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Abstract
Local Coordinate Coding (LCC), introduced
in (Yu et al., 2009), is a high dimensional non-
linear learning method that explicitly takes
advantage of the geometric structure of the
data. Its successful use in the winning sys-
tem of last year’s Pascal image classification
Challenge (Everingham, 2009) shows that the
ability to integrate geometric information is
critical for some real world machine learn-
ing applications. This paper further devel-
ops the idea of integrating geometry in ma-
chine learning by extending the original LCC
method to include local tangent directions.
These new correction terms lead to better
approximation of high dimensional nonlinear
functions when the underlying data manifold
is locally relatively flat. The method signif-
icantly reduces the number of anchor points
needed in LCC, which not only reduces com-
putational cost, but also improves prediction
performance. Experiments are included to
demonstrate that this method is more effec-
tive than the original LCC method on some
image classification tasks.

1. Introduction

This paper considers the problem of learning a non-
linear function f(x) in high dimension: x ∈ Rd
with large d. We are given a set of labeled data
(x1, y1), . . . , (xn, yn) drawn from an unknown under-
lying distribution. Moreover, we assume that an ad-
ditional set of unlabeled data x ∈ Rd from the same
distribution may be observed.

If the dimensionality d is large compared to n, then the
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traditional statistical theory predicts over-fitting due
to the so called “curse of dimensionality”. However,
for many real problems with high dimensional data,
we do not observe this so-called curse of dimensional-
ity. This is because although data are physically repre-
sented in a high-dimensional space, they often lie (ap-
proximately) on a manifold which has a much smaller
intrinsic dimensionality.

A new learning method, called Local Coordinate Cod-
ing or LCC, was recently introduced in (Yu et al.,
2009) to take advantage of the manifold geometric
structure to learn a nonlinear function in high dimen-
sion. The method was successfully applied to image
classification tasks. In particular, it was the under-
lying method of the winning system for the Pascal
image classification challenge last year (Everingham,
2009). Moreover, that system only used simple SIFT
features that are standard in the literature, which im-
plies that the success was due to the better learning
method rather than better features. The reason for
LCC’s success for image classification is due to its abil-
ity to effectively employ geometric structure which is
particularly important in some real applications in-
cluding image classification.

The main idea of LCC, described in (Yu et al., 2009),
is to locally embed points on the underlying data man-
ifold into a lower dimensional space, expressed as co-
ordinates with respect to a set of anchor points. The
main theoretical observation was relatively simple: it
was shown in (Yu et al., 2009) that on the data man-
ifold, a nonlinear function can be effectively approxi-
mated by a globally linear function with respect to the
local coordinate coding. Therefore the LCC approach
turns a very difficult high dimensional nonlinear learn-
ing problem into a much simpler linear learning prob-
lem, which can be effectively solved using standard
machine learning techniques such as regularized linear
classifiers. This linearization is effective because the
method naturally takes advantage of the geometric in-



LCC with local tangents

formation.

However, LCC has a major disadvantage, which this
paper attempts to fix. In order to achieve high per-
formance, one has to use a large number of so-called
“anchor points” to approximate a nonlinear function
well. Since the “coding” of each data point x requires
solving a Lasso problem with respect to the anchor
points, it becomes computationally very costly when
the number of anchor points becomes large.

Note that according to (Yu et al., 2009), the LCC
method is a local linear approximation of a nonlin-
ear function. For smooth but highly nonlinear func-
tions, local linear approximation may not necessarily
be optimal, which means that many anchor points are
needed to achieve accurate approximation. This paper
considers an extension of the local coordinate coding
idea by including quadratic approximation terms. As
we shall see, the new terms introduced in this paper
correspond to local tangent directions.

Similar to LCC, the new method also takes advan-
tage of the underlying geometry, and its complex-
ity depends on the intrinsic dimensionality of the
manifold instead of d. It has two main advantages
over LCC. First, globally it can perfectly represent a
quadratic function, which means that a smooth non-
linear function can be better approximated under the
new scheme. Second, it requires a smaller number of
anchor points than LCC, and thus reduces the compu-
tational cost.

The paper is organized as follows. In Section 2, we
review the basic idea of LCC and the approximation
bound that motivated the method. We then develop
an improved bound by including quadratic approxima-
tion terms in Lemma 2.2. This bound is the theoretical
basis of our new algorithm. Section 3 develops a more
refined bound if the data lie on a manifold. We show
in Lemma 3.1 that the new terms correspond to local
tangent directions. Lemma 3.1 in Section 3 motivates
the actual algorithm which we describe in Section 4.
Section 5 shows the advantage of the improved LCC
algorithm on some image classification problems. Con-
cluding remarks are given in Section 6.

2. Local Coordinate Coding and its
Extension

We are interested in learning a smooth nonlinear func-
tion f(x) defined on a high dimensional space Rd. In
this paper, we denote by ‖ · ‖ an inner product norm
on Rd. The default choice is the Euclidean norm (2-

norm):

‖x‖ = ‖x‖2 =
√
x21 + · · ·+ x2d.

Definition 2.1 (Smoothness Conditions) A
function f(x) on Rd is (α, β, ν) Lipschitz smooth with
respect to a norm ‖ · ‖ if

|∇f(x)>(x′ − x)| ≤ α‖x− x′‖,

and∣∣f(x′)− f(x)−∇f(x)>(x′ − x)∣∣ ≤ β‖x− x′‖2,
and ∣∣f(x′)− f(x)− 0.5(∇f(x′) +∇f(x))>(x′ − x)

∣∣
≤ν‖x− x′‖3,

where we assume α, β, ν ≥ 0.

The parameter α is the Lipschitz constant of f(x),
which is finite if f(x) is Lipschitz; in particular, if f(x)
is constant, then α = 0. The parameter β is the Lips-
chitz derivative constant of f(x), which is finite if the
derivative ∇f(x) is Lipschitz; in particular, if ∇f(x)
is constant (that is, f(x) is a linear function of x),
then β = 0. The parameter ν is the Lipschitz Hes-
sian constant of f(x), which is finite if the Hessian of
f(x) is Lipschitz; in particular, if the Hessian ∇2f(x)
is constant (that is, f(x) is a quadratic function of x),
then ν = 0. In other words, these parameters measure
different levels of smoothness of f(x): locally when
‖x − x′‖ is small, α measures how well f(x) can be
approximated by a constant function, β measures how
well f(x) can be approximated by a linear function in
x, and ν measures how well f(x) can be approximated
by a quadratic function in x. For local constant ap-
proximation, the error term α‖x−x′‖ is the first order
in ‖x − x′‖; for local linear approximation, the error
term β‖x−x′‖2 is the second order in ‖x−x′‖; for local
quadratic approximation, the error term β‖x− x′‖3 is
the third order in ‖x− x′‖. That is, if f(x) is smooth
with relatively small α, β, ν, the error term becomes
smaller (locally when ‖x − x′‖ is small) if we use a
higher order approximation.

The following definition is copied from (Yu et al.,
2009).

Definition 2.2 (Coordinate Coding) A coordi-
nate coding is a pair (γ,C), where C ⊂ Rd is a
set of anchor points, and γ is a map of x ∈ Rd to
[γv(x)]v∈C ∈ R|C| such that

∑
v γv(x) = 1. It induces

the following physical approximation of x in Rd:

hγ,C(x) =
∑
v∈C

γv(x)v.
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Moreover, for all x ∈ Rd, we define the coding norm
as

‖x‖γ,C =

(∑
v∈C

γv(x)
2

)1/2

.

The importance of the coordinate coding concept is
that if a coordinate coding is sufficiently localized, then
a nonlinear function can be approximate by a linear
function with respect to the coding. The following
lemma is a slightly different version of a corresponding
result in (Yu et al., 2009), where the definition of α was
slightly different. We employs the current definition
of α so that results in Lemma 2.1 and Lemma 2.2 are
more compatible.

Lemma 2.1 (LCC Approximation) Let (γ,C) be
an arbitrary coordinate coding on Rd. Let f be an
(α, β, ν)-Lipschitz smooth function. We have for all
x ∈ Rd:∣∣∣∣∣f(x)−∑

v∈C
γv(x)f(v)

∣∣∣∣∣
≤α ‖x− hγ,C(x)‖+ β

∑
v∈C
|γv(x)|‖v − x‖2. (1)

This result shows that a high dimensional nonlinear
function can be globally approximated by a linear
function with respect to the coding [γv(x)], with un-
known linear coefficients [f(v)]v∈C . More precisely, it
suggests the following learning method: for each x, we
use its coding [γv(x)] ∈ R|C| as features. We then learn
a linear function of the form

∑
v wvγv(x) using a stan-

dard linear learning method such as SVM. Here [wv]
is the unknown coefficient vector. The optimal coding
can be learned using unlabeled data by optimizing the
right hand side of (1) over unlabeled data. Details can
be found in (Yu et al., 2009). The method is also re-
lated to sparse coding (Lee et al., 2007; Raina et al.,
2007), which enforces sparsity but not locality. It was
argued in (Yu et al., 2009) from both theoretical and
empirical perspectives that locality is more important
than sparsity. This paper follows the same line of the-
oretical consideration as in (Yu et al., 2009), and our
theory relies on the locality concept as well.

A simple coding scheme is vector quantization, or VQ
(Gray & Neuhoff, 1998), where γv(x) = 1 if v = v∗(x)
is the nearest neighbor of x in codebook C, and
γv(x) = 0 otherwise. Since VQ is a special case of
coordinate coding, its approximation quality can be
characterized using Lemma 2.1 as follows. We have

hγ,C(x) = v∗(x) and∣∣∣∣∣f(x)−∑
v∈C

γv(x)f(v)

∣∣∣∣∣
≤α ‖x− v∗(x)‖+ β‖v∗(x)− x‖2.

This method leads to local constant approximation
of f(x), where the main error is the first order term
α ‖x− v∗(x)‖.

A better coding can be obtained by optimizing the
right hand side of (1), which leads to the LCC method
(Yu et al., 2009). The key advantage of LCC over
VQ is that with appropriate local coordinate coding,
hγ,C(x) linearly approximates x, hence the main error
term ‖x − hγ,C(x)‖ can be significantly reduced. In
particular, it was illustrated in (Yu et al., 2009) that
for a smooth manifold, one can choose an appropriate
codebook C with size depending on the intrinsic di-
mensionality such that the error term ‖x−hγ,C(x)‖ =
O(ε2) is second order in ε, which represents the av-
erage distance of two near-by anchor points in C. In
other words, the approximation power of LCC is lo-
cal linear approximation. In contrast, the VQ method
corresponds to locally constant approximation, where
the error term ‖x− hγ,C(x)‖ = ‖x− v∗(x)‖ = O(ε) is
first order in ε. Therefore, from the function approxi-
mation point of view, the advantage of LCC over VQ is
due to the benefit of 1st order (linear) approximation
over 0th order (constant) approximation.

In the same spirit, we can generalize LCC by includ-
ing higher order correction terms. One idea, which
we introduce in this paper, is to employ additional di-
rections into the coding, which can achieve second or-
der approximation for relatively locally flat manifolds.
The method is motivated from the following function
approximation bound, which improves the LCC bound
in Lemma 2.1.

Lemma 2.2 (Extended LCC Approximation)
Let (γ,C) be an arbitrary coordinate coding on Rd.
Let f be an (α, β, ν)-Lipschitz smooth function. We
have for all x ∈ Rd:∣∣∣∣∣f(x)−∑

v∈C
γv(x)

(
f(v) + 0.5∇f(v)>(x− v)

)∣∣∣∣∣
≤0.5α ‖x− hγ,C(x)‖+ ν

∑
v∈C
|γv(x)| ‖v − x‖3 . (2)

In order to use Lemma 2.2, we embed each x to
extended local coordinate coding [γv(x); γv(x)(x −
v)]v∈C ∈ R|C|(1+d). Now, a nonlinear function f(x)
can be approximated by a linear function of the
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extended coding scheme with unknown coefficients
{f(v), 0.5∇f(v)} (where v ∈ C). This method adds
additional vector features γv(x)(x − v) into the orig-
inal coding scheme. Although the explicit number of
features in (2) depends on the dimensionality d, we
show later that for manifolds, the effective directions
can be reduced to tangent directions that depend only
on the intrinsic dimensionality of the underlying man-
ifold.

If we compare (2) to (1), the first term on the right
hand side is similar. That is, the extension does not
improve this term. Note that this error term is small
when x can be well approximated by a linear combina-
tion of local anchor points in C, which happens when
the underlying manifold is relatively flat. The new ex-
tension improves the second term on the right hand
side, where local linear approximation (measured by
β) is replaced by local quadratic approximation (mea-
sured by ν). In particular, the second term vanishes
if f(x) is globally a quadratic function in x because
ν = 0. See discussions after Definition 2.1.

More generally, if f(x) is a smooth function, then
2nd order approximation gives a 3rd order error term
O(‖v − x‖3) in (2), compared to the 2nd order er-
ror term O(‖v − x‖2) in (1) resulted from 1st order
approximation. The new method can thus yield im-
provement over the original LCC method if the sec-
ond term on the right hand side of (1) is the dominant
error term. In fact, our experiments show that this
new method indeed improves LCC in practical prob-
lems. Another advantage of the new method is that
the codebook size |C| needed to achieve a certain ac-
curacy becomes smaller, which reduces the computa-
tional cost for encoding: the encoding step requires
solving a Lasso problem for each x, and the size of
each Lasso problem is |C|.

Note that the extended coding scheme considered
in Lemma 2.2 adds a d-dimensional feature vector
γv(x)(x − v) for each anchor v ∈ C. Therefore the
complexity depends on d. However, if the data lie
on a manifold, then one can reduce this complexity to
the intrinsic dimensionality of the manifold using local
tangent directions. We shall illustrate this idea more
formally in the next section.

3. Data Manifolds

Similar to (Yu et al., 2009), we consider the following
definition of manifold and its intrinsic dimensionality.

Definition 3.1 (Smooth manifold) A subsetM⊂
Rd is called a smooth manifold with intrinsic di-
mensionality m = m(M) if there exists a con-

stant c(M) such that given any x ∈ M, there ex-
ist m vectors (which we call tangent directions at x)
u1(x), . . . , um(x) ∈ Rd so that ∀x′ ∈M:

inf
γ∈Rm

∥∥∥∥∥∥x′ − x−
m∑
j=1

γjuj(x)

∥∥∥∥∥∥ ≤ c(M)‖x′ − x‖2.

Without loss of generality, we assume that the tangent
directions ‖uj(x)‖ = 1 for all x and j.

In this paper, we are mostly interested in the situation
that the manifold is relatively locally flat, which means
that the constant c(M) is small. Algorithmically, the
local tangent directions uk(v) can be found using local
PCA, as described in the next section. Therefore for
practical purpose one can always increase m to reduce
the quantity c(M). That is, we treat m as a tuning
parameter in the algorithm. If m is sufficiently large,
then c(M) becomes small compared to β in Defini-
tion 2.1. If we set m = d, then c(M) = 0. The ap-
proximation bound in the following lemma refines that
of Lemma 2.2 because it only relies on local tangents
with dimensionality m.

Lemma 3.1 (LCC with local Tangents) Let M
be a smooth manifold with intrinsic dimensionality
m = m(M). Then∣∣∣∣∣f(x)−∑

v∈C
f(v)γv(x)

−0.5
∑
v∈C

m∑
k=1

(∇f(v)>uk(v))((x− v)>uk(v))

∣∣∣∣∣
≤0.5α ‖x− hγ,C(x)‖+ 0.5αc(M)

∑
v∈C
|γv(x)|‖x− v‖2

+ ν
∑
v∈C
|γv(x)|‖x− v‖3.

In this representation, we effectively use the reduced
feature set [γv(x); γv(x)(x − v)>uk(v)]v∈C,k=1,...,m,
which corresponds to a linear dimension reduction of
the extended LCC scheme in Lemma 2.2. These direc-
tions can be found through local PCA, as shown in the
next section. The bound is comparable to Lemma 2.2
when c(M) is small (with the appropriately chosenm),
which is also assumed in Lemma 2.2 (see discussions
thereafter). It improves the approximation result of
the original LCC method in Lemma 2.2 if the main
error term in (1) is the second term on the right hand
side (again, this happens when c(M) is small relatively
to β).

While the result in Lemma 3.1 only justifies the new
method we propose in this paper when c(M) is small,
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we shall note that a similar argument holds when x
lies on a noisy manifold. This is because in such case,
the error caused by the first term on the right hand
side of (1) has an inherent noise which cannot be re-
duced. Therefore it is more important to reduce the
error caused by the second term on the right hand side
of (1). A more rigorous statement can be developed in
a style similar to Lemma 3.1, which we exclude from
the current paper for simplicity.

4. Algorithm

Based on Lemma 3.1, we suggest the following al-
gorithm which is a simple modification of the LCC
method in (Yu et al., 2009) by including tangent di-
rections that can be computed through local PCA.

• Learn LCC coding (γ,C) using the method de-
scribed in (Yu et al., 2009).

• For each v ∈ C, using (local) PCA to find m prin-
cipal components u1(v), . . . , um(v) with weighted
training data γv(x)(x−v), where x belongs to the
original training set.

• For each x, compute coding γv(x) (v ∈
C), and form the extended coding γ̃(x) =
[sγv(x), γv(x)(x − v)>uj(v)]v∈C,j=1,...,m, where s
is a positive scaling factor to balance the two types
of codes.

• Learn a linear classifier of the form w>γ̃(x), with
γ̃(x) as features.

In addition, we empirically find that standard sparse
coding can be improved in a similar way, if we let (γ,C)
in the first step be the result of sparse coding.

5. Experiments

In the following, we show that the improved LCC can
achieve even better performance on image classifica-
tion problems where LCC is known to be effective.

5.1. Handwritten Digit Recognition (MNIST)

Our first example is based on the MNIST handwritten
digit recognition benchmark, where each data point is
a 28×28 gray image, and pre-normalized into a unitary
784-dimensional vector. Our focus here is on checking
whether a good nonlinear classifier can be obtained if
we use LCC with local tangents as data representation,
and then apply simple one-against-all linear SVMs.

In the experiments we try different sizes of bases. The
parameters s, the weight of γv(x), and m, the com-

ponents of local PCA are both chosen based on cross-
validation of classification results on the training data.
It turns out that s = 0 and m = 64 is the best choice
across different settings. The classification error rates
are provided in Table 2.

In addition we compare the classification performances
under different linear classifier on raw images, lo-
cal kernel smoothing based on K-nearest neighbors,
and linear classifiers using representations obtained
from various unsupervised learning methods, includ-
ing autoencoder based on deep belief networks (DBN)
(Hinton & Salakhutdinov, 2006), Laplacian eigenmaps
(LE) (Belkin & Niyogi, 2003), locally linear embed-
ding (LLE) (Roweis & Saul, 2000), VQ coding based
on K-means, sparse coding (SC), and original LCC.
We note that, like most of other manifold learning ap-
proaches, LE or LLE is a transductive method which
has to incorporate both training and testing data in
training.

The comparison results are summarized in Table 1.
Both SC and LCC perform quite good for this non-
linear classification task, significantly outperforming
linear classifiers on raw images. In addition, LCC us-
ing local tangents is consistently better than all the
other methods across various basis sizes. Among those
compared methods in Table 1, we note that the error
rate 1.2% of DBN reported in (Hinton & Salakhutdi-
nov, 2006) was obtained via unsupervised pre-training
followed by supervised backpropagation. The error
rate based on unsupervised training of DBN is about
1.90%. Therefore our result is the state-of-the-art
among those that are based on unsupervised feature
learning on MNIST, without using any convolution op-
eration. The results also suggest that, compared with
original LCC using 4096 bases, the improved version
can achieve a similar accuracy by using only 512 bases.

Table 1. Error rates (%) of MNIST classification with dif-
ferent methods.

Methods Error Rate
Linear SVM with raw images 12.0
Linear SVM with VQ 3.98
Local kernel smoothing 3.48
Linear SVM with LE 2.73
Linear SVM with LLE 2.38
Linear classifier with DBN 1.90
Linear SVM with SC 2.02
Linear SVM with LCC 1.90
Linear SVM with improved LCC 1.64



LCC with local tangents

Table 2. Error rates (%) of MNIST classification with dif-
ferent basis sizes, by using linear SVM.

|C| 512 1024 2048 4096
LCC 2.64 2.44 2.08 1.90
Improved LCC 1.95 1.82 1.78 1.64

5.2. Image Classification (CIFAR10)

The CIFAR-10 dataset is a labeled subset of the 80
million tiny images dataset (Torralba et al., 2008).
It was collected by Vinod Nair and Geoffrey Hinton
(Krizhevsky & Hinton, 2009), where all the images
were manually labeled. The dataset consists of 60000
32×32 color images in 10 classes, 6000 images per class.
There are 50000 training images and 10000 test im-
ages. The dataset is divided into five training batches
and one test batch, each with 10000 images. The test
batch contains exactly 1000 randomly-selected images
from each class. The training batches contain the re-
maining images in random order, but some training
batches may contain more images from one class than
another. Between them, the training batches contain
exactly 5000 images from each class. Example images
are shown in Figure 1.

We treat each color image as a 32 × 32 × 3 = 3072
dimensional vector, and pre-normalize it to ensure the
unitary length of each vector. Due to the high level
of redundancy cross R/G/B channels, we reduce the
dimensionality to 512 by using PCA, while still retain-
ing 99% of the data variances. Since our purpose here
is to obtain good feature vectors for linear classifiers,
our baseline is a linear SVM directly trained on this
512-dimensional feature representation. We train LCC
with different dictionary sizes on this data set and then
apply both LCC coding and the improved version with
local tangents. Linear SVMs are then trained on the
new presentations of the training data. The classifi-
cation accuracy of both LCC methods under different
dictionary sizes is given in Table 4. Similar to what
we did for MNIST, the optimal parameters s = 10
and m = 256 are determined via cross-validation on
training data. We can see that local tangent expan-
sion again consistently improves the quality of features
in terms of better classification accuracy. It is also ob-
served that a larger dictionary size leads to a better
classification accuracy, as the best result is obtained
with the dictionary size 4096. The trend implies a
better performance might be reached if we further in-
crease the dictionary size, which however requires more
computation and unlabeled training data.

The prior state of the art performance on this data

set was obtained by Restricted Boltzmann Machines
(RBMs) reported in (Krizhevsky & Hinton, 2009),
whose results are listed in Table 3. The compared
methods are

• 10000 Backprop autoencoder: the features were
learned from the 10000 logistic hidden units of a
two-layer autoencoder neural network trained by
back propagation.

• 10000 RBM Layer2: a stack of two RBMs with
two layers of hidden units, trained with contrast
divergence.

• 10000 RBM Layer2 + finetuning: the feed-
forward weights of RBMs are fine-tuned by su-
pervised back propagation using the information
labels.

• 10000 RBM: a layer of RBM with 10000 hidden
units, which produces 10000 dimensional features
via unsupervised contrastive divergence training.

• 10000 RBM + finetuning: the single layer RBM
is further trained by supervised back propagation.
This method gives the best results in the paper.

As we can see, both results of LCC significantly out-
perform the best result of RBMs, which suggests that
the feature representations obtained by LCC methods
are very useful for image classification tasks.

Table 3. Classification accuracy (%) on CIFAR-10 image
set with different methods.

Methods Accuracy Rate
Raw pixels 43.2
10000 Backprop autoencoder 51.5
10000 RBM Layer2 58.0
10000 RBM Layer2 + finetuning 62.2
10000 RBM 63.8
10000 RBM + finetuning 64.8
Linear SVM with LCC 72.3
Linear SVM with improved LCC 74.5

Table 4. Classification accuracy (%) on CIFAR-10 image
set with different basis sizes, by using linear SVM.

|C| 512 1024 2048 4096
LCC 50.8 56.8 64.4 72.3
Improved LCC 55.3 59.7 66.8 74.5
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Figure 1. Examples of tiny images from CIFAR-10

6. Discussions

This paper extends the LCC method by including lo-
cal tangent directions. Similar to LCC, which may be
regarded as the soft version of VQ that linearly in-
terpolates local VQ points, the new method may be
regarded as the soft version of local PCA that lin-
early interpolates local PCA directions. This soft in-
terpolation allows the possibility to achieve second or-
der approximation when the underlying data manifold
is relatively locally flat, as shown in Lemma 2.2 and
Lemma 3.1.

Experiments demonstrate that this new method is su-
perior to LCC for image classification. First, the new
method requires a significantly smaller number of an-
chor points to achieve a certain level of accuracy, which
is important computationally because the coding step
is significantly accelerated. Second, it improves pre-
diction performance on some real problems.

However, theoretically, the bound in Lemma 3.1 only
shows improvement over the LCC bound in Lemma 2.1
when the underlying manifold is locally flat (although
similar conclusion holds when the manifold is noisy, as
remarked after Lemma 3.1). At least theoretically our
analysis does not show how much value the added local
tangents has over LCC when the underlying manifold
is far from locally flat. Since we do not have a reliably

way to empirically estimate the local flatness of a data
manifold (e.g. the quantity c(M) in Definition 3.1),
we do not have good empirical results illustrating the
impact of manifold’s “flatness” either. Therefore it re-
mains an open issue to develop other coding schemes
that are provably better than LCC even when the un-
derlying manifold is not locally flat.

In our experiments, we treat each image as a single
data vector for coding. But in the practice of image
classification, to handle spatial invariance, we need to
apply coding methods on local patches of the image
and then use some pooling strategy on top of that.
This is well-aligned with the architecture of convolu-
tion neural networks (LeCun et al., 1998). However,
what is the best strategy for pooling has not been un-
derstood theoretically. In particular, we want to un-
derstand the interplay of coding on local patches and
the classification function defined on images, which re-
mains an interesting open problem.
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A. Proofs

For notation simplicity, let γv = γv(x) and x′ =
hγ,C(x) =

∑
v∈C γvv.

A.1. Proof of Lemma 2.1

We have∣∣∣∣∣f(x)−∑
v∈C

γvf(v)

∣∣∣∣∣
=

∣∣∣∣∣∑
v∈C

γv
(
f(v)− f(x)−∇f(x)>(v − x′)

)∣∣∣∣∣
≤
∣∣∣∇f(x)>(x− x′)∣∣∣+ ∣∣∣∣∣∑

v∈C

γv
(
f(v)− f(x)−∇f(x)>(v − x)

)∣∣∣∣∣
≤
∣∣∣∇f(x)>(x− x′)∣∣∣+ β

∑
v∈C

|γv|‖x− v‖2

≤α‖x− x′‖+ β
∑
v∈C

|γv|‖x− v‖2.

A.2. Proof of Lemma 2.2

We have∣∣∣∣∣f(x)−∑
v∈C

γv
(
f(v) + 0.5∇f(v)>(x− v)

)∣∣∣∣∣
=

∣∣∣∣∣∑
v∈C

γv
(
f(v)− f(x)− 0.5∇f(x)>(v − x′)

+0.5∇f(v)>(x− v)
)∣∣∣

≤0.5
∣∣∣∇f(x)>(x− x′)∣∣∣

+

∣∣∣∣∣∑
v∈C

γv
(
f(v)− f(x)− 0.5(∇f(x) +∇f(v))>(v − x)

)∣∣∣∣∣
≤0.5

∣∣∣∇f(x)>(x− x′)∣∣∣+ ν
∑
v∈C

|γv|‖x− v‖3

≤0.5α‖x− x′‖+ ν
∑
v∈C

|γv|‖x− v‖3.

A.3. Proof of Lemma 3.1

Let Pv be the projection operator from Rd to the sub-
space spanned by u1(v), . . . , um(v) with respect to the
inner product norm ‖ · ‖. We have∣∣∣∣∣f(x)−∑

v∈C

γv
(
f(v) + 0.5∇f(v)>Pv(x− v)

)∣∣∣∣∣
≤

∣∣∣∣∣f(x)−∑
v∈C

γv
(
f(v) + 0.5∇f(v)>(x− v)

)∣∣∣∣∣
+

∣∣∣∣∣0.5∑
v∈C

γv∇f(v)>(I − Pv)(x− v)

∣∣∣∣∣
≤0.5α‖x− x′‖+ ν

∑
v∈C

|γv|‖x− v‖3

+ 0.5α
∑
v∈C

|γv| ‖(I − Pv)(x− v)‖.

Now Definition 3.1 implies that ‖(I − Pv)(x − v)‖ ≤
c(M)‖x− v‖2. We thus obtain the desired bound.


