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Abstract. This paper introduces a new stepwise approach for predict-
ing one specific binary relationship in a multi-relational setting. The
approach includes a phase of initializing the components of a logistic ad-
ditive model by matrix factorization and a phase of further optimizing
the components with an additive restriction and the Bernoulli modelling
assumption. By using low-rank approximations on a set of matrices de-
rived from various interactions of the multi-relational data, the approach
achieves data efficiency and exploits sparse matrix algebra. Experiments
on three multi-relational datasets are conducted to validate the logistic
additive approach.

1 Introduction

Considering the problem of predicting binary relations in multi-relational data,
a natural way is to build a three-dimensional tensor such that two dimensions
represent the entities and a third dimension stands for different types of rela-
tions, and tensor entries represent the existence (a one) or non-existence (a zero)
of a relation [7]. Relation prediction can be performed by a low rank approxima-
tion via tensor factorization. Many existing tensor factorization methods such as
CP [3], Tucker [4,10], RESCAL [7] and the latent factor model [9] are optimizing
a target function over all the entries in the tensor. Tensor factorization methods
thus learn the multi-linear interaction among the three dimensions through the
latent representation of the tensor. The prediction of the truth value of an in-
stantiated relation then equals to the reconstruction of the corresponding entry
value in the tensor. Tensor factorization methods have been shown to be efficient
and become more and more popular in the areas of psychometrics, chemometrics,
neuroscience, the Semantic Web and so on [6,8].

In this paper, we discuss a special case of relation prediction in multi-relational
data, where users are only interested in predicting relations between entities in
one specific type of relation. We argue that modelling the loss over the query re-
lation slice and capturing different ways of linear interactions between the query
entries and the rest of the tensor entries is sufficient. By using low-rank approxi-
mations of various matrices derived from the reorganized sparse tensor data, the
method exploits sparse matrix algebra and achieves data efficiency.

The proposed approach consists of two steps. In the first step, components
of the logistic additive model are initialized by a least-squares fit. The linear
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combinations of the predictions from all these components are then used as
inputs for a logistic regression in the second step. Hence we further optimize the
predictions from all the components by additive models using logistic regression.

While the traditional additive models described in [2] assume that each com-
ponent corresponds to a regression surface describing the targets with their own
inputs, we assume in our logistic additive approach that components may share
the same input entries but that they are reorganized differently in order to de-
tect different ways of interactions between the query entries and the rest in the
tensor.

We provide the least-squares fit solutions for the initialization of all the com-
ponents, and the update equations for the additive model using logistic regres-
sion. The main idea of this two step approach is to first use latent factorization
to exploit the correlations between the targets and the rest of the tensor from
different ways of interactions, then apply the robust logistic regression using a
Bernoulli likelihood as a reasonable model for the binary tensor.

The remaining parts of this paper are organized as follows: Section 2 intro-
duces the stepwise logistic additive approach in detail. Section 3 gives exper-
imental results on Kinship, Nations and the UMLS datasets. Conclusions and
possible extensions are given in Section 4.

2 A Logistic Additive Approach

Consider an adjacency tensor X of size I × J ×K for a multi-relational graph,
where each entry represents a possible link in the graph, I and J are respectively
the number of nodes that may have out edges and in edges, and K is the number
of labels (i.e., relation types) for the links. Typically X is sparse for the large
multi-relational graph. Let xijk be the random variable representing the truth of
the existence of the links, where xijk = 1 for the links that are known to exist,
otherwise xijk = 0.

We now consider the task of predicting the existence of a specific relationship
of type q among a set of nodes, i.e. to predict the truth of xijq = 1 for the zero
entries in relation slice q. Let the query relation slice q be the matrix Xq. The
relation prediction task is to derive a matrix with the same size of Xq but to
replace the zeros by continuous numbers which can be interpreted from the
probabilistic point of view as P (xijq = 1|X ). These continuous values can then
be the basis for a further analysis to tackle the tasks of classification and ranking.

In the following we take into account different interactions between entries
in Xq and entries in the rest of the tensor, which is denoted as Xq̄, q̄ = [1 :
q − 1, q + 1 : K]. Recall that both Xq and Xq̄ represent some entries from the
tensor in this paper but that the organization of the entries is not fixed with
these representations. Examples of Xq and Xq̄ can refer to section 3.1;

In the rest of this section, we start with building the additive least-squares
model and then extend it to our logistic additive approach.
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2.1 The Additive Least-squares Model and Its Normal Equations

The standard parametric method for additive models is to predefine the form
of functions fh (e.g., to polynomial) for the components and then estimate the
parameters by least-squares. Here we take a nonparametric method based on
H smoothed matrices. A smoother matrix S(h) : <n → <n is a linear mapping
defined by [2]:

X̃ (h)
q = S(h)Xq (1)

Where h is the index of the smoothed matrix or component, X̃ (h)
q is the smoothed

prediction matrix from component h. In our setting, we assume that each smoother
S(h) depends on inputs Xq̄.

The assumption of our additive model is that we formulate the overall pre-
diction as a linear combination of predictions from H components:

X̃q =

H∑
h=1

X̃ (h)
q =

H∑
h=1

S(h)Xq (2)

which minimize:

min{
X̃ (h)

q |h=1,··· ,H
} ‖Xq −

∑
h

X̃ (h)
q ‖F (3)

where ‖ · ‖F denotes the Frobenius norm.
To derive a solution, we start with the solution for only one component

(Equation 1) and then extend it to H components. The least-squares fit mini-
mizes:

minX̃ (h)
q

‖Xq − S(h)Xq‖F (4)

Recall that X is a sparse tensor. Therefore any reorganization of X (h)
q̄ is also

sparse. Adding a regularizer to the cost function in Equation 4 and enforcing a
reduced rank, the solution can be computed via the Singular Value Decomposi-

tion of X (h)
q̄ :

X̃ (h)
q̄ = Urdiag

{
d3
i

d2
i + λ

}r

i=1

Vr

where r is the rank, λ is a regularizer, Ur and Vr are orthogonal matrices.

Thus here S(h) is a projection to the column space of X (h)
q̄ and describes the

regression space of component h:

S(h) = Urdiag

{
d2
i

d2
i + λ

}r

i=1

UT
r

We hence derive the predictions from component h:

X̃ (h)
q = Urdiag

{
d2
i

d2
i + λ

}r

i=1

UT
r Xq
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Now we extend the solution of one component to the additive model of objec-
tive function 3. A sufficient condition for a solution is that the space of residuals

(Xq −
∑

h X̃
(h)
q ) is orthogonal to the regression space of the additive model.

Since the regression space of the additive model depends on the space of each
component h, we have equivalently that the regression space of component h is
orthogonal to the residuals [2]:

S(h)(Xq −
H∑

h′=1

X̃ (h
′
)

q ) = 0

Thus:
X̃ (h)

q +
∑
h̄6=h

S(h)X̃ (h̄)
q = S(h)Xq

Equivalently, the following systems of normal equations is necessary and suffi-
cient to minimize objective function 3:

I S(1) S(1) · · · S(1)

S(2) I S(2) · · · S(2)

...
...

...
. . .

...
S(H) S(H) S(H) · · · I



X̃ (1)

q

X̃ (2)
q

...

X̃ (H)
q

 =


S(1)Xq

S(2)Xq

...
S(H)Xq


The Gauss-Seidel algorithm to update each X̃

(h)
q at a time is [2]:

X̃ (h)
q new ← S(h)(Xq −

∑
h̄<h

X̃ (h̄)
q new −

∑
h̄>h

X̃ (h̄)
q old) (5)

2.2 Update Equations for Additive Model using Logistic Regression

A least-squares solution, as derived in the last section, implies a Gaussian noise
model. Now we consider a Bernoulli noise model, more appropriate for binary
data. In particular, we assume that xijq follows a Bernoulli distribution:

xijq ∼ Bernoulli(σ(x̃ijq))

where

σ(x̃ijq) =
1

1 + e−x̃ijq
(6)

is the probability for xijq = 1 being true. We denote x̃ijq as the entries from X̃q.
We maximize the log likelihood of the distribution assumption:

` =
∑I

i=1

∑J
j=1 log p(xijq|x̃ijq)

=
∑I

i=1

∑J
j=1(xijqlogσ(x̃ijq) + (1− xijq)log(1− σ(x̃ijq)))

The stochastic gradient ascent rules for the logistic additive model are:

X̃q ←
∑
h

X̃ (h)
q

X̃ (h)
q new ← X̃ (h)

q old+ α(1 + Sh)(Xq − σ(X̃q)) for h = 1, · · · , H
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where α is the learning rate, 1 is a matrix of ones for modelling the bias, σ(X̃q)

denotes elementwise operation to the matrix X̃q.
Iterate the above update equations until convergence and we get the final

predictions σ(X̃q).

2.3 Tuning of Hyperparameters

Each component of the logistic additive approach contains two hyperparameters,
i.e., the regularizer λ and the rank r. We follow the method described in [1] and
perform a random grid search for the best hyperparameters.

3 Experiments

In this section, we give examples about how to reorganize entries in Xq and Xq̄

in order to capture different interactions between the entries. We compare our
approach with the additive least-squares model from section 2.1 and the state-
of-the-art tensor factorization method RESCAL [7] on the Kinship, Nations and
the UMLS datasets.

3.1 Exploiting Different Ways of Interactions

Following the idea in [5], we consider each entry xijk as a subject-relation-object
triple in the form of (s, p, o). We take into account the following three different
matrix organizations:

(1) Xq is a matrix with rows representing all the subject nodes, with columns
representing all the object nodes, with entries representing the truth of query
relation q among the subjects and objects. X̃q̄ is a matrix with the same rows as
Xq, but with columns representing the object-relation pairs of all the relations

except q. Here Xq and X̃q̄ can be viewed as part of the mode-1 matrix of the
tensor [6].

(2) Xq is the transpose of the one in case (1). X̃q̄ is a matrix with the same
rows as Xq, but with columns representing the subject-relation pairs of all the

relations except q. Here Xq and X̃q̄ can be viewed as part of the mode-2 matrix
of the tensor [6].

(3) Xq is a long vector with rows representing all the subject-object pair, with

entries representing the truth of query relation q for the subject-object pairs. X̃q̄

is a matrix with the same rows as Xq, but with columns representing all the

relations except q. Here Xq and X̃q̄ can be viewed as part of the transpose of
mode-3 matrix of the tensor [6].

In the experiments, these three components are taken into account for learn-
ing the components for the logistic additive approach. Thus each prediction is
based on a linear combination of information related to the context of a triple’s
subject, object and predicate. The difference to [5] is that instead of fitting an
additive least-squares model, we optimize the predictions from each components
by applying logistic regressions with additive restrictions.
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3.2 Datasets

We use three popular multi-relational datasets for the experiments:
Kinship This dataset describes the kinship relations in Australian tribes. It
constructs a graph of 104 subjects, 104 objects and 26 kinship terms to describe
the relation types among the subjects and objects.
Nations This dataset describes the relations among 14 countries. It results
in a graph of 14 subjects, 14 objects and 56 interactions.
UMLS This dataset describes the causal influence among some biomedical
concepts. It forms a graph of 135 subjects, 135 objects and 49 relation types.

3.3 Results

For each dataset, in turn each relation is considered as the query relation q.
We ignore relations that have less than 5 nonzero entries. We perform 5-fold
cross validation on Kinship and UMLS data, 3-fold cross validation on Nations.
Predictions are evaluated by calculating the area under precision recall curve.
The final results are presented by averaging the performance on different query
relations q and different test folds. Results are shown in table 1.

Since the distribution of nonzero entries is not uniform over different relations
in the tensor, we observe quite high variations on the performance for different
query relations on the same dataset. The experimental results show that our
logistic additive approach outperforms the additive least-squares model on all
the three datasets. The logistic additive approach has performance comparable to
RESCAL on the UMLS data. However it performs much worse than RESCAL
on the Kinship data. But we observe nearly 20% improvement of the logistic
additive approach on the Nations dataset, if compared to RESCAL.

Note that the logistic additive approach optimizes the target relations using
the other relations as side information. To some extent, it is better than opti-
mizing the whole tensor under a global model assumption. Furthermore, the way
how we model the interactions between subject-object pairs over different rela-
tions favors the tensor with higher number of relation types, such as the Nations
dataset but not Kinship dataset. Unfortunately, the logistic additive approach
does not have collective learning ability like RESCAL and thus it could not com-
pete with RESCAL on the Kinship dataset which requires collective learning for
optimal results.

Table 1. Experiments on Kinship, Nations and UMLS

Datasets Additive Least-squares Model RESCAL Our Logistic Additive Approach

Kinship 76,71 ± 27,50 91,81 ± 15,63 81,06 ± 22,87
Nations 79,00 ± 22,13 68,68 ± 19,46 88,23 ± 12,99
UMLS 73,66 ± 28,76 83,49 ± 26,55 83,79 ± 24,75
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4 Conclusions and Extensions

In this paper we discuss the problem of relation prediction in a multi-relational
setting. Instead of optimizing all the entries under one global model assumption,
we focus on the query relation slice and use the other relations as side infor-
mation. A stepwise logistic additive approach is presented to show how we can
exploit different interactions between the query and the known information by
reorganizing entries for both query relation and the other relations. We validate
our method by experiments on Kinship, Nations and UMLS datasets.

Our approach exploits sparse matrix algebra and from the scalability concern,
it favours datasets with a large number of relations, e.g.: the Nations dataset.
Furthermore, the logistic additive model is quite is flexible. By defining new en-
tries to be a function of some existing entries (e.g., the product of two predicate-
object pairs), one can introduce selected interactions into the additive model to
exploit non-linearity behaviors.

However, there are also limitations of the approach. The proposed logistic
additive approach needs to update the full prediction slices from the components
which requires high memory consumption for datasets with large numbers of
subjects and objects. Although the approach considers the immediate context of
the triples, indirectly related context information is not yet taken into account,
which would need to be done via explicit aggregation.
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