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Abstract

We present a method for learning image represen-

tations using a two-layer sparse coding scheme at the

pixel level. The �rst layer encodes local patches of

an image. After pooling within local regions, the �rst

layer codes are then passed to the second layer, which

jointly encodes signals from the region. Unlike tradi-

tional sparse coding methods that encode local patches

independently, this approach accounts for high-order

dependency among patterns in a local image neighbor-

hood. We develop algorithms for data encoding and

codebook learning, and show in experiments that the

method leads to more invariant and discriminative im-

age representations. The algorithm gives excellent re-

sults for hand-written digit recognition on MNIST and

object recognition on the Caltech101 benchmark. This

marks the �rst time that such accuracies have been

achieved using automatically learned features from the

pixel level, rather than using hand-designed descriptors.

1. Introduction

Sparse coding refers to a general class of techniques
that automatically select a sparse set of vectors from a
large pool of possible bases to encode an input sig-
nal. While originally proposed as a possible com-
putational model for the e�cient coding of natural
images in the visual cortex of mammals [17], sparse
coding has been successfully applied to many ma-
chine learning and computer vision problems, including
image super-resolution and image restoration. More
recently, it has gained popularity among researchers
working on image classi�cation, due to its state-of-the-
art performance on several image classi�cation prob-
lems [18, 19, 5, 20, 15, 1].

Many image classi�cation methods apply classi�ers

based on a Bag-of-Words (BoW) image representation
[6], where vector-quantization (VQ) is applied to en-
code the pixels or descriptors of local image patches, af-
ter which the codes are linearly pooled within local re-
gions. In this approach, prior to encoding, a codebook
is learned via unsupervised k-means, which summarizes
the distribution of signals by a set of �visual words.�
The method is very intuitive because the pooled VQ
codes represent the image through the frequencies of
these visual words.

Sparse coding can easily be plugged into the BoW
framework as a replacement for vector quantization.
Raina et al. [18] describe an approach that uses sparse
coding to construct high-level features, showing that
the resulting sparse representations perform much bet-
ter than conventional representations, e.g., raw image
patches. Yang et al. [20] propose a two stage ap-
proach where sparse coding model is applied over hand-
crafted SIFT features, followed by a spatial pyramid
max pooling. When applied to general image classi�ca-
tion tasks, this approach has achieved state-of-the-art
performance on several benchmarks when used with a
simple linear classi�er. However, this is achieved using
sparse coding on top of hand-designed SIFT features.
It is desirable to develop fully automatic methods to
learn features from the pixel level.

A limitation of the above approaches is that they en-
code local patches independently, ignoring the spatial
neighborhood structure of the image. In this paper we
propose a two-layer sparse coding model to overcome
this limitation, by modeling the higher-order depen-
dency of patches in the same local region of an image.
The �rst layer encodes individual patches, and the sec-
ond layer then jointly encodes the set of patches that
belong to the same group (i.e., image or image region).
Accordingly, the model has two levels of codebooks, one
for individual patches, and another for sets of patches.
In the codebook learning phase, our model learns the
two codebooks jointly, where each code in the higher-
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level codebook represents a dependency pattern among
the lower-level code words.

This approach o�ers several advantages in terms of
both modeling and computation. Because the individ-
ual patches of the same group are jointly encoded, the
�rst-layer codebook yields a more invariant representa-
tion compared with standard sparse coding. Moreover,
the use of a higher-level codebook, whose codewords di-
rectly model the statistical dependency of the �rst layer
codewords, allows the method to encode more complex
visual patterns. Computationally, the encoding opti-
mization is jointly convex over both layers. Finally,
our method generates sparse representations at the im-
age pixel level, which shows the feasibility of learning
features fully automatically.

We evaluate the new hierarchical sparse coding al-
gorithm on the well-known MNIST digit recognition
benchmark and the Caltech-101 object recognition
benchmark. Our results show that the unsupervised
two-layer coding scheme generates image representa-
tions that are more invariant and discriminative than
those obtained through one-layer coding, leading to im-
proved accuracies for both image classi�cation tasks.

The remainder of the paper is organized as follows.
In Section 2, we introduce the two-layer coding scheme,
and describe the optimization procedure for data en-
coding. We then describe the codebook learning al-
gorithm in Section 3, followed by a description of a
classi�cation method that uses the new coding scheme
in Section 4. The experimental results are presented
in Section 5, and concluding remarks are made in Sec-
tion 6.

2. Hierarchical Sparse Coding

Let x1, . . . , xn ∈ Rd be a set of n patches within
an image. For now we ignore the spatial informa-
tion of the patches; as we show later, it is straight-
forward to incorporate a dependence on location. Our
goal is to obtain a sparse representation for this set
of patches. Let X = [x1 x2 · · · xn] ∈ Rd×n be the set
of patches in matrix form. Let B ∈ Rd×p be a dic-
tionary of codewords for the �rst level, which we also
call the patch-level, as in standard sparse coding. In
addition, we introduce a second level or set-level dic-
tionary Φ = (φ1φ2 · · ·φq) ∈ Rp×q+ , where each element
of Φ is non-negative. The set-level codebook Φ will be
used to model the statistical dependencies among the
representations of the patches xi in the patch-level.

We obtain sparse representations simultaneously at
the patch-level and the set-level by carrying out the

following optimization:

(Ŵ , α̂) = argmin
W,α

L(W,α) +
λ1

n
‖W‖1 + γ‖α‖1 (1)

subject to α � 0,

where the loss function L(W,α) is given by

1
n

n∑
i=1

{
1
2

∥∥xi −Bwi∥∥2 + λ2w
>
i Ω(α)wi

}
.

Here W = (w1 w2 · · ·wn) ∈ Rp×n is the patch-level
representation, α ∈ Rq is the set-level representation,
and

Ω(α) ≡

(
q∑

k=1

αkdiag(φk)

)−1

.

The `1 penalty on each wi and on α encourages sparsity
in the representations at both levels.

To gain some intuition for what this optimization
is doing, �rst note that taking λ2 = 0 reduces the
procedure to standard sparse coding, which encodes
each patch independently. On the other hand, if
λ2 > 0, then the term involving α implements a type of
weighted `2 regularization of wi. Note, however, that
pooling these terms together results in an expression of
the form

1
n

n∑
i=1

w>i

(
q∑

k=1

αk diag(φk)

)−1

wi = tr
(
S(W ) Ω(α)

)
where

S(W ) ≡ 1
n

n∑
i=1

wiw
T
i ∈ Rp×p

is the sample covariance of the patch-level representa-
tions. Thus, the loss function L(W,α) may be written
more succinctly as

L(W,α) =
1

2n
‖X −BW‖2F +

λ2

n
tr
(
S(W ) Ω(α)

)
(2)

If the wi vectors were sampled independently from a
Gaussian with covariance matrix Σ(α) = Ω(α)−1, the

log-likelihood of W would be tr
(
S(W ) Ω(α)

)
, plus a

constant that doesn't depend onW . Thus, the set-level
code can be seen to model the covariance structure of
the patch-level representations.

Note that hierarchical sparse coding, as de�ned
above, is similar to but fundamentally di�erent from
the group sparse coding procedure recently proposed
by Bengio et al. [1]. The method in [1] incorporates
a group lasso penalty ‖W‖2 to encourage similar spar-
sity patterns for the patches in a group. However, there
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is no second codebook that is constructed at a higher
level. As will be seen in our experimental results, the
set-level codebook that results in a hierarchical coding
scheme that is interpretable, where the set-level code-
book is e�ectively a shift-invariant representation of
correlated patch-level bases.

Importantly, the encoding optimization problem
above is jointly convex in both W and α. To see this,
recall that the matrix-fractional function f(x, Y ) =
xTY −1x is jointly convex as a function of the vector
x and the positive-semide�nite matrix Y (see [4]), and∑q
k=1 αkdiag(φk) is a�ne in α.
It is convenient to use an alternating optimization

procedure to actually compute the solution, by itera-
tively optimizing W with α �xed, and then optimizing
α with W �xed. The details of these optimizations are
described next.

2.1. Optimization of patch-level representation W

The optimization of W for �xed α can be seen as a
modi�ed elastic net problem, using a weighted `2 norm
regularization. Speci�cally, the optimization

min
W

1
n

n∑
i=1

{1
2

∥∥xi −Bwi∥∥2

2
+ λ1‖wi‖1 + λ2w

>
i Ω(α)wi

}
(3)

is a generalized elastic net problem. It can be trans-
formed into a canonical lasso problem as

min
W

1
n

n∑
i=1

{1
2

∥∥x̃i − B̃wi∥∥∥2

2
+ λ1‖wi‖1

}
where

x̃i =
[

xi
0p×1

]
, B̃ =

[
B(

λ2

∑q
k=1 αk diag(φk)

)− 1
2

]

and 0p×1 denotes a vector of p zeros. Fast algorithms
based on iterative soft thresholding are available for
e�ciently solving this quadratic program.

2.2. Optimization of set-level representation α

The optimization problem for updating α with W
�xed is

min
α�0

1
n

n∑
i=1

λ2w
>
i

(
q∑

k=1

αkdiag(φk)

)−1

wi

+ γ‖α‖1,

(4)

Again, we transform the optimization problem in order
to take the advantage of well-developed lasso solvers,

as

min
α�0,Σ�0

λ2

n

n∑
i=1

w>i Σ−1wi + λ3

[
‖σ − Φα‖22 + λ4‖α‖1

]
,

(5)

where diag(Σ) = σ and λ4 = γ/λ3. This optimization
is jointly convex with respect to Σ and α. As λ3 →
∞, this formulation formulation is equivalent to the
original one. In our implementation we set λ3 to a
very large number.

Here again, we adopt an alternating minimization
procedure, which alternates between the updates of σ
and α. For �xed α, the optimization for each element
of σ can be done independently, and the resulting one-
dimensional problems can be e�ciently solved. On the
other hand, the optimization for α is a standard non-
negative lasso problem, which can also be e�ciently
solved.

3. Codebook Learning

E�ective image coding requires high-quality code-
books B and Φ. Now we describe algorithms to learn
the codebooks to capture the structural information of
data.

Let X = (X1, . . . , Xm) be m image patch sets, ob-
tained from local regions of training images. The for-
mulation of codebook learning aims at solving the fol-
lowing optimization problem.

min
B,Φ

 1
m

m∑
j=1

min
W j ,αj

L(W j , αj , σj , B,Φ)


subject to |Bi‖ ≤ 1, ‖φk‖1 ≤ 1,

i = 1, 2, ..., p, k = 1, 2, ..., q

σj � 0,Φ � 0 (6)

where

L(W j , αj , σj , B,Φ)

=
n∑
i=1

[
1

2n

∥∥xji −Bwji∥∥2 +
λ1

n
‖wji ‖1 +

λ2

n
(wji )

>Σ−1
j wji

]
+ λ3

[∥∥σj − Φαj
∥∥2

2
+ λ4‖α‖1

]
where Σj is a diagonal matrix and diag(Σj) = σj . It
is easy to see that the above objective function is the
same as the one in the coding phase if the codebooks
are given. One important feature of the above formu-
lation is that the set-level dictionary Φ is required to
be nonnegative.

The optimization problem can be solved by itera-
tively alternating the following two steps: 1) given the
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codebooks B and Φ, compute the optimal coding us-
ing the methods described in Section 2; 2) given the
new coding, re-optimize the codebooks. For the cod-
ing step (Step 1), we have described the algorithms in
Section 2. For the Step 2), B and Φ can be optimized
independently.

For solving B, the optimization problems can be
solved via their dual formulation [12], which becomes
a convex optimization with solely nonnegative con-
straints. We developed a projected Newton method
for e�ciently solving the resulting optimization. The
projected Newton method can be shown to have super-
linear convergence rate under fairly mild conditions [3].

Optimizing Φ is a bit more tricky due to the extra
nonnegativity constraint on its elements. Fortunately,
the optimization is still convex. We developed a pro-
jected gradient algorithm for solving the optimization
problem [3]. For the projected gradient, each iteration
step consists of two sub-steps. First, each column of
φk goes one step along the gradient direction

(φk)1/2 = φk − η∇φk
(7)

where ∇φk
is the gradient of φk, and η is a stepsize

that needs to be determined by line search. Then the
projection step is to �nd the point in the constrained
domain that is closest to (φk)1/2. The projection can
be done by independently solving the following opti-
mization problem on each column of Φ:

min
φk

‖φk − (φk)1/2‖2 (8)

subject to

p∑
l=1

φlk = 1, φlk ≥ 0 (9)

where φlk is the l
th element of φk. This optimization is

to project (φk)1/2 onto a probabilistic simplex, and it
can be solved very e�ciently, i.e. in O(p) as described
in [7].

4. Application to Image Classi�cation

The proposed hierarchical sparse coding is readily
applicable to learning image representations for classi-
�cation. As revealed by the data encoding procedure
in Section 2.1 and 2.2, the whole model operates on
a set X of image patches in a local region, �rst non-
linearly mapping each x from the region to its sparse
code w, and then (implicitly) pooling the codes of the
set to obtain Σ, which is akin to the sample (diago-
nal) covariance of the sparse codes in that region, and
corresponds to a way of �energy pooling�. In the next
level, the model encodes Σ nonlinearly to obtain the
sparse code α for the set X. The encoding procedure
is implemented by solving a joint convex optimization
problem (1), which is also visualized by Figure 1.

4.1. Modeling Spatial Dependence

A slight modi�cation can lead to a more general for-
mulation, in the sense that Σ acts as not the sample
covariance for only one region, but for several neigh-
boring regions jointly. Then the learned bases Φ will
capture the spatial dependence among several regions.
Without loss of generality, let's consider a joint model
for 2× 2 local regions. Suppose each region contains n
patches, let X and W denote all the 4×n patches and
their �rst-layer codes in these 4 regions. Then L(W,α)
in (2) is modi�ed as

1
n
‖X −BW‖2F +

λ2

n

∑
s,t

tr
(
S(W (s,t)) Ω(s,t)(α)

)
where

Ω(s,t)(α) ≡

(
q∑

k=1

αkdiag
(
φ

(s,t)
k

))−1

(10)

is the inverse diagonal covariance for the (s, t)-th re-
gion, s = 1, 2, t = 1, 2. In this model, each local de-
scriptor has its own �rst-level coding, while the 2 × 2
regions share the joint second-layer coding α. Each ba-

sis φk = [φ(1,1)
k , φ

(1,2)
k , φ

(2,1)
k , φ

(2,2)
k ] ∈ Rp×4 describes a

spatial co-occurrence pattern across 2× 2 regions.

4.2. Hierarchical Convolution Coding

A further improvement is to convolve the above joint
model over the image. Again, without loss of general-
ity, let the image be partitioned into 4 × 4 regions,
indexed by (s, t). Then convolution of the two-layer
hierarchical coding over every 2 × 2 region neighbor-
hood leads to 3× 3 coding results α(u×v) ∈ Rq, where
u = 1, 2, 3 and v = 1, 2, 3. Here each (u, v) indexes a
�receptive �eld� of the hierarchical coding. Let X and
W denote all the patches and their �rst-layer codes in
the image. Then L(W,α) in (2) is modi�ed as

1
n
‖X −BW‖2F +

λ2

n

∑
s,t

∑
u,v

ϕ
(
W (s,t), α(u,v)

)
(11)

where ϕ(W (s,t), α(u,v) is de�ned to be zero if the (s, t)-
region is not in the (u, v) receptive �eld, otherwise

ϕ
(
W (s,t), α(u,v)

)
= tr

(
S(W (s,t)) Ω(s,t)(α(u,v))

)
where

Ω(s,t)
(
α(u,v)

)
≡

(
q∑

k=1

α
(u,v)
k diag

(
φ
r(s,t,u,v)
k

))−1

.

(12)
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Here r(s, t, u, v) indexes the relative position of the
(s, t) region in the (u, v) receptive �eld. The coding al-
gorithm and codebook learning algorithm are basically
the same as those described in the previous section.

4.3. Image Representation

We follow the standard procedure to sample image
patches densely at a grid of locations. We partition the
patches into di�erent non-overlapping regions based on
their spatial locations, and then treat each window of
several regions as a receptive �eld. For example, a
typical setting can be

• Each patch is 4 × 4 pixels, sampled from a grid
with step size 2 pixels;

• Each non-overlapping region contains 4 × 4
patches;

• Each receptive �eld contains 4 × 4 such non-
overlapping regions, with a step size 1.

Finally each receptive �eld will give rise to a q-
dimensional second-layer code vector. We pool the
second-layer code vectors by using max pooling. In
order to obtain better shift and scale invariance, we
partition each image in di�erent scales, for example,
into 1× 1 and 2× 2 blocks, and pool the second-layer
codes within each block. In the end, we concatenate
the block-wise results to form the image representation.

Finally, we note that it is straightforward to ex-
tend the current two-layer model to multi-layer ones,
because it it naturally extends to a general hierarchi-
cal approach by having a codebook at each level, and
including a covariance operator that regularizes the
codebook coe�cients of the appropriate groups of vec-
tors in the lower level. This suggests a connection to
�deep learning� [8]. Recently learning feature hierar-
chies from unlabeled data has become an active re-
search area [8, 16, 2, 13]. Most of the works are based
on restrictive Boltzmann machines or autoencoder neu-
ral networks. Our work provides one way to potentially
learn a stack of sparse coding models.

4.4. Connection to Sparse Coding on SIFT

The architecture of two-layer convolution coding has
an interesting analogy to sparse coding on a SIFT fea-
ture vector [14]. For each SIFT descriptor, its receptive
�eld contains 4 × 4 smaller non-overlapping regions �
within each region, responses of a 8-dimensional cod-
ing, corresponding to a histogram of 8 orientations,
are pooled together. A SIFT descriptor is then re-
sulted from concatenating the 4 × 4 pooling results,
outputting a 128 dimensional vector. Then sparse cod-
ing is the second-layer coding applied on top of SIFT.

It has been shown in [20] that sparse coding on SIFT
leads to state-of-the-art results on a number of image
classi�cation benchmarks. The method presented here
follows a similar processing architecture, but is a fully
automatic approach learning features from raw pixels.

5. Experiments

5.1. MNIST dataset

Our �rst experiment is based on the MNIST hand-
written digit recognition benchmark, where there are
70000 data examples, and each is a 28 × 28 gray im-
age. All the images are pre-normalized into a unitary
784-dimensional vector. The data set is divided into
a training set with 60000 images and a test set with
10000 images.

For each digit image, we densely sample 12 × 12
patches at every location (with padding), and parti-
tion the image in two di�erent scales, i.e., 1 × 1 and
2 × 2. Therefore the second-layer coding is indepen-
dently performed for each of the 5 regions, and the
coding results are concatenated to form the image rep-
resentation. The codebook sizes are 1024 for B and
2048 for Φ. We train the codebooks based on the un-
labeled training set. We initialize the �rst-layer code-
book by learning the �rst-layer codebook without the
second layer coding, and then start the iterative proce-
dure to learn the both codebooks. The regularization
parameters are chosen via evaluating the classi�cation
performance on a small holdout set of the training data.

We �rst visualize the jointly learned codebooks in
Fig. 2, where each row corresponds a random second-
layer basis in Φ, and in each row we show the top asso-
ciated �rst-layer basis in B. The �gure shows that each
basis in Φ captures the dependency of related B pat-
terns at di�erent locations. This implies that though
the �rst layer bases are less invariant, the second-layer
coding can be more shift-invariant.

We also �nd that the sparse codes based on hierar-
chical coding are more discriminative for classi�cation.
In this investigation, we compare our method with the
popular one-layer sparse coding approach that �rst en-
codes local patches and then obtains image represen-
tations via square-root of average energy pooling (we
also tried max-pooling, which produced similar results
on MNIST). In order to make the comparison possible,
for hierarchical coding we extract the feature repre-
sentation by pooling its �rst-layer codes in the same
way. For the two compared image representations, we
compute dimension by dimension separately the �sher
discriminant score, which is the ratio of within-class
variance over between-class variance, as used by linear
discriminant analysis (LDA). Let F1(d) be the score

1717



Figure 1. Illustration of hierarchical sparse coding applied to image classi�cation: the �gure visualizes the case where we

partition the image into 4× 4 regions in one scale, and apply the hierarchical coding on the 16 patch groups.

for the d-th dimension of the representation obtained
by the one-layer sparse coding, and F2(d) be the d-
th dimension of the representation obtained by our
two-layer sparse coding. Then we compute the ratio
R(d) = F1(d)/F2(d) � if R(d) > 1, it implies that
two-layer sparse coding produces a more discriminative
representation on the d-th dimension. Fig. 3 shows the
distribution of this ratio values. As we can see, the
majority of the ratios are greater than one, indicating
that the two-layer coding is more discriminative than
the one-layer coding.

In the next we apply the learned representation for
image classi�cation using linear SVMs. The results are
shown in Table 1, which compared the result with those
of competitors. including unsupervised and supervised
sparse coding methods, with and without convolution,
and also convolution neural networks which actually
learn image representations in a supervised way. We
note that convolution neural network is the state-of-
the-art method for hand-written digit recognition. Our
method outperforms other competitors in terms of clas-
si�cation accuracy, given the fact that the presentation
is obtained from a purely unsupervised learning ap-
proach.

5.2. Caltech-101 Object Recognition

The Caltech-101 dataset contains 9144 images of 101
object categories, including animals, vehicles, �owers,
etc., plus one background category. The number of
images per category varies from 31 to 800. Most images
are medium resolution , i.e. about 300×300 pixels. We
follow the common experiment setup for Caltech-101,
to repeat 10 times, each time training on 30 random
images per category and testing on the rest. Average
classi�cation accuracy normalized by class frequency is
used for evaluation. We treat all the images as gray

Figure 3. Illustration of discrimination power of hierarchical

coding vs. one-layer coding for MNIST digit images,

images

We apply the hierarchical convolution sparse cod-
ing here, and implement two architectures. In the �rst
architecture, we extract every 4× 4 patches with sam-
pling step size being 1 pixel, and let each region contain
4 × 4 = 16 such patches. The �rst-layer dictionary is
set to be 8; for the second-layer, the joint coding is per-
formed on every receptive �eld containing 4×4 = 16 re-
gions, with the dictionary size being 2048, which means
the coding is for a 16 × 8 = 128-dimensional vector
space; In the second architecture, we increase the com-
plexity of the model by letting the patch size be 8× 8,
the �rst-layer codebook size be 64, and the second-layer
codebook size be 4096. In the end, we pool the second-
layer codes by following the spatial pyramid structure
1× 1, 2× 2, and 4× 4, which has been commonly used
for this particular benchmark. We visualize the learned
�rst-layer bases of the second architecture in Figure 4.
It is non-trivial in this case to visualize the second-layer
bases.

The object recognition results are shown in Table 2,
with a comparison to those reported in literature by

1718



Figure 2. Illustration of bases learned from MNIST digit images, where each row corresponds a random second-layer basis

in Φ, and in each row we show the top associated �rst-layer basis in B.

Methods Error rate (%)
Sparse coding (unsupervised) 2.10
Local coordinate coding (unsupervised) [21] 1.90
Extended local coordinate coding (unsupervised) [21] 1.64
Di�erentiable sparse coding (supervised) [5] 1.30
Discriminative sparse coding (supervised) [15] 1.05
One-layer sparse coding (unsupervised) 0.98
Convolutional neural network (supervised) [11] 0.82
Hierarchical sparse coding (unsupervised) 0.77

Table 1. Classi�cation error rate on MNIST by di�erent sparse coding approaches, all operating on pixels.

using various unsupervised feature learning methods.
These methods can be roughly put into two categories:
one is feature learning on top of hand-crafted SIFT fea-
tures, like [10, 20]; the other is feature learning directly
on image pixels, e.g. [18, 13]. We note that feature
learning from pixels has been known as a challenging
problem. Even though researchers in machine learning
have been pursuing hard to develop methods to auto-
matically learn better features, as shown in Table 2,
systems using SIFT features still outperform fully au-
tomatic methods by a big margin. But our results show
that, at least on this well-known benchmark, hierarchi-
cal sparse coding can achieve very competitive results,
which is encouraging. Between the two architectures
we implemented, the one with higher complexity per-
forms signi�cantly better, achieving 74% accuracy. To
the best of our knowledge, this is one of the best re-
sults without using feature combination or multi-kernel
learning.

6. Conclusion

In this paper we introduce a new method to learn
image representations via a two-layer sparse coding
network at the pixel level. The �rst layer encodes lo-

Figure 4. Illustration of the learned bases from Caltech im-

ages, the 64 �rst-layer bases of the second architecture.

cal patches while the second layer forms a joint rep-
resentation that e�ectively models the covariance of
the patches from the neighboring image region. Un-
like traditional one-layer sparse coding methods, this
new approach learns higher-order dependencies among
related image patterns, which leads to sparse yet more
invariant and discriminative image representations. We
develop algorithms for two-layer encoding and learn-
ing of two-layer codebooks from unlabeled data. Our
experiments show that hierarchical sparse coding pro-
duces image representations that improve accuracy on
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Methods Accuracy (%)
VQ coding on SIFT (nonlinear SVM) [10] 64.4
Sparse coding on SIFT [20] 73.2
One-layer sparse coding on pixels [18] 46.6
One-layer convolution deep belief network on pixels [13] 60.5
Two-layer convolution deep belief network on pixels [13] 65.4
Two-layer convolutional neural network on pixels [9] 66.3
Hierarchical sparse coding on pixels - architecture I 70.8

Hierarchical sparse coding on pixels - architecture II 74.0
Table 2. Normalized classi�cation accuracy on Caltech101 object recognition benchmark by di�erent single-layer and

multiple-layer unsupervised feature learning approaches, in the setting of 30 training examples per class.

both the MNIST digit recognition problem and the
Caltech101 object recognition benchmark. The results
show that automatically learning features from image
pixels is a promising research direction.
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