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Abstract

This paper considers the problem of se-
lecting the most informative experiments x
to get measurements y for learning a re-
gression model y = f(x). We propose a
novel and simple concept for active learn-
ing, transductive experimental design, that
explores available unmeasured experiments
(i.e.,unlabeled data) and has a better scal-
ability in comparison with classic experimen-
tal design methods. Our in-depth analysis
shows that the new method tends to favor
experiments that are on the one side hard-
to-predict and on the other side representa-
tive for the rest of the experiments. Effi-
cient optimization of the new design prob-
lem is achieved through alternating optimiza-
tion and sequential greedy search. Extensive
experimental results on synthetic problems
and three real-world tasks, including ques-
tionnaire design for preference learning, ac-
tive learning for text categorization, and spa-
tial sensor placement, highlight the advan-
tages of the proposed approaches.

1. Introduction

Recent years have seen considerable interests in learn-
ing with labeled and unlabeled data (Seeger, 2000),
since labels are often expensive to obtain whereas vast
amount of unlabeled data are easily available. Semi-
supervised learning (Zhou et al., 2004; Zhu, 2005)
solves the problem by exploring additional information
given by unlabeled data. Active learning reduces the
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labeling costs in a different but complementary way,
which chooses the most informative data to label.

There has been a long tradition of research on active
learning in the machine learning community. Typically
discriminant models prefer to choosing uncertain or
hard-to-predict data, and generative models tend to
select typical data. Uncertain data can be atypical
and even outliers. It is thus essential to unify these two
different views. Active learning is also referred to as
experimental design in statistics (Atkinson & Donev,
1992). In order to learn a predictive function from
experiment-measurements pairs, experimental design
selects the most informative experiments to measure,
given that conducting an experiment is expensive.

This paper studies active learning for regression prob-
lems in the context of experimental design. We briefly
review classic methods, such as A-optimal, D-optimal
and E-optimal design methods, and point out their
shortcomings, such as insufficient exploration of avail-
able unmeasured data and the poor scalability. These
drawbacks motivate us to propose a novel and simple
concept, transductive experimental design. The key
idea is to select data points that are the most con-
tributive to predictions on unlabeled test data that
are given beforehand. We provide insights into the sug-
gested method: it seeks for data points that are hard
to predict and meanwhile representative to unexplored
test data. By deriving equivalent formulations of the
transductive design, we are able to devise tractable op-
timizing procedures that produce desired performance,
and a better scalability than those classical methods.

The paper is organized as follows. We briefly review
active learning in Sec. 2.1 and experimental design in
Sec. 2.2. In Sec. 3 we introduce the concept of trans-
ductive experimental design, and derive solutions in
Sec. 4. Finally we empirically evaluate the suggested
methods in Sec. 5 and conclude in Sec. 6.
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2. Related Work

2.1. Active Learning

In machine learning community there has been exten-
sive research on active learning. Existing approaches
either select the most uncertain data given previously
trained models (Freund et al., 1997), or choose the
most informative data that optimize some expected
gain (Cohn & Ghahramani, 1996; MacKay, 1992;
Chapelle, 2005). The latter typically requires expen-
sive retraining of models when evaluating each candi-
date. Some other approaches assume generative mod-
els and explore the dependency between inputs and
outputs (Nigam et al., 2000; Seeger, 2000). Active
learning methods for support vector machines (Tong,
2001) and Gaussian processes (Guestrin et al., 2005)
have also been suggested.

2.2. Experimental design

Classic experiment design considers learning a linear
function f(x) = w>x, w ∈ Rd, from measurements
yi = w>xi + εi, i = 1, . . . ,m, where εi ∼ N (0, σ2)
is measurement noise, and x1, . . . ,xm are experiments
chosen from n candidates v1, . . . ,vn ∈ Rd, n > m.
The goal of experimental design is to find a set of ex-
periments xi that together are maximally informative.
Following the convention in the machine learning lit-
erature, we call experiments x as data, and measure-
ments y as labels.

In the rest of this paper, we use X to represent both
the matrix [x1, . . . ,xm]> ∈ Rm×d and the set {xi},
and V to represent both [v1, . . . ,vn]> ∈ Rn×d and the
set {vi}. The meanings will be clear in the contexts.
|X| = m and |V| = n respectively denote the sizes of
two sets.

The maximum-likelihood estimate of w is obtained by

ŵ = arg min
w

{
J(w) =

m∑
i=1

(
w>xi − yi

)2}
, (1)

It is known that the estimation error e = w − ŵ has
zero mean and a covariance matrix given by σ2Cw,
where Cw is the inverted Hessian of J(w)

Cw =

(
m∑

i=1

xix>i

)−1

=
(
X>X

)−1

, (2)

and σ is a constant. The matrix Cw characterizes the
confidence of the estimation, or the informativeness of
the selected data. Let mj denote the number of times
for which vj is chosen in X, so we have m1+· · ·+mn =
m. Then an optimization problem can be formulated

as minimization of some measurement of estimation
error derived from Cw. For example, the so-called A-
optimal design minimizes the trace of Cw

min
m1,...,mn

Tr
[( n∑

j=1

mjvjv>j
)−1
]

(3)

subject to mj ≥ 0,m1 + · · ·+ mn = m,mi ∈ Z

where Tr(·) is the trace. To relax the integer constraint
mj ∈ Z, we set τj = mj/m and ignore mτj ∈ Z, then
A-optimal design becomes

min
τ1,...,τn

Tr
[( n∑

j=1

τjvjv>j
)−1
]

(4)

subject to τ � 0,1>τ = 1

where τ is the vector of τj ’s, and 1 a column vector of
ones. This has been shown to be a convex semidefinite
programming (SDP) problem (Boyd & Vandenberghe,
2004). There exist other two common variants: D-
optimal design minimizes the logarithm determinant
of Cw and E-optimal design minimizes the 2-norm of
Cw. The selected data are the m data points vi as-
sociated with the largest weights τi. Very recently in
the machine learning community a robust E-optimal
design method (Flaherty et al., 2006) was applied to
biological experiments.

3. Transductive Experimental Design

3.1. Motivations

The classic experimental design methods described in
Sec. 2.2 have the following shortcomings.

• The optimization criteria based on Cw does not
directly characterize the quality of predictions on
test data. If the test data are given beforehand,
it is more sensible to directly assess the quality of
predictions y = f(x) on the test data.

• Standard experimental design only considers lin-
ear functions and is thus restrictive in applica-
tions.

• Very importantly, classic experimental design has
to solve a SDP problem, which is often very slow
when dealing with hundreds of data points.

To overcome these problems, this paper proposes ex-
perimental design in a transductive setting, where the
focus is on the predictive performance on known test
data, as well as the development of efficient solutions.
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3.2. Formulations

A general setting may consider a different set T of test
data points besides candidates in V. Here for simpli-
fication we assume that the two sets are the same. In
this section we will first focus on linear functions and
then generalize it to the nonlinear case by applying
reproducing kernels. The scalability issue will be ad-
dressed in Sec. 4.

Let us consider a regularized linear regression problem

min
w

{
J(w) =

m∑
i=1

(
w>xi − yi

)2
+ µ‖w‖2

}
(5)

where µ > 0 and ‖ · ‖ is the vector 2-norm. Similar as
before, the inverted Hessian is computed as

Cw =
( ∂J(w)

∂w∂w>

)−1

= (X>X + µI)−1 (6)

Compared with Eq. (2), the newly introduced regular-
ization improves numerical stability since X>X+µI is
full-rank. Let f = [f(v1), . . . , f(vn)]> be the function
values on all the available data V, then the predictive
error f − f̂ has the covariance matrix σ2Cf with

Cf = VCwV> = V(X>X + µI)−1V>

=
1
µ

[
VV> −VX>(XX> + µI)−1XV>

]
, (7)

where the Woodbury inversion identity is applied. In
contrast to Cw, Cf directly characterizes the quality
of predictions on the target data V. The average pre-
dictive variance on V is given by σ2

n Tr(Cf ). A sensi-
ble design objective is to select m data points X from
V such that a high confidence of predictions on the
available test data V is ensured. Therefore we for-
mulate the transductive experimental design problem
as a minimization of the predictive variance on test
data V. Since n, µ, σ and Tr(VV>) are constants, we
define the problem as

Definition 3.1. Transductive experimental de-
sign:

max
X

Tr
[
VX>(XX> + µI)−1XV>

]
(8)

subject to X ⊂ V, |X| = m

Since Tr(Cf ) = Tr(CwV>V), the classical A-optimal
design can be seen as a subcase of transductive design,
however with a restrictive assumption V>V ∝ I.

3.3. Interpretations

The following theorem helps to understand the behav-
iors of the proposed transductive experimental design.

Theorem 3.2. Transductive experimental design is
equivalent to

min
X,A

n∑
i=1

‖vi −X>ai‖2 + µ‖ai‖2 (9)

subject to X ⊂ V, |X| = m,

A = [a1, . . . ,an]> ∈ Rn×m

Proof. We rewrite the cost function as L(X,A) =
‖V−AX‖2F +µTr(AA>), where ‖·‖F is the Frobenius
norm for matrices. Then

L(X,A) = Tr
[
(V −AX)(V −AX)>

]
+ µTr(AA>)

= Tr
[
VV> −AXV> −VX>A> + AXX>A> + µAA>

]
= Tr(VV>)− Tr

[
AXV> + VX>A> −A(XX> + µI)A>

]
By taking the partial derivatives of L(X,A) with re-
spect to A, it is easy to see that given X, the optimum
of A to minimize L(X,A) has the form

A∗ = VX>(XX> + µI)−1

Plugging this result into the loss function, we can get

min‖V −AX‖2
F + µTr(AA>)

=Tr(VV>)− Tr
[
VX>(XX> + µI)−1XV>

]
Given Tr(VV>) is a constant, the minimization
problem with respect to X becomes the maximiza-
tion of VX>(XX> + µI)−1XV, which completes the
proof.

Theorem 3.2 transforms the problem into a regular-
ized least squares formalism. Interestingly, it demon-
strates an equivalence to finding the optimal set of
basis vectors X to approximate the whole set of vec-
tors V ≡ {vi} by v̂i = X>ai. Based on the projection
theorem of least squares estimator, the approximations
can be seen as (regularized) projections of V onto the
linear subspace spanned by X. Therefore, transductive
experimental design has a clear geometric interpreta-
tion: it tends to find representative data samples X
that span a linear space to retain most of the informa-
tion of V. In contrast, standard experimental design
methods do not pursue this property.

On the other hand, the minimization in (9) encour-
ages to particularly “focus on” those vi with large
norms, or even to directly include them into X. Intu-
itively, it is hard to obtain stable predictions for those
vi with big norms, because a small disturbance to w
can cause a big variation of f(vi) = w>vi. There-
fore, Theorem 3.2 indicates that the selected X tends
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to well represent those hard-to-predict test cases in V.
Furthermore, in the context of sequential design (see
Sec. 4.1), vi are actually residuals of data after be-
ing approximated by previously selected data, which
means that vi with a larger norm correspond to data
that are under-represented by previously chosen data.
Therefore, transductive experimental design tends to
select data representative to those yet unexplored data
in a sequential design.

Like other experimental design methods, despite the
fact that we consider a supervised learning problem,
the data selection itself is independent of measure-
ments y ≡ {yi}. The reason is that the least squares
cost has only a linear dependency between w and y,
which makes the Hessian of J(w) independent of y.
Note that for classification, not the focus of this pa-
per, the situation is different.

3.4. Kernel Transductive Experimental Design

Now we are ready to handle nonlinear functions. Let
H be a reproducing kernel Hilbert space (RKHS) with
a kernel function

k(x,v) = 〈φ(x), φ(v)〉, x,v ∈ Rd (10)

where φ : Rd → H is a feature mapping, then f ∈ H
has the form f(x) = w>φ(x). Plugging it into (5),
we obtain a regularized linear regression in the fea-
ture space. It is well-known that the solution has
the form f(x) =

∑m
i=1 αik(xi,x), with coefficients

α = [α1, . . . , αm]> estimated via a kernel regression

min
α

m∑
i=1

[ m∑
j=1

αjk(xj ,xi)− yi

]2
+

m∑
i=1

m∑
j=1

αiαjk(xi,xj)

Let’s denote the data in the transformed feature
space by X = [φ(x1), . . . , φ(xm)]> and V =
[φ(v1), . . . , φ(vn)]>, and plug them into (8), we di-
rectly obtain the kernelized transductive experimental
design

max
X

Tr
[
Kvx(Kxx + µI)−1Kxv

]
(11)

subject to X ⊂ V, |X| = m

where (K)ij = k(vi,vj), (Kvx)ij = k(vi,xj) and
(Kxx)ij = k(xi,xj). In the new kernelized version
we can directly work with a kernel function, like RBF
kernel, without explicitly referring to the feature map-
ping φ(·). f(x) can be nonlinear if a nonlinear kernel
is adopted. In the case of linear kernels, the kernel
regression and kernel transductive experimental de-
sign are equivalent to their counterparts introduced
in Sec. 3.2. In the rest of this paper, we will mainly
consider the kernel version.

4. Optimization Approaches

Although the transductive design has a simple in-
terpretation, the involved optimization problem is a
difficult combinatorial optimization problem, as indi-
cated by the following theorem. We have to resort to
tractable approximations.

Theorem 4.1. Transductive experimental design is
NP-hard.

Proof. Based on theorem 3.2, a special case of the
problem is to select m < n basis vectors from n can-
didates to approximate a single vector in the least
squares criterion. The case is known as a sparse lin-
ear regression problem with a cardinality constraint,
which has been proven to be NP-hard in (Natarajan,
1995). The transductive design is NP-hard since it
approximates multiple vectors using sparse basis.

4.1. Sequential Optimization

In this subsection, we develop a very simple sequen-
tial greedy optimization approach. We first formulate
transductive experimental design as a sequential op-
timization problem. Given previously selected data
X1, a sequential transductive design seeks m new data
X2 ⊂ V in the following way

max
X2

Tr
[
Kvx(Kxx + µI)−1Kxv

]
(12)

subject to X = X1 ∪X2,X2 ⊂ V, |X2| = m

Problem (12) can be written as a canonical form of
transductive experimental design

max
X2

Tr
[
K̃vx2(K̃x2x2 + µI)−1K̃x2v

]
(13)

subject to X2 ⊂ V, |X2| = m

where the kernel matrix K̃ is obtained by deflating the
original kernel matrix K by X1:

K̃ = K−Kvx1(Kx1x1 + µI)−1Kx1v (14)

Problem (13) can be understood as a kernel version
of the following procedure: after approximating V by
X1, the approximation residuals Ṽ form a new kernel
matrix K̃ = ṼṼ

>
, and a set of m vectors from Ṽ are

selected to further approximate Ṽ. As pointed out in
Sec. 3.3, the algorithm tends to select data that are
typical among those under-represented by X1.

Since it is very simple to select just one data point,
we propose an easy-to-implement algorithm that iter-
atively performs the following two steps until m data
points have been selected. Note that there is no need
for matrix inverse.
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Algorithm 1: Sequential Design

• Select x ∈ V with the highest ‖Kx‖2/(k(x,x) +
µ), and add x into X, where Kx and k(x,x) are
x’s corresponding column and diagonal entry in
current K;

• Update K← K− KxK>x
(k(x,x)+µ) ;

4.2. Alternating Optimization

Sequential optimization is a greedy process that can be
suboptimal. In this subsection we first transform the
problem into an equivalent regression-like formalism,
which makes it possible to relax the discrete nature of
the problem and then design non-greedy mathematical
programming solutions.

Theorem 4.2. Let Q = [q1, . . . ,qn]> and π1 ≥ . . . ≥
πn be the eigenvectors and eigenvalues of K = VV>.
Then transductive experimental design is equivalent to

min
X,C

n∑
i=1

‖
√

πiqi −Kvxci‖2 + µπi‖ci‖2 (15)

subject to X ⊂ V, |X| = m,

C = [c1, . . . , cn]> ∈ Rn×m

Proof. Let V has the singular value decomposition
V = QΠ1/2P>. Then based on Theorem 3.2, given
X, at the minimum of ‖V−AX‖2F +µTr(AA>) there
are

‖V −A∗X‖2
F = ‖V −VX>(XX> + µI)−1X‖2

F

= ‖VP−VX>(XX> + µI)−1XP‖2
F

= ‖QΠ1/2 −VX>(XX> + µI)−1XP‖2
F

and

µTr(A∗A∗>)

= µTr
[
VX>(XX> + µI)−2XV>

]
= µTr

[
QΠ1/2P>X>(XX> + µI)−2XPΠ1/2Q>

]
= µTr

[
Π1/2P>X>(XX> + µI)−2XPΠ1/2

]
.

Let C = P>X>(XX> + µI)−1, then the minimum of
‖V −AX‖2F + µTr(AA>) must have the form

‖QΠ1/2 −K>
vxC

>‖2
F + µTr[C>ΠC].

where we have applied Tr[Π1/2CC>Π1/2] =
Tr[C>ΠC]. Obviously, minimizing the above new cost
function with respect to C ∈ Rn×m is a variational for-
malism of minimization in problem (15) with respect
to w. The proof is finished.

Theorem 4.2 shows that the transductive design is
equivalent to choosing m columns in K that can be
used to best approximate eigenvectors of K. Due to
the weighting by eigenvalues πi in (15), a better effi-
ciency can be achieved by considering only those lead-
ing eigenvectors q of K. Note that X is a subset of V
assuming that all available data are given in V as its
rows. Denote a matrix B as an n× n diagonal matrix
with its j-th diagonal element equal to βj ∈ {0, 1}. We
call B an indicator matrix indicating whether or not
an according data point will appear in X. If βj = 1, vj

is included in X. Then Kvxci = KBαi where αi is an
n vector with its subset of m components (indicated
in B) equal to ci correspondingly. Then the trans-
ductive design problem is equivalent to the following
integer program:

min
B,αi

n∑
i=1

‖
√

πiqi −KBαi‖2 + µπi‖Bαi‖2

subject to B = diag(β), Card(β) = m,

βj ∈ {0, 1}, j = 1, · · · , n. (16)

Problem (16) is often computationally intractable
since it requires branch-and-bound procedure to op-
timize integer variables β. We relax constraints on in-
teger variables β to allow them to take real numbers.
Then βj corresponds to a scaling factor indicating how
significantly the corresponding data in V contributes
to the minimization of (16). We then enforce the spar-
sity of β. Sparsity can be enforced by employing regu-
larization conditions on β, such as the 0-norm penalty
which controls the cardinality of β, (notice 0-norm is
not really a vector norm, see (Weston et al., 2003)), or
the 1-norm penalty which is less stringent than the 0-
norm penalty. To derive computationally efficient and
scalable formulations, we relax the problem to use 1-
norm penalty on β instead of restricting its cardinality.
Problem (16) becomes

min
B,αi

n∑
i=1

‖
√

πiqi −KBαi‖2 + µπi‖Bαi‖2 + γ‖β‖1

subject to B = diag(β), βj ≥ 0, j = 1, · · · , n.
(17)

The residual term
√

πiqi−KBαi in problem (17) is bi-
linear with respect to β and αi. Taking the 2-norm of
the residual introduces polynomial terms of high order
in terms of its variables and thus the problem is still
arduous to solve. We propose an alternating optimiza-
tion approach (Bezdek & Hathaway, 2003) to problem
(17) by repeating steps depicted in Algorithm 2, which
is similar, in spirit, to the principle of Expectation-
Maximization (EM) algorithms. Moreover, note that
‖β‖1 =

∑
βj due to the nonnegativity of βj .
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Algorithm 2: Alternating Design

• Fix B to the current solution (initially to the iden-
tity matrix I), convert K̃← KB, solve the follow-
ing problem for optimal αi,

minαi

∑n
i=1 ‖

√
πiqi − K̃αi‖2 + µπi‖Bαi‖2

(18)

• Fix αi to the solution obtained at the above step,
convert Ki ← K · diag(αi), solve the following
problem for optimal β̂,

minβ≥0

∑n
i=1 ‖

√
πiqi −Kiβ‖2 + µπi‖β ⊗αi‖2

+γ‖β‖1
(19)

• B← B⊗ diag(β̂)

where ⊗ denotes the component-wise multiplication
between two matrices. The algorithm takes a greedy
scheme in the third step of the iterations, assuring data
samples receiving small scaling factors in early itera-
tions will continue receiving small weights.

The first step of Algorithm 2 solves a simple ridge
regression problem which can be de-coupled to min-
imize ‖√πiqi − K̃αi‖2 + µπi‖Bαi‖2 for each individ-
ual αi. Thus, problem (18) actually has a closed-
form solution, which is to solve B (KK + µπiI)Bαi =√

πiBKqi where the diagonal matrix B may not be
full rank. The solution α̂i = B−1 (KK + µπiI)

−1 Kqi

where B−1 denotes the diagonal matrix whose non-
zero diagonal elements equal the inverse of nonzero
diagonal components of B. Note that the matrix in-
version (KK + µπiI)

−1 only needs to be calculated in
the first iteration and can then be reused in later iter-
ations, thus gaining computational efficiency.

The second step of Algorithm 2 solves a quadratic pro-
gramming problem. Denote Λi = diag(αi). The prob-
lem (19) can be rewritten in the following canonical
form of a quadratic program:

minβ≥0 β>
∑

i (Λi(KK + µπiI)Λi) β
+
(
γe> − 2

∑
i

√
πiq>i KΛi

)
β.

(20)

5. Experiments

In this section we test the kernel transductive experi-
mental design in a number of settings. To the best of
our knowledge, there is no kernel A-optimal design in
the literature. For a fair comparison to our approach,
we first use kernel PCA to map data points into an n-
dimensional linear space, and then apply the standard
A-optimal design solved by the SeDuMi optimization

(a) Data set (b) A-optimal design

(c) Sequential design (d) Alternating design

Figure 1. Experimental design (m = 4) on synthetic I. Se-
lected data are marked by red triangles, gray levels and
contours indicate the predictive variance of the learned
function in the input space (darker means lower variance).

package1. For those methods that compute nonneg-
ative coefficients for each candidate data points, like
alternating transductive design and A-optimal design,
we choose those m data points having the biggest co-
efficients. In all the investigated problems, µ is fixed
as 0.1.

Synthetic problem I: We generate a mixture of four
Gaussian components in a 2-D space, as shown in
Fig. 1-(a). An RBF kernel with length scale 1.8 is used.
Classical experimental design, such as A-optimal de-
sign, attempts to choose data on the border of data
set as shown Fig. 1-(b), where the low predictive vari-
ance area covers a space without many data samples
present. In contrast, as shown in Fig. 1-(c) and (d),
the two variants of transductive design both select rep-
resentative data regarding the whole distribution.

Synthetic problem II: In this case we show that se-
quential design can sometimes obtain suboptimal so-
lutions while the alternating approach is superior. As
shown in Fig. 2-(a), the data set consisted of two ma-
jor Gaussians in the left and right sides and a mi-
nor Gaussian in the middle. An RBF kernel with the
length scale 2.5 is applied. The sequential transduc-
tive design first picked up a point near the center of
the data and then picked another point close to the
right border, as shown in Fig. 2-(c). This result is less
optimal than that of non-sequential solutions shown in
Fig. 2-(d).

1http://sedumi.mcmaster.ca/
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(a) Questionnaire Design (b) Text Categorization (c) Sensor Placement

Figure 3. Experimental design in various applications

(a) Data set (b) A-optimal design

(c) Sequential design (d) Alternating design

Figure 2. Experimental design (m = 2) on synthetic prob-
lem II. The sequential transductive design is suboptimal
compared with the non-sequential solution.

Questionnaire Design for Recommender Sys-
tems: The so-called “cold-start problem” of recom-
mender systems refers to the difficulty of providing ac-
curate recommendations if the system does not know
a user’s preferences on any products. To solve the
problem, the system usually requires the user to rate
a set of products. In this experiment we consider
questionnaire design to select informative products.
Our study is based on the well-known Eachmovie data
set, which contains 74,424 users’ numerical ratings
{1, 2, 3, 4, 5, 6} on 1648 movies. We follow the same
setting as (Breese et al., 1998), which chose 5000 users’
ratings as training data and a different set of 5000 users
for test. Then each movie is seen as being represented
by a 5000-dimensional feature vector formed by 5000
training users’ ratings on it. In forming feature vec-
tors, we estimate each training user’s mean rating and
use it to centralize this user’s ratings. Given a test
user’s ratings on a set of movies, we apply regular-
ized linear regression (or equivalently, kernel regres-

sion with linear kernels) to predict this user’s ratings
on other unrated movies. Mean absolute error (MAE)
is the most common accuracy metric in the litera-
ture. We use experimental design methods to choose
m = 5, 10, 15, . . . , 45, 50 movies. Since each test user
only watched a subset of movies, given a particular
questionnaire, some test users may have no ratings on
the chosen movies. In this case we use each movie’s
mean ratings as predictions. To alleviate the sparsity
problem, we restrict the question candidates to those
100 most popular movies, regarding to their numbers
of received ratings in the training set. MAE is eval-
uated on test users’ ratings on movies outside of the
questionnaire. The results are shown in Fig. 3-(a). As
a baseline, “Random Design” chooses m movies ran-
domly, repeated by 10 times. The mean and standard
deviation are plotted. The second baseline, “Most
Popular Movies”, chooses the m most frequently rated
movies. A bit surprisingly, choosing the most popular
movies does not bring advantages over random guess-
ing. This is because that the most popular movies are
rated highly by nearly all the users and thus give no
information about user tastes. MAE is even increased
as m going over 25, because less popular movies and
relatively more hard movies are left for accuracy eval-
uation. Very positively, all the experimental design
methods outperform the two baselines. In this task
transductive design shows results comparable to that
of A-optimality.

Text Categorization: We validate experimental de-
sign methods on text categorization based on a sub-
set of Newsgroup corpus, which contains 8014 dimen-
sional TFIDF features and 3970 documents, covering
four categories autos, motorcycles, baseball, hockey.
We conduct one-against-all scheme for each category
and thus treat the problem as binary classification
(y = {−1, 1}). Due to the unbalance of two classes,
AUC score is used to evaluate the accuracy, averaged
over the 4 topics. We apply kernel regression with lin-
ear kernels, which has shown the state-of-art for text
categorization compared to SVMs (Zhang & Yang,
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2003). A SVM active learning algorithm described
in (Tong, 2001) is also examined, which chooses data
closest to the classification boundary. For each run
of this method we initialize with a SVM trained on a
pair of randomly chosen positive and negative exam-
ples. With 10 random initializations, mean and error-
bar are computed. As the baseline, random design is
also repeated 10 times to produce the errorbars. The
results are shown in Fig. 3-(b). Transductive design
methods significantly outperform the competitors. For
example, AUC based on just 10 selected training ex-
amples achieves 90.2%, in contrast to 77.0% with ran-
dom sampling. Interestingly, SVM active learning and
A-optimal design perform much worse than random
sampling. This is because that Newsgroup data has a
very clear clustering structure (like synthetic problem
I). As illustrated in the synthetic problem I, A-optimal
design does not explore this structure. SVM active
learning tends to select untypical data and thus does
not either. Since SDP by SeDuMi affords A-optimal
design with up to 400 candidates, we have to restrict
the candidates of A-optimality to a random set of 397
documents. To make the comparison fair, we also ap-
ply sequential transductive design based on the same
candidate set (shown as “Sequential Design (L)”) and
still produce much better results.

Sensor Placement: The application is to measure in-
door temperature based on optimal placement of sen-
sors. The data was previously applied in (Guestrin
et al., 2005), consist of snapshots of measurements
from 54 sensors in a hall within two days. We apply
experimental design to select sensors such that remain-
ing sensors’ measurements can be optimally predicted.
In this case we employ nonlinear kernels between loca-
tions, offered by the authors of (Guestrin et al., 2005).
Fig. 3-(c) shows the results measured by MAE, aver-
aged over 10,000 snapshots. Tansductive design gener-
ally outperforms random selection. A-optimal design
does not show much advantages, largely because all the
sensors are not uniformed distributed in the space.

6. Conclusions

In this paper we proposed transductive experimental
design for active learning of regression models. As a
key advantage over classical methods, it fully explores
the available unlabeled data and demonstrates sensi-
ble data selection properties. Efficient solutions were
developed. The achieved experimental results suggest
its wide applicability to real-world applications. In the
near future it would be interesting to develop a similar
idea for classification models.
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