

Subspace Outlier Detection

#### Discussion and Conclusion

55



Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionally" Efficiency and Efficiency Techniques Methods: Efficiency Methods: Efficiency Methods: Efficiences Subspace Outlier Discussion Beferences ABOD [Kriegel et al., 2008] uses the variance of angles between points as an outlier degree

- angles more stable than distances
- outlier: other objects are clustered  $\Rightarrow$  some directions
- $\blacktriangleright$  inlier: other objects are surrounding  $\Rightarrow$  many directions





56



- Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert, H.-P. Kriegel
- Introduction "Curse of Dimensionality" Efficiency and Efficiency Efficiency Methods: Effectiveness and Stability Subspace Outlier Discussion References

- consider for a given point *p* the angle between *px* and *py* for any two *x*, *y* from the database
- for each point, a measure of variance of all these angles is an outlier score



pv



- Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert,
- H.-P. Kriegel Introduction "Curse of Dimensionality" Efficiency and Effectiveness Fundamental Efficiency

Techniques

Methods: Efficiency Methods: Effectiveness and Stability

Subspace Outlier

References

- consider for a given point *p* the angle between *px* and *py* for any two *x*, *y* from the database
- for each point, a measure of variance of all these angles is an outlier score



p



- Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert, H.-P. Kriegel
- Introduction "Curse of Dimensionality" Efficiency and Efficiency Efficiency Methods: Efficiency Methods: Efficiency Subspace Outlier Discussion References

- consider for a given point *p* the angle between *px* and *py* for any two *x*, *y* from the database
- for each point, a measure of variance of all these angles is an outlier score



pv


#### Angle-based Outlier Detection

- Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert, H.-P. Kriegel
- Introduction "Curse of Dimensionality" Efficiency and Effectiveness Fundamental Efficiency Techniques Methods: Efficiency Methods: Effectiveness and Stability Subspace Outlier Discussion References

- consider for a given point *p* the angle between *px* and *py* for any two *x*, *y* from the database
- for each point, a measure of variance of all these angles is an outlier score



py/

py



## Angle-based Outlier Detection

- Outlier Detection in High-Dimensional Data
- A. Zimek, E. Schubert, H.-P. Kriegel
- Introduction "Curse of Dimensionality" Efficiency and Efficiency Techniques Methods: Efficiency Methods: Efficiency Methods: Stability Subspace Outlier Discussion References

....

- ABOD: cubic time complexity
- ► FastABOD [Kriegel et al., 2008]: approximation based on samples ⇒ quadratic time complexity
- ► LB-ABOD [Kriegel et al., 2008]: approximation as filter-refinement ⇒ quadratic time complexity
- ► approximation based on random-projections and a simplified model [Pham and Pagh, 2012] ⇒ O(n log n)



## Feature Subset Combination

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Efficiency and Efficiency Methods: Efficiency Methods: Efficiency Stability Subspace Outlier Discussion References

#### "Feature bagging" [Lazarevic and Kumar, 2005]:

- run outlier detection (e.g., LOF) in several random feature subsets (subspaces)
- combine the results to an ensemble



- not a specific approach for high-dimensional data but provides efficiency gains by computations on subspaces and effectiveness gains by ensemble technique
- application to high-dimensional data with improved combination: Nguyen et al. [2010]



## **Outlier Detection Ensembles**

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Efficiency and Efficiency Techniques Methods: Efficiency Methods: Efficiences Effectiveness and Stability Subspace Outlier Discussion References

....

 Outlier scores in different subspaces scale differently, have different meaning (Problem 4). Direct combination is problematic.

- improved reasoning about combination, normalization of scores, ensembles of different methods: Kriegel et al. [2011]
- study of the impact of diversity on ensemble outlier detection: Schubert et al. [2012a]

In general, ensemble techniques for outlier detection have potential to address problems associated with high-dimensional data. Research here has only begun.



#### Outline

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

"Curse of Dimensionality" Efficiency and Effectiveness

#### Subspace Outlier

Identification of Subspaces Comparability of Outlier Scores Discussion References ΠII

in i

111

ÎΠ

ШU

L L L

#### Introduction

The "Curse of Dimensionality"

fficiency and Effectiveness

Subspace Outlier Detection Identification of Subspaces Comparability of Outlier Scores

#### Discussion and Conclusion



## **Outliers in Subspaces**

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data |
|---------------------------------------------------------|
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel                |
| Introduction                                            |

"Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion Beforences

- feature bagging uses random subspaces to derive a full dimensional result
- "subspace outlier detection" aims at finding outliers in relevant subspaces that are not outliers in the full-dimensional space (where they are covered by "irrelevant" attributes)
- predominant issues are
  - identification of subspaces: Which subspace is relevant and why? (recall data snooping bias, Problem 7)
  - comparability of outlier scores: How to compare outlier results from different subspaces (of different dimensionality)?
     (cf. Problem 4: Bias of Scores)

62



#### Outline

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

"Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores

ΠII

HI.

iш

iπ

Ш

III.

L L L

Discussion

References

#### Introduction

The "Curse of Dimensionality"

fficiency and Effectiveness

Subspace Outlier Detection Identification of Subspaces Comparability of Outlier Scores

#### Discussion and Conclusion



#### Subspace Outlier Detection

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Efficiency and Efficiency and Efficiency and Efficiency and Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion

References

common Apriori [Agrawal and Srikant, 1994]-like procedure for subspace *clustering* [Kriegel et al., 2009c, 2012b, Sim et al., 2012]:

- evaluate all *n*-dimensional subspaces (e.g., look for clusters in the corresponding subspace)
- combine all "interesting" (e.g., containing clusters) n-dim. subspaces (i.e., "candidates") to n + 1-dim. subspaces
- start with 1-dim. subspaces and repeat this bottom-up search until no candidate subspaces remain
- requirement: anti-monotonicity of the criterion of "interestingness" (usually the presence of clusters)

unfortunately, no meaningful outlier criterion is known so far that behaves anti-monotoneously



### Subspace Outlier Detection

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

"Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores

Discussion

References

first approach for high-dimensional (subspace) outlier detection: Aggarwal and Yu [2001]

- resembles a grid-based subspace clustering approach but not searching dense but sparse grid cells
- report objects contained within sparse grid cells as outliers
- evolutionary search for those grid cells (Apriori-like search not possible, complete search not feasible)



- divide data space in  $\phi$  equi-depth cells
- each 1-dim. hyper-cuboid contains  $f = \frac{N}{\phi}$  objects
- expected number of objects in k-dim. hyper-cuboid: N · f<sup>k</sup>
- standard deviation:  $\sqrt{N \cdot f^k \cdot (1 f^k)}$
- "sparse" grid cells: contain unexpectedly few data objects



Outlier

## Problems of Aggarwal and Yu [2001]

| Detection<br>in High-<br>Dimensional<br>Data |   |
|----------------------------------------------|---|
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel     |   |
| Introduction                                 | į |
| "Curse of<br>Dimensionality"                 |   |
| Efficiency and<br>Effectiveness              |   |
| Subspace Outlier                             | ł |
| Identification of<br>Subspaces               |   |
| Comparability of<br>Outlier Scores           |   |
| Discussion                                   | ł |
| References                                   | ł |

- with increasing dimensionality, the expected value of a grid cell quickly becomes too low to find significantly sparse grid cells ⇒ only small values for *k* meaningful (Problem 6: Exponential Search Space)
- parameter k must be fixed, as the scores are not comparable across different values of k (Problem 4)
- ► search space is too large even for a fixed k ⇒ genetic search preserving the value of k across mutations (Problem 6)
- restricted computation time allows only inspection of a tiny subset of the projections (not yet to speak of individual subspaces); randomized search strategy does encourage neither fast enough convergence nor diversity no guarantees about the outliers detected or missed
- randomized model optimization without a statistical control statistical bias (Problem 7): how meaningful are the detected outliers?
- presence of clusters in the data set will skew the results considerably
- ► equidepth binning is likely to include outliers in the grid cell of a nearby cluster ⇒ hide them from detection entirely
- dense areas also need to be refined to detect outliers that happen to fall into a cluster bin



### HOS-Miner

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspace Outlier Comparability of Outlier Scores Discussion Beferences Zhang et al. [2004] identify the subspaces in which a given point is an outlier

- define the outlying degree of a point w.r.t. a certain space (or possibly a subspace) s in terms of the sum of distances to the k nearest neighbors in this (sub-)space s
- for a fixed subspace s, this is the outlier model of Angiulli and Pizzuti [2002]
- ► monotonic behavior over subspaces and superspaces of s, since the outlying degree OD is directly related to the distance-values; for L<sub>p</sub>-norms the following property holds for any object o and subspaces s<sub>1</sub>, s<sub>2</sub>: OD<sub>s1</sub>(o) > OD<sub>s2</sub>(o) \iff s<sub>1</sub> ⊇ s<sub>2</sub>
- ► Apriori-like search for outlying subspaces for any query point: threshold *T* discriminates outliers (*OD<sub>s</sub>*(*o*) ≥ *T*) from inliers (*OD<sub>s</sub>*(*o*) < *T*) in any subspace *s*



## Problems of HOS-Miner [Zhang et al., 2004]

Outlier Detection in High-Dimensional Data A. Zimek,

E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion

References

 Fixed threshold to discern outliers w.r.t. their score OD in subspaces of different dimensionality ⇒ these scores are rather incomparable (Problem 4)

- the monotonicity must not be fulfilled for true subspace outliers (since it would imply that the outlier can be found trivially in the full-dimensional space) — as pointed out by Nguyen et al. [2011]
- ► systematic search for the subspace with the highest score ⇒ data-snooping bias (Problem 7)



### OutRank

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion References Müller et al. [2008] analyse the result of some (grid-based/density-based) subspace clustering algorithm

- clusters are more stable than outliers to identify in different subspaces
- avoids statistical bias
- outlierness: how often is the object recognized as part of a cluster and what is the dimensionality and size of the corr. subspace clusters



#### Problems of OutRank [Müller et al., 2008]

Outlier Detection in High-Dimensional Data

- A. Zimek, E. Schubert, H.-P. Kriegel
- Introduction
  "Curse of
  Dimensionality"
  Efficiency and
  Effectiveness
  Usubspace Outlier
  Identification of
  Subspaces
  Comparability of
  Outlier Scores
  Discussion
  References

- a strong redundancy in the clustering is implicitly assumed — result biased towards (anti-)hubs? (Problem 8)
- outliers as just a side-product of density-based clustering can result in a large set of outliers
- outlier detection based on subspace clustering relies on the subspace clusters being well separated
  - Theorem 2 (Separation of Clusters)
  - Problem 1 (Concentration Effect)
  - Problem 2 (Noise Attributes)



#### Problems of OutRank [Müller et al., 2008]

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion

References

- a strong redundancy in the clustering is implicitly assumed — result biased towards (anti-)hubs? (Problem 8)
- outliers as just a side-product of density-based clustering can result in a large set of outliers
- outlier detection based on subspace clustering relies on the subspace clusters being well separated
  - Theorem 2 (Separation of Clusters)
  - Problem 1 (Concentration Effect)
  - Problem 2 (Noise Attributes)

#### Advertisement

note a follow-up on this workshop paper at this ICDM: Müller et al. [2012] (talk tomorrow morning)



#### SOD

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

"Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion Beferences SOD (subspace outlier detection) [Kriegel et al., 2009a] finds outliers in subspaces without an *explicit* clustering

- a reference set is possibly defining (implicitly) a subspace cluster (or a part of such a cluster)
- If the query point deviates considerably from the subspace of the reference set, it is a subspace outlier w.r.t. the corresponding subspace.
- not a decision (outlier vs. inlier) but a (normalized, sort of) subspace distance outlier score





### Problems of SOD [Kriegel et al., 2009a]

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion References

how to find a good reference set (Problem 3)? Kriegel et al. [2009a] define the reference-set using SNN-distance [Houle et al., 2010], which introduces a second neighborhood parameter

 normalization of scores is over-simplistic interpretation as "probability estimates" of the (subspace) distance distribution would be a desirable post-processing to tackle Problem 5 (Interpretation and Contrast of Scores)



## OUTRES [Müller et al., 2010]

- Outlier Detection in High-Dimensional Data
- A. Zimek, E. Schubert, H.-P. Kriegel
- Introduction "Curse of
- Dimensionality" Efficiency and Effectiveness
- Subspace Outlier Identification of
- Subspaces
- Comparability of Outlier Scores
- Discussion
- References

- assess deviations of each object in several subspaces simultaneously
- combine ranking of the objects according to their outlier scores in all 'relevant subspaces'
- requires comparable neighborhoods (Problem 3) for each point to estimate densities
- ► adjust for different number of dimensions of subspaces (Problem 4): specific *ε* radius for each subspace
- score in a single subspace: comparing the object's density to the average density of its neighborhood
- total score of an object is the product of all its scores in all relevant subspaces

Assuming a score in [0,1] (smaller score  $\propto$  stronger outlier), this should provide a good contrast for those outliers with very small scores in many relevant subspaces.



## OUTRES 2 [Müller et al., 2011]

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

- "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion
- Beferences

follow-up paper [Müller et al., 2011] describes selection of relevant subspaces

- reject attributes with uniformly distributed values in the neighborhood of the currently considered point o (statistical significance test)
- exclude, for this *o*, also any superspaces of uniformly distributed attributes
- Apriori-like search strategy can be applied to find subspaces for each point
- tackles the problem of noise attributes (Problem 2)
- ► based on a statistic on the neighborhood of the point ⇒ not likely susceptible to a statistical bias (Problem 7)



## Problems of OUTRES [Müller et al., 2010, 2011]

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Efficiency and Efficiency and Efficiency and Efficiency and Identification of Subspaces Comparability of Outlier Scores Discussion References tackling many problems comes for a price:

- Apriori-like search strategy finds subspaces for each point, not outliers in the subspaces 
   expensive approach: worst-case exponential behavior in dimensionality
- ► score adaptation to locally varying densities as the score of a point *o* is based on a comparison of the density around *o* vs. the average density among the neighbors of *o* (~ LOF [Breunig et al., 2000]) ⇒ time complexity *O*(*n*<sup>3</sup>) for a database of *n* objects unless suitable data structures (e.g., precomputed neighborhoods) are used
  - due to the adaptation to different dimensionality of subspaces, data structure support is not trivial



## HighDOD

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness

Subspace Outlier Identification of Subspaces

Comparability of Outlier Scores

Discussion

References

HighDOD (High-dimensional Distance-based Outlier Detection) [Nguyen et al., 2011]:

- motivation: the sum of distances to the k nearest neighbors as the outlier score [Angiulli and Pizzuti, 2005] is monotonic over subspaces – but a subspace search (as in HOS-Miner) is pointless as the maximum score will appear in the full-dimensional space
- modify the kNN-weight outlier score to use a normalized L<sub>p</sub> norm
- pruning of subspaces is impossible, examine all subspaces up to a user-defined maximum dimensionality m
- ► use a linear-time (*O*(*n* · *m*)) density estimation to generate outlier candidates they compute the nearest neighbors for



## Problems of HighDOD [Nguyen et al., 2011]

Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces ÌΠΠ Comparability of Outlier Scores Discussion References ÎΠ

- ▶ examine all subspaces ⇒ data-snooping (Problem 7)?
- no normalization to adjust different variances in different dimensionality

L L L



Outlier

## HiCS [Keller et al., 2012]

Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion

References

high contrast subspaces (HiCS) [Keller et al., 2012]

- core concept for subspaces with high contrast: correlation among the attributes of a subspace (deviation of the observed PDF from the expected PDF, assuming independence of the attributes)
- Monte Carlo samples to aggregate these deviations
- aggregate the LOF scores for a single object over all "high contrast" subspaces
- the authors suggest that, instead of LOF, any other outlier measure could be used
- intuition: in these subspaces, outliers are not trivial (e.g., identifiable already in 1-dimensional subspaces) but deviate from the (although probably non-linear and complex) correlation trend exhibited by the majority of data in this subspace



### Problems of HiCS [Keller et al., 2012]

| Outlier     |
|-------------|
| Detection   |
| in High-    |
| Dimensional |
| Data        |
|             |

- A. Zimek, E. Schubert, H.-P. Kriegel
- Introduction
  "Curse of
  Dimensionality"
  Efficiency and
  Effectiveness
  Subspace Outlier
  Identification of
  Subspaces
  Comparability of
  Outlier Scores
  Discussion
  Beferences

- combine LOF scores from subspaces of different dimensionality without score normalization (Problem 4: Bias of Scores)
- combination of scores is rather naïve, could benefit from ensemble reasoning
- philosophy of decoupling subspace search and outlier ranking is questionable:
  - a certain measure of contrast to identify interesting subspaces will relate quite differently to different outlier ranking measures
  - their measure of interestingness is based on an implicit notion of density, it may only be appropriate for density-based outlier scores
- however, this decoupling allows them to discuss the issue of subspace selection with great diligence as this is the focus of their study



#### **Correlation Outlier**

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion References

- so far, most algorithms for subspace outlier detection are restricted to axis-parallel subspaces
   e.g., due to grid-based approaches or to the required first step of subspace or projected clustering
- ▶ HiCS [Keller et al., 2012] is not restricted in this sense.
- earlier example for outliers in arbitrarily-oriented subspaces: COP (correlation outlier probability) [Zimek, 2008, ch. 18] (application of the correlation clustering concepts discussed by Achtert et al. [2006])
- high probability of being a "correlation outlier" if neighbors show strong linear dependencies among attributes and the point in question deviates substantially from the corresponding linear model



(tomorrow morning): [Kriegel et al., 2012a]

111

ίü

LLL.



#### Outline

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of

ΠII

H

111

ÎΠ

H

Ш

III.

L L L

Outlier Scores

References

#### Introduction

The "Curse of Dimensionality"

fficiency and Effectiveness

Subspace Outlier Detection Identification of Subspaces Comparability of Outlier Scores

#### Discussion and Conclusion



## Comparability of Outlier Scores

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data |   |
|---------------------------------------------------------|---|
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel                |   |
| Introduction                                            |   |
| "Curse of<br>Dimensionality"                            |   |
| Efficiency and<br>Effectiveness                         |   |
| Subspace Outlier                                        |   |
| Identification of<br>Subspaces                          | i |
| Comparability of<br>Outlier Scores                      |   |
| Discussion                                              | Ш |
| References                                              |   |
|                                                         |   |

- An outlier score provided by some outlier model should help the user to decide whether an object actually is an outlier or not.
- For many approaches even in low dimensional data the outlier score is not readily interpretable.
  - The scores provided by different methods differ widely in their scale, their range, and their meaning.
  - For many methods, the scaling of occurring values of the outlier score even differs within the same method from data set to data set.
  - Even within one data set, the identical outlier score o for two different database objects can denote actually substantially different degrees of outlierness, depending on different local data distributions.



## Solutions in Low-dimensional Data

Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion Beforences  LOF [Breunig et al., 2000] intends to level out different density values in different regions of the data, as it assesses the *local* outlier factor

- LoOP [Kriegel et al., 2009b] (a LOF variant) provides a statistical interpretation of the outlier score by translating it into a probability estimate (including a normalization to become independent from the specific data distribution in a given data set)
- Kriegel et al. [2011] proposed generalized scaling methods for a range of different outlier models
  - allows comparison and combination of different methods
  - or results from different feature subsets



## More Problems in High-dimensional Data

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction
"Curse of
Dimensionality"
Efficiency and
Efficiency and
Effectiveness
Subspace Outlier
Identification of
Subspaces
Comparability of
Outlier Scores
Discussion
References

Problems 4 (Bias of Scores) and 5 (Interpretation and Contrast of Scores)

- most outlier scorings are based on assessment of distances, usually L<sub>p</sub> distances
- can be expected to grow with additional dimensions, while the relative variance decreases
- a numerically higher outlier score, based on a subspace of more dimensions, does not necessarily mean the corresponding object is a stronger outlier than an object with a numerically lower outlier score, based on a subspace with less dimensions
- many methods that combine multiple scores into a single score neglect to normalize the scores before the combination (e.g. using the methods discussed by Kriegel et al. [2011])



# Treatment of the Comparability-Problem in Subspace Methods

Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert, H.-P. Kriegel

Introduction
"Curse of
Dimensionality"
Efficiency and
Effectiveness
Subspace Outlier
Identification of
Subspaces
Comparability of
Outlier Scores
Discussion
Beferences

- model of Aggarwal and Yu [2001] circumvents the problem since they restrict the search for outliers to subspaces of a fixed dimensionality (given by the user as input parameter)
- OutRank [Müller et al., 2008] weights the outlier scores by size and dimensionality of the corresponding reference cluster
- SOD [Kriegel et al., 2009a] uses a normalization over the dimensionality, but too simplistic



## Treatment of the Comparability-Problem in Subspace Methods (contd.)

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data |      |
|---------------------------------------------------------|------|
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel                |      |
| Introduction                                            | i    |
| "Curse of<br>Dimensionality"                            | i.   |
| Efficiency and<br>Effectiveness                         |      |
| Subspace Outlier<br>Identification of<br>Subspaces      |      |
| Comparability of<br>Outlier Scores                      | H    |
| Discussion<br>References                                |      |
|                                                         | - 83 |

- For OUTRES [Müller et al., 2010, 2011], this problem of bias is the core motivation:
  - uses density estimates that are based on the number of objects within an ε-range in a given subspace
  - ► uses adaptive neighborhood (ε is increasing with dimensionality)
  - uses adaptive density by scaling the distance values accordingly
  - score is also adapted to locally varying densities as the score of a point *o* is based on a comparison of the density around *o* vs. the average density among the neighbors of *o*



# Treatment of the Comparability-Problem in Subspace Methods (contd.)

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Identification of Subspaces Comparability of Outlier Scores Discussion References

- bias of distance-based outlier scores towards higher dimensions is also the main motivation for HighDOD [Nguyen et al., 2011]
  - kNN-weight outlier score
  - adapt the distances (L<sub>p</sub>-norm) to the dimensionality d of the corresponding subspace by scaling the sum over attributes with 1/\$\verta\$
  - ► assuming normalized (!) attributes (with a value range in [0, 1]), this results in restricting each summand to ≤ 1 and the sum therefore to ≤ k, irrespective of the considered dimensionality
- HiCS [Keller et al., 2012]: LOF scores retrieved in subspaces of different dimensionality are aggregated for a single object without normalization no problem in their experiments since the relevant subspaces vary only between 2 and 5 dimensions

87



#### Outline

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data | Introduction                  |
|---------------------------------------------------------|-------------------------------|
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel                | The "Curse of Dimensionality" |
| Introduction                                            |                               |
| "Curse of II<br>Dimensionality"                         | Efficiency and Effectiveness  |
| Efficiency and Effectiveness                            |                               |
| Subspace Outlier                                        | Subspace Outlier Detection    |
| Discussion III                                          |                               |
| References                                              |                               |
|                                                         | Discussion and Conclusion     |
|                                                         |                               |
|                                                         |                               |
|                                                         |                               |
|                                                         |                               |
|                                                         |                               |
| 88                                                      |                               |

----

1111



### **Tools and Implementations**

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of

- Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion
- References

#### Data mining framework ELKI [Achtert et al., 2012]:

http://elki.dbs.ifi.lmu.de/

Open Source: AGPL 3+



- 20+ standard (low-dim.) outlier detection methods
- 10+ spatial ("geo") outlier detection methods
- 4 subspace outlier methods: COP [Kriegel et al., 2012a], SOD [Kriegel et al., 2009a], OUTRES [Müller et al., 2010], OutRank S1 [Müller et al., 2008]
- meta outlier methods: HiCS [Keller et al., 2012], Feature Bagging [Lazarevic and Kumar, 2005], more ensemble methods . . .
- 25+ clustering algorithms (subspace, projected, ...)
- index structures, evaluation, and visualization



#### **Tools and Implementations**

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness

Subspace Outlier

References

ALOI [Geusebroek et al., 2005] image data set RGB histograms, 110,250 objects, 8 dimensions: Same algorithm, very different performance:

| LOF, "Data Mining with R":    | 13402.38 sec |
|-------------------------------|--------------|
| LOF, Weka implementation:     | 2611.60 sec  |
| LOF, ELKI without index:      | 570.94 sec   |
| LOF, ELKI with STR R*-Tree:   | 47.24 sec    |
| LOF, ELKI STR R*, multi-core: | 26.73 sec    |

 due to the modular architecture and high code reuse, optimizations in ELKI work very well

ongoing efforts for subspace indexing

Requires some API learning, but there is a tutorial on implementing a new outlier detection algorithm:

http://elki.dbs.ifi.lmu.de/wiki/Tutorial/Outlier


## Visualization – Scatterplots

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion References



- Scatterplots can only visualize low-dimensional projections of high-dimensional dataspaces.
- Nevertheless, visual inspection of several two-dimensional subspaces (if the data dimensionality is not too high) can be insightful.



#### Visualization – Parallel Coordinates





Visualized with ELKI.

HII.

Ш

Parallel coordinates can visualize high-dimensional data. But every axis has only two neighbors – so actually not much more than scatterplots.



### Visualization – Parallel Coordinates





# Data Preparation, Normalization, and Bias

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion References

- preselecting attributes helps but we would like the algorithms to do this automatically
- distance functions are heavily affected by normalization
- ▶ linear normalization ≅ feature weighting
   ⇒ bad normalization ≅ bad feature weighting
- some algorithms are very sensitive to different preprocessing procedures
- not often discussed, the choice of a distance function can also have strong impact [Schubert et al., 2012a,b]
- subspace (or correlation) selection is influenced by the outliers that are to detect (*vicious circle*, known as "swamping" and "masking" in statistics) requires "robust" measures of variance etc. (e.g., robust PCA)



#### **Evaluation Measures**

Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert, H.-P. Kriegel Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier

```
Discussion
```

References

Classic evaluation: **Precision**@k and ROC AUC

True positive rate of known outliers in the top k.

```
Example: 7 out of 10 \text{ correct} = 0.7
```

Elements past the top k are ignored.  $\Rightarrow$  very crude k + 1 different values:  $0 \dots k$  out of k correct.

```
Order within the top k is ignored.
3 false, then 7 correct \equiv 7 correct, then 3 false
```

Average precision: same, but for  $k = 1 \dots k_{max}$ 



#### **Evaluation Measures**

Outlier Classic evaluation: Precision@k and **ROC AUC** Detection in High-Dimensional Data Perfect result A. Zimek. Y: True positive rate E. Schubert. H.-P. Kriegel X: False positive rate Area Under Curve (AUC) Introduction Measure: Area under Curve Positive Rate "Curse of Dimensionality' Optimal: 1.000 Efficiency and Random: 0.500 Effectiveness Subspace Outlier Reverse: 0.000 ΪΪ. Discussion Ш iπ True I ΪΪ. References nonordeint Intuitive interpretation: ÌΠ. result ΪΠ HII. ΪŬ. given a pair (pos, neg): III. everse what is the chance of it being correctly ordered? ÌШ False Positive Rate



#### **Evaluation Measures**

Outlier Classic evaluation: Precision@k and ROC AUC Detection in High-Dimensional Data A. Zimek. E. Schubert. The popular measures H.-P. Kriegel evaluate the order of points only, not the scores. Introduction "Curse of need outlier labels .... Dimensionality" Efficiency and Effectiveness and assume that all outliers are known! Subspace Outlier Discussion References  $\Rightarrow$  future work needed! ÎΠ



## **Evaluation: Pitfalls**

| Detection<br>in High-                    |
|------------------------------------------|
| Dimensional<br>Data                      |
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel |
| Introduction                             |
| "Curse of<br>Dimensionality"             |
| Efficiency and<br>Effectiveness          |
| Subspace Outlier                         |
| Discussion                               |
| References                               |

- common procedure: using labeled data sets for evaluation of unsupervised methods
- highly imbalanced problem
- "ground truth" may be incomplete
- real world data may include sensible outliers that are just not yet known or were considered uninteresting during labeling
- use classification data sets assuming that some rare (or down-sampled) class contains the outliers?
  - but the rare class may be clustered
  - true outliers may occur in the frequent classes
- If a method is detecting such outliers, that should actually be rated as a good performance of the method.
- Instead, in this setup, detecting such outliers is overly punished due to class imbalance.



# **Evaluation of Outlier Scores?**

Outlier Detection in High-Dimensional Data A. Zimek. E. Schubert. H.-P. Kriegel Introduction "Curse of Dimensionality' Efficiency and Effectiveness Subspace Outlier Discussion References

When comparing or combining results (different subspaces, ensemble), *meaningful* score values are more informative than ranks:

- Kriegel et al. [2011], Schubert et al. [2012a] have initial attempts on evaluating score values
  - more weight on known (or estimated) outliers
  - allows non-binary ground-truth
  - improves outlier detection ensembles by combining preferably diverse (dissimilar) score vectors
- this direction of research aims in the long run to get calibrated outlier scores reflecting a notion of probability



# Efficiency

Outlier Detection in High-Dimensional Data A. Zimek, E. Schubert,

H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion References

- focus of research so far: identification of meaningful subspaces for outlier detection
- open problem: efficiency in subspace similarity search (many methods need to assess neighborhoods in different subspaces)
- only some preliminary approaches around: [Kriegel et al., 2006, Müller and Henrich, 2004, Lian and Chen, 2008, Bernecker et al., 2010a,b, 2011]
- HiCS uses 1 dimensional pre-sorted arrays (i.e., a very simple subspace index)
- can subspace similarity index structures help? — and can they be improved?
- however, first make the methods work well, then make them work fast!



# Conclusion

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier

Discussion References We hope that you learned in this tutorial about

- typical problems associated with high-dimensional data ("curse of dimensionality")
- the corresponding challenges and problems for outlier detection
- approaches to improve efficiency and effectiveness for outlier detection in high-dimensional data
- specialized methods for subspace outlier detection
  - how they treat some of the problems we identified
  - how they are possibly tricked by some of these problems
- tools, caveats, open issues for outlier detection (esp. in high-dimensional data)



# Conclusion

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness

Subspace Outlier

Discussion

References

More details in our survey article: Zimek, Schubert, and Kriegel [2012]: A survey on unsupervised outlier detection in high-dimensional numerical data. *Statistical Analysis and Data Mining*, 5(5):363–387 (http://dx.doi.org/10.1002/sam.11161)

And we hope that you got inspired to tackle some of these open issues or known problems (or identify yet more problems) in your next (ICDM 2013?) paper!





LMU

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

# References I

| Outlior                                      |                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detection<br>in High-<br>Dimensional<br>Data | D. Achlioptas. Database-friendly random projections. In Proceedings of the 20th<br>ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database<br>Systems, Santa Barbara, CA, 2001.                                                                                                                                       |
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel     | E. Achtert, C. Böhm, HP. Kriegel, P. Kröger, and A. Zimek. Deriving quantitative<br>models for correlation clusters. In <i>Proceedings of the 12th ACM Internationa</i><br><i>Conference on Knowledge Discovery and Data Mining (SIGKDD),</i><br><i>Philadelphia, PA</i> , pages 4–13, 2006. doi: 10.1145/1150402.1150408. |
| "Curse of I<br>Dimensionality"               | E. Achtert, S. Goldhofer, HP. Kriegel, E. Schubert, and A. Zimek. Evaluation of                                                                                                                                                                                                                                            |
| Efficiency and II<br>Effectiveness           | clusterings – metrics and visual support. In Proceedings of the 28th                                                                                                                                                                                                                                                       |
| Subspace Outlier                             | pages 1285–1288, 2012. doi: 10.1109/ICDE.2012.128.                                                                                                                                                                                                                                                                         |
| Discussion II                                |                                                                                                                                                                                                                                                                                                                            |
| References                                   | C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In<br>Proceedings of the ACM International Conference on Management of Data<br>(SIGMOD), Santa Barbara, CA, pages 37–46, 2001.                                                                                                                   |
|                                              | R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In<br>Proceedings of the 20th International Conference on Very Large Data Bases<br>(VLDB), Santiago de Chile, Chile, pages 487–499, 1994.                                                                                                         |
| i                                            |                                                                                                                                                                                                                                                                                                                            |

iiii



## References II

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion

References

hu.

F. Angiulli and C. Pizzuti. Fast outlier detection in high dimensional spaces. In Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discoverys (PKDD), Helsinki, Finland, pages 15–26, 2002. doi: 10.1007/3-540-45681-3\_2.

F. Angiulli and C. Pizzuti. Outlier mining in large high-dimensional data sets. *IEEE Transactions on Knowledge and Data Engineering*, 17(2):203–215, 2005.

S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In *Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Mining* (SIGKDD), Washington, DC, pages 29–38, 2003. doi: 10.1145/956750.956758.

K. P. Bennett, U. Fayyad, and D. Geiger. Density-based indexing for approximate nearest-neighbor queries. In *Proceedings of the 5th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA*, pages 233–243, 1999. doi: 10.1145/312129.312236.

T. Bernecker, T. Emrich, F. Graf, H.-P. Kriegel, P. Kröger, M. Renz, E. Schubert, and A. Zimek. Subspace similarity search using the ideas of ranking and top-k retrieval. In *Proceedings of the 26th International Conference on Data Engineering (ICDE) Workshop on Ranking in Databases (DBRank), Long Beach, CA*, pages 4–9, 2010a. doi: 10.1109/ICDEW.2010.5452771.



LMU

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

# References III

| i                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data<br>A. Zimek,<br>E. Schubert,<br>HP. Kriegel | T. Bernecker, T. Emrich, F. Graf, HP. Kriegel, P. Kröger, M. Renz, E. Schubert,<br>and A. Zimek. Subspace similarity search: Efficient k-nn queries in arbitrary<br>subspaces. In <i>Proceedings of the 22nd International Conference on Scientific</i><br>and Statistical Database Management (SSDBM), Heidelberg, Germany,<br>pages 555–564, 2010b. doi: 10.1007/978-3-642-13818-8_38. |
|                                                                                                     | T. Bernecker, F. Graf, HP. Kriegel, C. Moennig, and A. Zimek. BeyOND –<br>unleashing BOND. In <i>Proceedings of the 37th International Conference on</i><br><i>Very Large Data Bases (VLDB) Workshop on Ranking in Databases</i>                                                                                                                                                         |
| Dimensionality"                                                                                     | (DBRank), Seattle, WA, pages 34–39, 2011.                                                                                                                                                                                                                                                                                                                                                |
| Efficiency and<br>Effectiveness<br>Subspace Outlier<br>Discussion                                   | K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is "nearest<br>neighbor" meaningful? In <i>Proceedings of the 7th International Conference on</i><br><i>Database Theory (ICDT), Jerusalem, Israel</i> , pages 217–235, 1999. doi:                                                                                                                                            |
| References                                                                                          | 10.1007/3-540-49257-7_15.                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                     | M. M. Breunig, HP. Kriegel, R.T. Ng, and J. Sander. LOF: Identifying<br>density-based local outliers. In <i>Proceedings of the ACM International</i><br><i>Conference on Management of Data (SIGMOD), Dallas, TX</i> , pages 93–104,<br>2000.                                                                                                                                            |



### References IV

| Outlier     |
|-------------|
| Detection   |
| in High-    |
| Dimensional |
| Data        |

- A. Zimek, E. Schubert, H.-P. Kriegel
- Introduction
- "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion References

hu.

HII.

III.

HII.

- T. de Vries, S. Chawla, and M. E. Houle. Finding local anomalies in very high dimensional space. In *Proceedings of the 10th IEEE International Conference on Data Mining (ICDM), Sydney, Australia*, pages 128–137, 2010. doi: 10.1109/ICDM.2010.151.
- T. de Vries, S. Chawla, and M. E. Houle. Density-preserving projections for large-scale local anomaly detection. *Knowledge and Information Systems* (*KAIS*), 32(1):25–52, 2012. doi: 10.1007/s10115-011-0430-4.
- J. M. Geusebroek, G. J. Burghouts, and A.W.M. Smeulders. The Amsterdam Library of Object Images. *International Journal of Computer Vision*, 61(1): 103–112, 2005. doi: 10.1023/B:VISI.0000042993.50813.60.
- A. Ghoting, S. Parthasarathy, and M. E. Otey. Fast mining of distance-based outliers in high-dimensional datasets. *Data Mining and Knowledge Discovery*, 16(3):349–364, 2008. doi: 10.1007/s10618-008-0093-2.
- D. Hawkins. Identification of Outliers. Chapman and Hall, 1980.
- D. Hilbert. Ueber die stetige Abbildung einer Linie auf ein Flächenstück. *Mathematische Annalen*, 38(3):459–460, 1891.



## References V

| Outlier     |
|-------------|
| Detection   |
| in High-    |
| Dimensional |
| Data        |

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

"Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion References M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Can shared-neighbor distances defeat the curse of dimensionality? In *Proceedings* of the 22nd International Conference on Scientific and Statistical Database Management (SSDBM), Heidelberg, Germany, pages 482–500, 2010. doi: 10.1007/978-3-642-13818-8\_34.

M. E. Houle, H. Kashima, and M. Nett. Generalized expansion dimension. In *ICDM* Workshop Practical Theories for Exploratory Data Mining (PTDM), 2012a.

M. E. Houle, X. Ma, M. Nett, and V. Oria. Dimensional testing for multi-step similarity search. In *Proceedings of the 12th IEEE International Conference on Data Mining (ICDM), Brussels, Belgium*, 2012b.

P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In *Proceedings of the thirtieth annual ACM symposium on Theory of computing (STOC), Dallas, TX*, pages 604–613, 1998. doi: 10.1145/276698.276876.

W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In *Conference in Modern Analysis and Probability*, volume 26 of *Contemporary Mathematics*, pages 189–206. American Mathematical Society, 1984.



# References VI

| Outlier     |
|-------------|
| Detection   |
| in High-    |
| Dimensional |
| Data        |

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion References F. Keller, E. Müller, and K. Böhm. HiCS: high contrast subspaces for density-based outlier ranking. In *Proceedings of the 28th International Conference on Data Engineering (ICDE), Washington, DC*, 2012.

E. M. Knorr and R. T. Ng. A unified notion of outliers: Properties and computation. In Proceedings of the 3rd ACM International Conference on Knowledge Discovery and Data Mining (KDD), Newport Beach, CA, pages 219–222, 1997.

H.-P. Kriegel, P. Kröger, M. Schubert, and Z. Zhu. Efficient query processing in arbitrary subspaces using vector approximations. In *Proceedings of the 18th International Conference on Scientific and Statistical Database Management* (SSDBM), Vienna, Austria, pages 184–190, 2006. doi: 10.1109/SSDBM.2006.23.

H.-P. Kriegel, M. Schubert, and A. Zimek. Angle-based outlier detection in high-dimensional data. In *Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Las Vegas, NV*, pages 444–452, 2008. doi: 10.1145/1401890.1401946.

H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Outlier detection in axis-parallel subspaces of high dimensional data. In *Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Bangkok, Thailand*, pages 831–838, 2009a. doi: 10.1007/978-3-642-01307-2\_86.



LMU

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

### References VII

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data<br>A. Zimek,<br>E. Schubert,<br>HP. Kriegel | HP. Kriegel, P. Kröger, E. Schubert, and A. Zimek. LoOP: local outlier<br>probabilities. In <i>Proceedings of the 18th ACM Conference on Information and</i><br><i>Knowledge Management (CIKM), Hong Kong, China</i> , pages 1649–1652,<br>2009b. doi: 10.1145/1645953.1646195.           |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                     | HP. Kriegel, P. Kröger, and A. Zimek. Clustering high dimensional data: A survey<br>on subspace clustering, pattern-based clustering, and correlation clustering.<br><i>ACM Transactions on Knowledge Discovery from Data (TKDD)</i> , 3(1):1–58,<br>2009c. doi: 10.1145/1497577.1497578. |
| Dimensionality"<br>Efficiency and<br>Effectiveness<br>Subspace Outlier                              | HP. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Interpreting and unifying<br>outlier scores. In <i>Proceedings of the 11th SIAM International Conference on</i><br><i>Data Mining (SDM), Mesa, AZ</i> , pages 13–24, 2011.                                                             |
| Discussion<br>References                                                                            | HP. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Outlier detection in arbitrarily<br>oriented subspaces. In <i>Proceedings of the 12th IEEE International</i><br><i>Conference on Data Mining (ICDM), Brussels, Belgium</i> , 2012a.                                                    |
|                                                                                                     | HP. Kriegel, P. Kröger, and A. Zimek. Subspace clustering. <i>Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery</i> , 2(4):351–364, 2012b.                                                                                                                             |
|                                                                                                     | A. Lazarevic and V. Kumar. Feature bagging for outlier detection. In Proceedings<br>of the 11th ACM International Conference on Knowledge Discovery and Data<br>Mining (SIGKDD), Chicago, IL, pages 157–166, 2005. doi:                                                                   |

10.1145/1081870.1081891.



#### References VIII

| Outlier     |
|-------------|
| Detection   |
| in High-    |
| Dimensional |
| Data        |

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

"Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion X. Lian and L. Chen. Similarity search in arbitrary subspaces under Lp-norm. In Proceedings of the 24th International Conference on Data Engineering (ICDE), Cancun, Mexico, pages 317–326, 2008. doi: 10.1109/ICDE.2008.4497440.

T. Low, C. Borgelt, S. Stober, and A. Nürnberger. The hubness phenomenon: Fact or artifact? In C. Borgelt, M. Á. Gil, J. M. C. Sousa, and M. Verleysen, editors, *Towards Advanced Data Analysis by Combining Soft Computing and Statistics*, Studies in Fuzziness and Soft Computing, pages 267–278. Springer Berlin / Heidelberg, 2013.

G. M. Morton. A computer oriented geodetic data base and a new technique in file sequencing. Technical report, International Business Machines Co., 1966.

E. Müller, I. Assent, U. Steinhausen, and T. Seidl. OutRank: ranking outliers in high dimensional data. In *Proceedings of the 24th International Conference on Data Engineering (ICDE) Workshop on Ranking in Databases (DBRank), Cancun, Mexico*, pages 600–603, 2008. doi: 10.1109/ICDEW.2008.4498387.

E. Müller, M. Schiffer, and T. Seidl. Adaptive outlierness for subspace outlier ranking. In *Proceedings of the 19th ACM Conference on Information and Knowledge Management (CIKM), Toronto, ON, Canada*, pages 1629–1632, 2010. doi: 10.1145/1871437.1871690.



MU

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

# References IX

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data<br>A. Zimek,<br>E. Schubert,<br>HP. Kriegel | E. Müller, M. Schiffer, and T. Seidl. Statistical selection of relevant subspace<br>projections for outlier ranking. In <i>Proceedings of the 27th International</i><br><i>Conference on Data Engineering (ICDE), Hannover, Germany</i> , pages<br>434–445, 2011. doi: 10.1109/ICDE.2011.5767916.                                          |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                     | E. Müller, I. Assent, P. Iglesias, Y. Mülle, and K. Böhm. Outlier ranking via<br>subspace analysis in multiple views of the data. In <i>Proceedings of the 12th</i><br><i>IEEE International Conference on Data Mining (ICDM), Brussels, Belgium</i> ,<br>2012.                                                                            |
| Dimensionality"<br>Efficiency and<br>Effectiveness<br>Subspace Outlier<br>Discussion                | W. Müller and A. Henrich. Faster exact histogram intersection on large data<br>collections using inverted VA-files. In <i>Proceedings of the 3rd International</i><br><i>Conference on Image and Video Retrieval (CIVR), Dublin, Ireland</i> , pages<br>455–463, 2004. doi: 10.1007/978-3-540-27814-6_54.                                  |
| References                                                                                          | H. V. Nguyen, H. H. Ang, and V. Gopalkrishnan. Mining outliers with ensemble of<br>heterogeneous detectors on random subspaces. In <i>Proceedings of the 15th</i><br><i>International Conference on Database Systems for Advanced Applications</i><br>(DASFAA), Tsukuba, Japan, pages 368–383, 2010. doi:<br>10.1007/978-3-642-12026-8_29. |



## References X

| Outlier     |
|-------------|
| Detection   |
| in High-    |
| Dimensional |
| Data        |

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction

"Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion

hu.

References

H. V. Nguyen, V. Gopalkrishnan, and I. Assent. An unbiased distance-based outlier detection approach for high-dimensional data. In *Proceedings of the* 16th International Conference on Database Systems for Advanced Applications (DASFAA), Hong Kong, China, pages 138–152, 2011. doi: 10.1007/978-3-642-20149-3\_12.

G. Peano. Sur une courbe, qui remplit toute une aire plane. *Mathematische Annalen*, 36(1):157–160, 1890. doi: 10.1007/BF01199438.

N. Pham and R. Pagh. A near-linear time approximation algorithm for angle-based outlier detection in high-dimensional data. In *Proceedings of the 18th ACM International Conference on Knowledge Discovery and Data Mining* (SIGKDD), Beijing, China, 2012.

M. Radovanović, A. Nanopoulos, and M. Ivanović. Nearest neighbors in high-dimensional data: the emergence and influence of hubs. In *Proceedings* of the 26th International Conference on Machine Learning (ICML), Montreal, QC, Canada, pages 865–872, 2009. doi: 10.1145/1553374.1553485.

M. Radovanović, A. Nanopoulos, and M. Ivanović. Hubs in space: Popular nearest neighbors in high-dimensional data. *Journal of Machine Learning Research*, 11:2487–2531, 2010.



I ML

## References XI

Outlier Detection in High-Dimensional Data

A. Zimek, E. Schubert, H.-P. Kriegel

Introduction "Curse of Dimensionality" Efficiency and Effectiveness Subspace Outlier Discussion

References

ш

S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In *Proceedings of the ACM International Conference on Management of Data (SIGMOD), Dallas, TX*, pages 427–438, 2000.

E. Schubert, R. Wojdanowski, A. Zimek, and H.-P. Kriegel. On evaluation of outlier rankings and outlier scores. In *Proceedings of the 12th SIAM International Conference on Data Mining (SDM), Anaheim, CA*, pages 1047–1058, 2012a.

E. Schubert, A. Zimek, and H.-P. Kriegel. Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection. *Data Mining and Knowledge Discovery*, 2012b.

K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong. A survey on enhanced subspace clustering. *Data Mining and Knowledge Discovery*, 2012. doi: 10.1007/s10618-012-0258-x.

N. H. Vu and V. Gopalkrishnan. Feature extraction for outlier detection in high-dimensional spaces. *Journal of Machine Learning Research*, Proceedings Track 10:66–75, 2010.

Y. Wang, S. Parthasarathy, and S. Tatikonda. Locality sensitive outlier detection: A ranking driven approach. In *Proceedings of the 27th International Conference* on Data Engineering (ICDE), Hannover, Germany, pages 410–421, 2011. doi: 10.1109/ICDE.2011.5767852.



LMU

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

# References XII

| Outlier<br>Detection<br>in High-<br>Dimensional<br>Data                         | J. Zhang, M. Lou, T. W. Ling, and H. Wang. HOS-miner: A system for detecting<br>outlying subspaces of high-dimensional data. In <i>Proceedings of the 30th</i><br><i>International Conference on Very Large Data Bases (VLDB), Toronto, Canada,</i><br>pages 1265–1268, 2004. |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. Zimek,<br>E. Schubert,<br>HP. Kriegel                                        | A. Zimek. Correlation Clustering. PhD thesis, Ludwig-Maximilians-Universität<br>München, Munich, Germany, 2008.                                                                                                                                                               |
| Introduction<br>"Curse of<br>Dimensionality"<br>Efficiency and<br>Effectiveness | A. Zimek, E. Schubert, and HP. Kriegel. A survey on unsupervised outlier<br>detection in high-dimensional numerical data. <i>Statistical Analysis and Data</i><br><i>Mining</i> , 5(5):363–387, 2012. doi: 10.1002/sam.11161.                                                 |
| Subspace Outlier                                                                |                                                                                                                                                                                                                                                                               |
| Discussion                                                                      |                                                                                                                                                                                                                                                                               |
| References                                                                      |                                                                                                                                                                                                                                                                               |
|                                                                                 |                                                                                                                                                                                                                                                                               |
|                                                                                 |                                                                                                                                                                                                                                                                               |