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Probabilistic Memory-based Collaborative Filtering

Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu, Hans-Peter Kriegel

Abstract—Memory-based collaborative filtering (CF) has been indicated implicitly by user behaviors, such as clicking on a hy-
studied extensively in the literature and has proven to be success- perlink, purchasing a book or reading a particular news article.
ful in various types of personalized recommender systems. Inthis = 5 major difficulty in designing CBF systems lies in the
paper we develop a probabilistic framework for memory-based roblem of formalizing human perception and preferences
CF (PMCF). While this framework has clear links with classi- p ; g o p P p :
cal memory-based CF, it allows us to find principled solutions to  Why one user Ilkes_ or d|5|_|kes a joke, or pref_er_s one C_D over
known problems of CF-based recommender systems. In partic- another is virtually impossible to formalize. Similarly it is dif-
ular, we show that a probabilistic active leamning method can be ficult to derive features which represent the difference between
used to actively query the user, thereby solving the “new user prob- 5, average news article and one of high quality. CF provides a

lem”. Furthermore, the probabilistic framework allows us to re- e . .
duce the computational cost of memory-based CF by working on a powerful way to overcome these difficulties. The information

carefully selected subset of user profiles, while retaining high accu- 0N pgr;ongl prgferences, t.astes, and quality are all carried in
racy. We report experimental results based on two real world data  (explicit or implicit) user ratings.

sets, which demonstrate_ t_hat our p_roposed PMCF framework al- CF-based recommender systems have successfully been ap-

lows an accurate and efficient prediction of user preferences. plied in areas ranging from e-commerce (for example, Amazon
Index Terms— Collaborative filtering, recommender systems, and CDnow) to computer-supported collaborative work [7].

profile density model, active learning, data sampling. CF research projects include Grouplens (the first automatic CF

algorithm, [5]), Ringo [6], Video Recommender [8], Movielens

[9], and Jester [10].
|. INTRODUCTION

Information on the web has been growing explosively in réd. Collaborative Filtering Algorithms

cent years. Information filters emerged to meet the challengep variety of CF algorithms have been proposed in the last
of information search on the WWW, a problem which may bgecade. One can identify two major classes of CF algorithms
compared to “locating needles in a haystack that is growing €41}, memory-based approaches and model-based approaches.
ponentially” [1]. Recommender systems are a class of infOfma‘Memory-based CF can be motivated from the observa-
tion filters which have proven to be successful. For examplgon that people usually trust the recommendations from like-
recommender systems on e-commerce web sites assist usefitRied friends. These methods apply a nearest-neighbor-like
find their favorite CDs or books. Slm”arly recommender SYScheme to predict a user’s ratings based on the ratings given
tems assist in locating items like web pages, news, jokes, 1 |ike-minded users. The first CF systems Grouplens [5] and
movies, from thousands or even millions of items. Ringo [6] fall into this category. In the literature, the term
Content-based filtering (CBF) and collaborative filteringollaborative filtering is sometimes used to refer only to the
(CF) are two technologies used in recommender systems. ClaEmory-based methods.
systems analyze the contents of a set of items together with thén contrast, model-based CF first learns a descriptive model
ratings provided by individual users to infer which non-rategf user preferences and then uses it for predicting ratings. Many
items might be of interest for a specific user. Examples inclug@e these methods are inspired from machine learning algo-
(2], [3], [4]. In contrast, collaborative filtering methods [3], [6],rithms. Examples include neural network classifiers [1], in-
[1] typically accumulate a database of item ratings cast bygaction rule learning [12], linear classifiers [13], Bayesian net-
large set of users, and then use those ratings to predict a qugéyks [11], dependency networks [14], latent class models or
user’s preferences for unseen items. Collaborative filtering da@sture models [15], [16], item-based CF [17], principle com-
not rely on the content descriptions of items, but purely depengisnent analysis based CF [10], association rule mining [18],

on preferences expressed by a set of users. These preferegggsybrids of model- and memory-based approaches [19].
can either be expressed explicitly by numeric ratings, or can be
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1) Accuracy: As a central issue in CF research, prediction 5) Comprehensibility: The results in [22] indicate that al-
accuracy has received a high degree of attention, and variémsing users to know more about the result-generating process
methods were proposed for improvement. Still, conventionean help them understand the strengths and weaknesses of CF
memory-based methods using Pearson correlation coefficispstems. With this knowledge, users can make low-risk de-
remain among the most successful methods in terms of accisions. For example, consider the following two cases: (1)
racy. The experiments presented in Sec. V-D show that oimong Julia’s like-minded users there &% percent of users
proposed probabilistic interpretation of memory-based CF caino rated ‘like’ to Titanic, while50% of them rated ‘dislike’.
outperform a set of other memory- and model-based CF d@) In the other case, most of her neighbors give neutral rat-
proaches. ings to that movie. A traditional CF system may only give a

2) Interactive Learning of User Profiles:A recommender neutral ra_tting in. both of the cases. A more spphisti_cated system
system cannot provide accurate service to a new user, wh§&& "emind Julia of the underlying reasons in the first case and,
preferences are initially unknown. This has been referred f§J €xample, output an estimated distribution of a user’s rating
as the “new user problem” [2], [20], [21] Before being able t(go_r some item, e!ther in graphical or textual form (“I guess you
make predictions, a CF system typically requires the new uéf! like that movie, and I am pretty sure (or very unsure) about
to rate a list of query items in an initial information gathering"@t")- This suggests that a probabilistic CF approach, as pre-
stage. Efficient heuristics [21] are essential to select informatiygnted in this paper, can improve the comprehensibility and thus
query items and thus keep the information gathering stage 8§ acceptance of a CF system. Furthermore, memory-based CF

short as possible, since users may easily lose patience whas a clear interpretation that can be easily conveyed to users,
faced with a long list of query items. such as “You seem to be sharing opinions with user A, who

Within our proposed probabilistic framework for CF, We“ked the following items. ..

show in Sec. Il how informative query items can be selected

in a principled way. At each information gathering step, those. Overview of Our Approach

query items are presented to the user which are expected tin this paper, we introduce probabilistic memory-based col-
maximally sharpen the user’s profile. Our experiments (stshorative filtering (PMCF), a probabilistic framework for CF
Sec. V-E) confirm that this interactive approach outperfornsystems that is similar in spirit to the classical memory-based
other ways of selecting query items [21] both in terms of neGF approach. A schematic drawing of the components of
essary user effort and achieved accuracy of predictions. PMCEF is shown in Fig. 1.

3) Efficiency: Memory-based CF often suffers from slow AS the basic ingredient, we present a probabilistic model for
response time, because each single prediction requires the sE&R! Preferences in Sec. Il. We use a mixture model built on
ning of a whole database of user ratings. This is a clear disd@¢ basis of a set of stored user profiles; thus the model clearly
vantage when compared to the typically very fast responsediBks with memory-based CF methods.
model-based CF. In the proposed probabilistic memory-based/@rious heuristics to improve memory-based CF have been
CF approach, predictions are generated from a carefully §§0posed in the literature. In contrast, extensions to PMCF can
lected small subset of the overall database of user ratings, whitghP@sed on a principled probabilistic way. We argue that this is
we call profile space As a consequence, predictions can b@ne Of the major advantages of PMCF. We use PMCF to derive
made much faster than in a classical memory-based CF syst&fiutions for two particularly important problems in CF.

Still, the accuracy of a system using the full data set can peThe flrst_one concerns the new user proplem. An active learn-
maintained. We will describe this process of data selection f#g €xtension to the PMCF system can actively query a user for
Sec. IV. The results presented in Sec. V-F confirm that the cd¥fditional information, in case the available information is in-

structed profile space does indeed allows a both accurate gHficient. _ o _
fast prediction of user ratings. The second major extension aims at reducing the computa-

tional burden in the prediction phase typically associated with
memory-based CF. PMCF allows us to select a small subset,

. ; . afied theprofile spacefrom a (possibly huge) database of user
new users or new items. For example, in a music recommen ings. The selection procedure is derived directly from the
system, j[h'e recommender §ystem must be able to adapt itse fSbabilistic framework and ensures that the small profile space
neyvly arising styles of mus_|c_and thus new preference pgtter ds to predictions that are as accurate as predictions made by
This suggests that the training process of any underlying

algorithm should be incremental. However, model-based Ing the whole data base of user ratings.

approaches are typically trained using batch algorithms. To our ] .

knowledge, little work has addressed the use of on-line leafd- Structure of this Article

ing in CF. Thus, re-training a model with new data can becomeThis paper is organized as follows. In Sec. Il, we describe
quite expensive, in particular if it needs to be performed regthe framework of probabilistic memory-based CF (PMCF). In

larly [11]. In contrast, memory-based CF can easily accommgec. Ill, we present an active learning extension of PMCF to
date to new data by simply storing them. In the proposed prolg@ther information about a new user in a particularly efficient
bilistic memory-based CF framework, this goal can be achieveay that requires a minimum of user interaction. In Sec. IV, we
by a straight-forward extension of the data selection procedwigow how to construct the profile space for the PMCF model,
introduced in Sec. IV. which is a small subset of the available user rating data. We

4) Incrementally accommodating to new dataRecom-
mender systems must be capable of handling new data, b
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Interactively learning individual Incrementally constructing a genera“ty’ we assume that the prof”e Space |S buﬂtf[m‘n
fil t fil y . X . .
e v [oine i vk oo the ratings of the firslV users, i.e. the firs\ rows of D, where

typically N < K.

Profile
Space

In CF terminology, thective useiis the user that queries the
CF system for recommendations on some items. We denote the

Present informative items l

.‘

to the user for rating 1 active user’s ratings byw. By a”, we denote the ratings the
¥ active user has already provided (for itemsR ), anda™ are
User rates items which are "i Update profile space | the yet unknown ratings. The total rating vectois thus the
familiar to him or her union ofa” anda™.
v R — As r.nentloned.above, we use a neutral ratingor a!l items
S?af_;h P“’f}lle sl'at‘;‘;f” @ ratings in the a useri has not given an explicit rating, i.e; ; = n; if j ¢ R;.
Smrar ""1' il kel fast business In order to compute,, we assume a Gaussian prior for the neu-
P tral rating with meamn, which is estimated as the overall mean
Present probabilistic

of user ratings. If we further assume thatis also Gaussian
distributed with meamn, we can estimate the neutral rating as

prediction results to users

Satisfied?
R

atings
YES =

User Rating Database

> jer, Tij +Cmo

"Rl| +C @)

n; =

End of this session

¢ where('is the ratio of the variance of the ratings for uger
----- and the variance afiy. We determined a suitable value for
Fig. 1. A schematic drawing of the components of probabilistic memory-basggsed on cross validation experiments. We fodhd= 9 to

collaborative filtering (PMCF). Through an active learning scheme (present&@rK effectively on the data we consider.

in Sec. lll), the profile of a new user can be inferred with a minimum of re-

quired user effort. User ratings are stored in a database, from which a compact . .
representation—the profile space—can be constructed in order to make BstA Density Model for Preference Profiles

predictions (presented in Sec. IV) We assume a generative probabilistic model in which the rat-
ings a of an active user are generated based on a probability

present experimental results that demonstrate the effectiverfé@gsity of the form

of PMCF, the active learning extension and the profile space N

construction in Sec. V. We end the paper by conclusions and an _ 1 . ‘ 2
outlook in Sec. VI. plalP) = N ;p(ah), @i cP @

wherep(ali) is the probability of observing the active user’s
ratingsa if we assume that has the same profile class as the
In this section a general probabilistic memory-based Gkh profile prototype irP, i.e. useri's profile. The density ex-
(PMCF) approach is introduced. Probabilistic CF has beerpeessed by Eq. (2) models the influences of other like-minded
vivid research topic. Examples include Bayesian networks [11isers’ preferences on the active userFor the mixture com-
dependency networks [14], latent class models or mixture mqsbnentsy(a|i), we use Gaussidmensity functions. Assuming
els [15], [16], and hybrids of memory- and model based systentt ratings on individual items are independent, given a profile
[19]. The work presented here has been inspired by [19], in thatve get
we also aim at connecting memory- and model-based CF in a

Il. PROBABILISTIC MEMORY-BASED CF

probabilistic way. While [19] mainly focusses on making prep(ali) = Hp(aj|z') 3

dictions, we use the probabilistic model for further extensions JjeT

of the CF system, some of which will be described in Sec. lll B (Qﬂ)—m 1 (a;— xi,j)Q

and IV. =l = 202 L dion o2
jer Vo2 +djgr,05 0%+ djgr, 04

A. Notation Here,d;¢r, = 1if z; ; is unrated and/;¢, = 0 otherwise.

This model can be motivated as a mixture model, with the pro-
totype profilese; serving as cluster centers, or as a Parzen den-
sity model on the profile spac@. The additional variance for
unrated items takes into account the uncertainty of the estimated
d’rating.

Suppose that we have gatherEdusers’ ratings on a given
item setZ of size M = |Z|. Letz;; € R be the rating of
useri on itemj and letD with (D); ; = x; ; be theK x M
matrix of all ratings.R; is the set of items for which useéhas
actually given ratingsR; C Z. If an item has not been rate
we SetTi,j to a neutral rating;, Whmh we will define Iater'_ We 2We will show in Sec. IV how a compact and accurate profile sgacan be
denote byz; the vector of all ratings of usér In the following incrementally built from a given set of user ratirs
text, user’s ratingsz; are often referred as usés profile. We 3We are a little inaccurate here and assume for simplicity that our rating scale

. - ) : is continuous and unbounded, ignoring the fact that ratings are often given on
also maintain a smaller set of user profiles, fefile space

h ‘ ) a discrete scale. One might also chose mixture components that fit particular
P, which consists of a subset of rows Bf Without loss of data, for example binomial distributions for discrete ratings.
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In our experiments, we sef} to be the overall variance of A. The New User Problem
user ratings.c* was optimized by maximizing the leave-one- For ysers that are new to a recommender system, no infor-

out likelihood of profiles mation about their preferences is initially known. Thus, the
P 4 recommender system typically requests them to rate a set of
E;p(aI \a) (4) query items. Using the ratings on these query items, the CF
ac

system can then start making recommendations.

with respect too2. o2 is tuned after constructing the profile There are several important reasons why this set of query

space (see Sec. IV) and left constant thereafter. Note that, teé@ms should be selected carefully: (1) Users are not willing to

nically, profiles take on different meanings: If they are pafte a long list of items; (2) Users cannot rate items unknown

of the data base, they represent prototype vectors defining tadhem; (3) Rating results for some items might be very infor-

component densities in Eq. (3). If we consider the active useftive for determining a user’s profile whereas rating results

profile, the profile corresponds to a sample generated from fi8é other items might not provide useful new information. So

probability density defined in the same equation. far little work has been done to addrésise new user problem.
[21].

C. A Probabilistic Approach to Estimating User Ratings In the next sections, we will present an approach for select-

We can now calculate the posterior density of the active uSI%ﬁ)v(\}/lsjef;);tltlir:riiTa;Le()qul:I{E(j Ssgtr',gu'?;%rlgﬂeceusser effort, yet
a’s ratings on not yet rated items, denoteddsy, based on the 9 P '

ratingsa” usera has already given. Using the previously de-

fined density model for user ratings, we find B. Identlf_ylng Inforrr_la_tlve Query I.tems _ _
To achieve an efficient interactive learning of user profiles,

p(a”la”, P) p(a”™,a”|P) (5) We put the selection of query items into a decision theoretic
’ p(a|P) framework (see for example Sec. 4.3 of [24]). First, one needs
N v to define a loss function, evaluating the quality of the system
_ Zi:lp(a ,a”i) . . .
= T <N o (6) Dbefore querying a new item(a”,P) and after querying the
2= p(a’li) user for itemyj, j ¢ R; and after having obtained ratinag. We
N . o denote the loss after querying Bya;, a”, P). The goal is now
= Zp(an‘l) Pr(ila”, P). (") to select the query itempsuch that the expected loss
=1
Pr(ila”, P) indicates the posterioriprobability of usew hav- Epaslar.p) [May, ", P)] ©)

ing theith prototype profile, given the ratings usealready has is minimized. The expectation is calculated here with respect
provided. It thus models the “like-mindedness” of active userto the predicted probability of usefs ratings for itemy.

to other users in the profile spacé: The most important ingredient is the loss function
e Aaj,a”,P). We propose to use the entropy of the like-

Pr(ila”, P) = %. (8) mindednes®r(i|a”,P) as the loss functionPr(i|a”, P) de-

> i—1 p(a’]i) scribes the like-mindedness of a usén the profile space®

Within the PMCF model, predictions for the active user are thy4th agtive user, givena’s ratingsa’. In an extreme case,
made by combining the predictions based on other prototyp&(¢/a”P) has a uniform distribution, which means that the
userse;, weighted by their degree of like-mindedness to user proflle of userm is completely unclear. In contrast, a sharp peak

This puts the key idea of memory-based collaborative filterir§ the distribution ofr(i[a”, ) indicates that user has sim-
into a probabilistic framework. ifar preferences as a small group of like-minded users. It thus

Note that the computational complexity of prediction seems natural to choose those query.items. that minimize the
O(NM), i.e. it is linear in the size of the profile space. Ifncertainty (thus, the entropy) of uses like-mindedness.
Sec. IV we will show how to obtain a profile space that is much PUtting this into a formal setting, we can write for the loss

smaller than the complete user rating datalfasaking pre- runction
dictions only on basis of the small profile space thus brings a N
significant reduction of overall computational cost. Maj,a",P) = =Y Pr(ila;, a”, P)log Pr(ila;, a”, P).

i=1
(10)
Ill. AN ACTIVE LEARNING APPROACH TOLEARNING By Pr(i|a”, aj, P) we denote like-mindedness, computed with

USERPROFILES . .
) i ) an updated vector of ratings for the active user, who now also
In the previous section, we introduced the PMCF framewop ¢ rated the (previously unrated) itgm

and showed how predictions can be made. In this section Wayje can now define the expected benefit (Sec. 4.3.2 of [24])
will use an active learning approach to efficiently learn the prggy querying itemj as

file of an individual user. The active learning approach inte-

grates smoothly into the PMCF framework and provides a so- E[B(j)] = Ey(q,jar,p) [Maj,a”,P)] — X(a",P)  (11)
lution for the “new user problem”. By presenting a set of most, _ , _
. . . . . . A method for improving the accuracy of CF systems by adding extra query
informative query items in an interactive process, we can legy,

3 - - I Lhs has been presented in [23]. This approach might also be adapted to solve
about the profile of a new user with a minimum of user effort.the new user problem.
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and terminate the query process if the expected benefit is less profile, i.e. the items with the highest expected benefit in
than a threshold related to the cost of querying. Eqg. (11).

Our algorithm for query item selection is myopic in the sense 3) Display thosék, items to the user for rating. Collect the
that the algorithm only looks one step ahead. In contrast, a hy- ratings and update the vector of ratings
peropic algorithm would aim at finding the optims¢quence  4) Terminate if the user is not willing to answer any more
of query items to be presented. However, since hyperopic opti- queries or if the expected benefit of querying (as defined
mization is computationally intractable, myopia is a standard  in Eq. (11)) is below a certain threshold. Otherwise, go
approximation used in sequential decision-making problems to step 1.
[25], [26]. In the very first step, where nothing is known about usexe

assume equal like-mindedness of userith all profiles in/P.

C. Identifying the Items Possibly Known to the Active User Thus, user will be presented thé, most popular items as

If we wanted to use the active learning approach describeddHery items.
the previous section directly, we would most often get a “don’t )
know” as the answer to most of the query items. Users of a &= Implementation
system can typically provide ratings for only few of the items. 1) Parameters for Active Learning:The value ofk; (see
For example, in a recommender system for movies, users nsgp 1 of Sec. IlI-D) should be carefully selected k{fis too
typically have seen a few dozen movies out of the several huigmall, for example, as small &s, then the selection procedure
dred movies contained in the data base. It may be quite infés-too much biased by Eq. (12), and thus might miss out infor-
mative to know the user’s opinion on an unusual movie, yetnative items—the system performs too little exploratiork;If
is likely that the user will not be able to give this movie anys too large, too many items will be presented to the user which
rating. the user is not able to rate. In cross validation experiments, we
Thus, we must also predict the probability that a user is atfilsund thatk; = 50 gives the best results for the data we con-
to raté a given query item. This can be achieved by again reider. The value fok, is rather uncritical. We usek, = 10,
ferring to the like-mindedness of users. In Eq. (5), predictiotecause it seems reasonable to displajtems on a normal-
for active user were built from a sum of other users’ ratingssized PC screen. Thus, at each iteration, we first findbthe
weighted by their degree of like-mindednéagi|a”, P). Sim- candidate items with largest probability of being known, and
ilarly, we can predict the probability of usetbeing able to rate then identify10 query items according to the expected reduc-
item j, given his or her other ratings”, by checking uset’s tion of uncertainty in like-mindedness.
like-minded users: 2) Computational Complexity:The most costly part in this
N active learning approach is the evaluation of Eq. (11), where the
T _ TR, ted reduction of uncertainty in like-mindedness is com-
Pr(usera can rate itenyla”, 7) ; Pr(usera can rate Item@)&?gﬂgﬁ?eﬁglgorithm needs to exhalxtck;) possibilities of
(12) user feedbacks at each iteration (whets the number of rat-
Pr(usera can rate itenj|i) is the probability thata can rate ings a user might possibly give to a presented query item, and
item j, given that users and: (as described by prototype pro-k; is the number of candidate items) and calculate the entropy
file «;) agree on which items they are able to rate. We assumiethe like-mindedness for each case. This again requires eval-
for simplicity that user can rate exactly the safhenovies as uating Eq. (2) with changed preference veatorFortunately,
user:: Eq. (2) factorizes along items, thus the distances only need to
) _ be re-calculated along the dimensions of the newly rated items.
1 ifuserihasrated itenj  Thjs greatly reduces the overall computational cost.
0 otherwise 3) Alternative Methods: Several of the approaches pro-
(13) posed in the active learning literature may be adopted for CF. A
common approach isncertainty samplin§27], which has been
D. A Summary of the Active Learning Process successfully applied to text categorization [27] and image re-
Using the ideas described in the previous sections, we pfj€val [26] to reduce the number of training examples. The gen-

pose the following iterative scheme to learn the profile of tHf@! idea behind all proposed variants of uncertainty sampling
active usen: is to present the unlabeled examples for which the outcome is

1) Out of the set of items that have not yet been rated ost uncertain, based on the current predictions. In a CF sce-

usera, find thosek; items with the highest probability of ario,. one is interested in predicting a gser’s ratings fo.r non-
being known to useu, i.e. those items with the higheStfated items. Thus, the variance of predictioasp(a;|a”, P) is
value for Eq. (12) ' an appropriate measure of uncertainty. An advantage of this ap-

2) Out of these:, items, select a subset bf items that lead proach lies in its low computational cost, since we only have to

L T .
to the highest reduction of uncertainty about the use@MPUle the predictionsa;|a”, P) for all yet unrated items. -
Another low complexity method for query item selection is

5Another way of solving this problem would be to integrate this probabilitentropy sampling21]. Here, we considePr;(s), the fraction
into the loss function Eq. (10) for the active learning approach. We do ngf  sers who had given a particular ratim@ {51 ..., 8 } for
pursue this solution in the present article. . ) . ’ V¢

6This is a strong assumption, yet due to the weighting introduced by the Iik!é-em]' _Q"_Jery items are selected such that the entroﬂm)@s)
mindedness we obtain meaningful results is maximized.

Pr(usera can rate iteny|i) = {
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We will show in Sec. V-E that the method based on unceB. Incremental Profile Space Construction

tainty of like-mindedness (as outlined in Sec. 1lI-B) achieves g, constructing the profile spade from a data bas® of
best results, both in terms of achieved accuracy and in term§ @k ratings, we consider an incremental scenario. Given the
required user input. current profile spac®, which profile patternz; € D should
be included such that the updated profile sp&ce x; can
achieve the maximum reduction in KL-divergence, according
IV. INCREMENTALLY CONSTRUCTINGPROFILE SPACE to Eq. (15)?

. o _ The reduction in KL-divergence caused by includinign P
In Sec. Il we introduced a probabilistic model for describinggn pe written as

user preferences. This model was based on a given set of user

profiles, the profile spac®. In this section, we will show how =D (p(z|P)|[p°(z)) — D (p(z|P Uz;)|[p°(z))
this profile space can be constructed, by selecting informativeA, = p(D|P U x;)

user profiles from the overall database of user ratilgSince K log W

the profile space typically contains only a low number of user (17)

profiles (as compared to the often hu it allows us to build Mind that this step causes the optimal deng®(z) to drop
compact models and make predictions efficiently, while maigyt. According to Bayes' rule, the likelihood of the overall data

taining a high accuracy. It thus solves the well-known proble®  given the updated profile spa@U z; can be written as
that predictions of traditional memory-based CF methods agg|ows:
p(z|D)

rather time-consuming.
p(xi|P)

wherep(x;|D) is the likelihood ofzx;, based on a model that
uses the complete data as the profile space. Combining Eq. (17)

Let's assume that there exists an optimal density model f8Rd (18), the optimal profile to be selected is given by:
user ratings, which we denote by¥P(x). Naturally we do D
not have access to this optimal model but we work with a non- argmax /\; = arg max p(@i|D)
optimal modelp(z|P), as given in Eq. (2), based on some pro- ‘ 2:€D\P p(@i|P)
file spaceP. The key idea of our proposed selection procedu

is to select the p_rofile spade sgch that the density(xz|P) is Eq. (19) suggests that profiles with low p(z;|P) but high
as close as possmlg to the optimal denpﬂs}(a,j). _ (z;|D) will be selectedp(x;|P) encodes how likely a profile
To measure the distance of these two distributions, we use ﬁ‘ﬁs, given our current knowledg®, while p(z;|D) encodes
Kullback-Leibler divergence (KL-divergence [28]). We denotgne jikelihood and thus the “degree of typicalness” of profile
the KL-divergence of the two distributions by x; in the overall dataD. The profile selection scheme thus
- focusses on profiles that are novel to our current knowledge
D (p(z|P)||p°(x)) = /popt(gc) log p°P) dr  (14) _(encoded by the current profile space), but are in fact typ|cal
p(x|P) in the real world (represented by the whole dBfa Thus, this
) ) ] sampling scheme will result in removing redundancies (we only
where the integral is over the whole space of user rating vectqigus on novel data that is not yet included in the profile space)
The KL-divergence is always non-negative and is zero whep in removing outliers (outliers can be considered untypical
two compared distributions are identical. Assuming that the tg ).
tal set of user rating® constitutes a set of independent samples Still, Eq. (19) does not give a practical algorithm, since it re-
drawn fromp®"(), we can approximate the KL-divergence byyires evaluating)(K) profiles, i = |D|, where each evalua-

p(DIP U ;) = p(D|P)

(18)

A. Kullback-Leibler Divergence for User Profile Sampling

(19)

&n intuitive interpretation of this selection scheme is as follows:

Monte-Carlo integration [29]: tion requiresD(K) steps to actually builg(x;|D). This leads
« to the clearly impractical overall runtime 6f(K?). Practical
~ 1 p°PY(x;) variants will be discussed in the next section.
D opt = —>1 - 15
(PP)r™@) = g3 le oy 19
1 p°PY(D) 16 C. Implementation
K % p(D|P) (16) Constructing a profile spad@according to Eq. (19) is some-

times referred to afull greedy selectionThis can only be done

whereK is the number of users . efficiently if the associated objective function can be computed

As stated above, we wish to minimize the KL-divergenceheaply—which is not the case for the likelihood ratio we con-
D(p(x|P)||p°(x)) so that the density(x|P) best approxi- sider here. In related problems, it has been suggested to con-
matesp®®(x). Sincep®(D) is constant, Eq. (15) can be mini-sider small subsets of candidates, evaluate the objective func-
mized by maximizing the likelihood of the user rating databad®n for each candidate, and select the best candidate out of this
D with respect to the profile spage Finding the optimal pro- subset (see, for example, Sec. 6.5 of [30]).
file spacep is clearly an intractable task, we thus switch to an We thus obtain the following profile sampling scheme to
iterative greedy approach for constructiRg build P from D:
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1) Select a subset of candidate profiles at random from Evaluating the density function(x;|D) for a candidate pro-
D\ P. file x; (see Eq. (19)) requires scanning the whole data Base
2) Compute the likelihoo@(x;|P) for each candidate pro- with K user ratings. Its complexity is thug(K). Since all
file ; € C, based on the current profile spgee potential profile space® are subsets oD, P C D, one can
3) Compute the likelihoo@(x;|D) for eachz; € C, based easily construcp(xz;|P) as a “by-product” when scanning the
on the complete datR. data base in order to find{z;|D). Both steps are thu9(K),
4) Include the best candidate profile in the profile space: with K = |D|. Constructing a profile space of si2érequires
a total of O(K' N) operations. Once the profile space, is con-
P — P U arg max p(xi|D) (20) structed, one also needs to update the variaricgccording to
x;eC p(z;|P) Eq. (4). This is done with a leave-one-out scheme, its complex-

, , , , ity is thusO(N?).
5) Terminate, if the profile space has reached a given maxt-_. . i . .
. . . . ; Since one would typically keep the profile space resident in
mum size or if the reduction of KL-divergence is below a . .
given threshold memory, the memory consumption of the profile space con-

. struction isO(N), with N = |P|.
It has been suggested in [30] that subsets of glze= 59 can Th ted method f tructi fi tre
be guaranteed to select profiles that are better #é&h of all € suggested method for constructing a profile spatis

h fil ith fidences’. | X i has the same complexity as making predictions in a traditional
other protiles with confidences7. In our experiments, we memory-based CF method. Yet, as described in Sec. IV-D, pro-

aim at achle_vmg higher efficiency ar_1d thus use subsets of St space construction can be seen as a background process that

C| = 7. This correspo_nds to ;electmg profiles that are betT1‘§rbeing triggered by time or when unused computing power is

thang0% of all others with confidencg0%. available. Thus, its time consumption is not visible to a user of

the CF system. We argue that the so achiesrgtt of workload

D. Constructing Profile Spaces in a Dynamic Environment js important, since it greatly improves the efficiency of front-
While the sampling approach presented in the previous seed processing, namely, making predictions.

tion works fine in a static environment with a fixed database of

user ratings, it needs to be refined to work in a dynamic environ- V. EMPIRICAL STUDY

ment. The dynamics arises from changing preferences pattern

(for example, new styles of music in a music recpmmen_der SXiE memory-based collaborative filtering (PMCF) framework to
tem) and the ever growing database of user ratings. Since US&S CF benchmark data setsABHMOVIE and ESTER We

profiles are typically collected incrementally, we suggest an 'P'Port results on prediction accuracy, efficiency of learning in-

cremental extension to the basic sampling scheme presenteg?\;hual user profiles (based on the ideas presented in Sec. IlI)

Sec. IV'.C' we assume that the profile space is being updatdergé accuracy of the constructed profile spaces (using the incre-
after a fixed period of time, e.g. each day or week. The antantal scenario of Sec. IV)

user profiles gathered during this period are being processe
and some of them will be added to the profile space.
Assuming that we have a data base of user ratig§rom A Data Sets
D, we have already constructed a profile sp&ceAfter col- We apply the PMCF framework to the following two bench-
lecting user profile data for some time, we get an updated datark data sets:
baseD™, with DT = D U AD. In order to build the according « EACHMOVIE® contains ratings fromi72,916 users on

I this section we report results from applying the probabilis-

profile spaceP™, select the set of candidate iteigrom D 1,628 movies. User ratings were recorded on a discrete
Select the most informative profile and update the profile space scale from zero to five. On average, each user rated about
Pt 30 movies. BCHMOVIE is one of the most widely used
P — Pt Uarg max p(zi| DY) (21) data sets in recommender system research.

z;eC p(z|PT) « JESTER contains ratings from7, 998 users on 100 jokes,
Terminate if the new profile spad@* has reached a given size ~ continuously valued from-10 to 10. On average, each
or if none of the candidate items; € C leads to a reduction user rated about 50 jokes. We transferred the ratings to a
of KL-divergence. Otherwise, select a new candidate set and discrete scal¢—10,-9,...,9,10}.
proceed.

Through this straight-forward extension we can retain the bB- Evaluation Metrics and Experimental Setup

sic idea of using a small profile space, as introduced in Sec. IV-n collaborative filtering research, one is typically interested
B, while now being capable of incrementally processing ney two types of accuracy, the accuracy for predicting ratings

data’ and the accuracy for making recommendations. The first one
measures the performance when explicitly predicting the active
E. Computational Complexity users ratings on some unseen items. The second one focusses

For the basic profile space construction, as outlined ™ available  from the Digital Equipment Research Center at

Sec. IV-B, the computational complexity is as follows: http://www.research.digital.com/SRC/EachMovie/
9JESTER stems from a WWW-based joke recommender system, devel-
7One might also consider the case of removing certain (outdated) user psped at the University of California, Berkeley [10]. It is available from
files fromP, yet we did not evaluate this idea in the present work. http://shadow.ieor.berkeley.edu/humor/
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on finding an accurate ordering of a set of unseen items, in ordanked items out of these 30 items are then recommended to
to recommend the top ranked items to the active user. Theke user and used to evaluate precision and recall. We compute
two scenarios require different experimental setups and metripggcision and recall for two cases, where we either recommend
which we will describe now. the top 5 or the top 10 ranked items. These two cases will be
1) Accuracy of Predicting Ratings:To evaluate the accu- labeled TorP5 and Tor10 in the table of results.
racy when the CF system is asked to predict an active user'3) Training and Test Sets:For comparing the accuracy of
ratings, we use the mean absolute error (MAE, the average pledictions of PMCF with that of Bayesian network CF [11] on
solute difference between the actual ratings and the predictad EACHM OVIE data, we use exactly the same split as reported
ratings). This measure has been widely used in previous ciml{11], [19] with training and test sets of size 5000. To be able
laborative filtering research [11], [31], [19], [5], [6]. to evaluate the significance of our results, we use training and
We examine the accuracy of predictions in two experiment@st sets (both of size 5000) drawn at random from the data, and
setups, ALBUTONE and QVENS5, which were introduced in repeat this five times.
[11]: Similarly, for evaluating the accuracy of prediction on the
« ALLBUTONE evaluates the prediction accuracy when suflESTER data, we take the first 5000 users as the training set,
ficient information about the active user is available. F@nd the next 5000 as the test set. Five random splits are used
each active user (from the test'$¢tve randomly hide one for significance tests.
of the rated items and predict its rating, based on the rat-As mentioned above, we skip all test users that have rated
ings on other non-hidden items. less than 31 items when computing precision and recall, respec-
« GIVENS evaluates the performance of a CF system whéuely less than two (six) items when computing the MAE in the
only little information about a user is available. For eacALLBUTONE (GIVENS) setup. Final results for MAE, preci-
active user, we retain only 5 ratings. The CF system preion and recall are always averaged over all users in the test
dicts the ratings of hidden items, based on the 5 visib&et.
ratings.
It has been argued that the accuracy of a CF system is mgstComparison With Other CF Methods
critical when predicting extreme ratings (very high or very low) 14 compare the results of PMCF with other established CF

for items [19], [6]. Since the goal of a CF system is t0 mak@eihods, we report results in terms of MAE, precision and re-

recommendations, high accuracy on high and low rated items.I, o p\MCF and for the following methods that have proven
of most importance. One would like to present those items (é'ﬁccessful in the CF literature.

particular, products) that the active user likes most, and avoid
anything the user dislikes. Therefore, for both of the above
ALLBUTONE and QVEN5S setups, we use two settingxE
TREME and ALL (see [19]). The AL setting corresponds to
the standard case where the CF system is asked to predict any
of the hidden ratings. In theX&REME setting, the CF system
only predicts ratings that are on the end of the rating scales.
For EACHMOVIE, these extreme ratings af®, 1,2,4,5}, and
ratings below -5 or above 5 foOE$TER

2) Accuracy of RecommendationsiVe use precision and ; o . .

: Bayesian classifier has proven to be competitive with Pear-

recall to evaluate the accuracy of recommendations. These two

metrics have been extensively used in information retrieval a ﬂ son correlation CF.
ér& methods are evaluated in the setup described in Sec. V-B.

collaborative filtering research [1], [18]. In our experiments, the ab listed thods with tw ant
precision is the percentage of items recommended to a user t e compare the above fisted methods wi 0 variants

; . ; MCF, which we label PMCF> and PMCFD. For the
h lly likes. Recall is th f ’
the user actually likes. Recall Is the percentage of ftems tE CF D variant, we use the full training set to build the den-

user likes that are also recommended by the CF system. ) . . .
the EACHMOVIE data, we assume that users like those iten?éty model in Eq. (2), that is, the profile space is taken to be

(movies) which they had rated 4 or 5. F@ESFER we assume the full training data® = D. The other variant PMCFP is

; ; . . CF with profile space constructed from the training Bet
that users like those jokes that had been given a rating lar éYl . .
than 5. : g 9 the way described in Sec. IV. For botm&iMoviE and

STER we constructed profile spaces with 1000 profiles (out
the training data of size 5000).

« Memory-based CF with Pearson correlation coefficient
[5], one of the most popular memory-based CF algorithms.
« Bayesian network CF [11]. Since we use exactly the same
experimental setup and evaluation metrics for the &-
MovIE data as reported in [11], we can directly compare
the performance of Bayesian network CF with other meth-
ods. We did not implement Bayesian network CF for the
JESTERdata.
« Naive Bayesian CF [32]. Despite its simplicity, theive

To compute precision and recall, we use the following setuéE
For each active user (from the test'dgtve randomly hide 30 f
of the user’s rating$. The CF system then predicts the ratings
for these items, based on the remaining visible ratings. The t8p Evaluation of Accuracy

Tab. | and Il summarize th rforman f all eval F
10This naturally requires that we skip users in the test set that have only rated ab. 1 and Il su arize the performance of all e aluated C

one single item, respectively users that rated less than 6 items inrene  Methods in terms of accuracy for prediction and recommenda-
setup. tion.

11 The setup requires that we skip users who had rated less than 31 items. Tab. | lists results for accuracy of prediction that are based
12We experimented with different numbers here, for example, hiding 20 of

the user’s ratings. We found that the results were consistent throughout thafLone pamCUIar Sp|l_t of the data into training and test set that
experiments, thus we present only results for one setup. has also been used in [11]. It can be clearly seen that PMCF
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achieves an MAE that is about 7-8% lower than the MAE dhat the user is not able to give feedback on this particular item.

the competing methods. The results also suggest that PM@E make a series of such simulated interactions, 1,2, .. .,

is particularly suitable for making predictions when only vergaining more and more knowledge about the user’s profile. For

little information about the active user is given: PMCF achievedst usern, we compute the MAE when predicting the ratings in

a particularly high improvement of accuracy for thev&N5 setS and the precision for making recommendations in$et

scenarios. denoted byMAE(a, t) andprecision(a, t). By averaging over
For the accuracy of predictions, we also evaluated all metilf users in the test set, we obt&fAE(¢) andprecision(t).

ods (except for the Bayesian network) with five different ran- Using MAE and precision, we compare the following 5

domly drawn training and test sets of size 5000, and did a paitethods for selecting the query items:

wise comparison of results using a paitetest. The testcon- 1) Query item selection by minimizing the entropy of the

firmed that both variants of PMCF performed better than all  |ike-mindedness, as outlined in Sec. llI-D.

of the competing method with a significance level99f%s or 2) Uncertainty sampling, as described in Sec. IlI-E

above. Comparing PMCP and PMCFD, we noted that both  3) Entropy sampling, as described in Sec. IlI-E

performed almost identical for thel@&N5 SetupS. For the two 4) Popularity Samp“ng: At each iteration, we present 10 of

ALLBUTONE Setups, PMCPD achieved a Sl|ght|y better per- the most popu'ar items to the test user
formance. o ' 5) Random sampling: At each iteratiopwe randomly se-
The results for accuracy of recommendation listed in Tab. |~ |ect 10 query items

are averages over five different random splits into training angl.., J4s 3 4 and 5 have also been studied in [21]
test data, as described above. The large advantage of PMCI]:.he resulting learning curvéd AE(t) and precision() for

in terms of accuracy of prediction does not fully carry over e above 5 methods are shown in Fig. 2 (for theBEMOVIE

the accuracy of recommendation. Still, a consistent and Stattﬁ%fta) and in Fig. 3 (forgsTER. The g}aphs clearly indicate
tl_ca_\lly significant gain in performa_nce could be a§h|eved. Prﬁiat query item selection based on like-mindedness outperforms
cision and recall of PMCF are typically about 2-3% better tha&h other tested methods. Like-mindedness based selection is

those of the competing methods. A larger performance gain WRBs a method which achieves a maximum gain of information

always achieved in thedP5 setup. Again, a pairwise compar,hout a particular user with only a minimum of user effort.

ison of results in a pairetitest was conducted. Results for one For all of the tested methods. we also investioated the aver-
of the two PMCF variants that are marked in bold in Tab. | are ’ 9

better than those of the two competing methods with a signiﬁge qumber of items the user is being able to rate at a particular
. ..~ “fterationt. The low performance of random and entropy based
cance level 095% or above. Similarly, results marked in italics

) U sampling, in particular on ECHMOVIE, can be explained by
achieve a significance level 60% or above. .
. .. ..the fact that users are not able to answer the posed queries. The
Overall, we could verify that our proposed probabilistic L : .
) . _Ttemaining three methods all achieve similar results for the av-
memory-based CF framework achieves an accuracy that is com- ; . . .
. erage number of rated items. Yet, like-mindedness sampling
parable or superior to other approaches that have been propaose . ; X ;
L seems to ask more informative questions, leading to the steep-
for collaborative filtering. . -
est learning curves among all methods in Fig. 2 and 3.

) ) ) From the presented results, we conclude that like-
E. Evaluation of Profile Learning mindedness based sampling is a sensible and accurate method
In Sec. Ill, we proposed an active learning approach to ief inferring user profiles and requires only a minimum amount
teractively learn user profiles. In this section we investigatsf user effort. It has a particularly good performance on data

the performance of this learning process in a series of expeaéts with high sparsity such as&HMoVIE, where only 3% of
ments that simulate the interaction between users and the nge- items are rated, yet it also performs better than competing
ommender system. approaches on dense data seEs{ER).

We use the training/test split described in Sec. V-B.3. For
each test user, ratings are randomly split into a$etf 30

items and the remaining itenis. We assume that the test useF. Evaluation of Constructing Profile Spaces

initially has not rated any items, and we wish to infer his pro- \ne showed in Sec. IV how a small profile spa@efor the

file using the active learning approach. To obtain long leamifgycF model can be constructed out of a large data base of user
curves, we restrict the test set to users who had rated at Ieaspé{hgsp' In this section, we investigate how the profile space
items. This leaves us with 972 and 1340 test users respectivghystruction relates to the achievable accuracy for predictions

for the EACHMOVIE and ESTERdata sets. _ and recommendations in the PMCF model.
The interactive sessions are simulated as follows: The r€Cro this aim, we use the split of training and test data de-

ommender system selects the 10 most informative it2ias- scribed in Sec. V-B.3. From the training dafy the profile

f:ord||(ng t]? the ﬁntenon (Ijespr|bedh|n Sec. r']”'D' User feedb,a‘%EaceP is constructed iteratively as outlined in Sec. IV. At
IS ta en rqm.t e actua ratlngs t_ € user has given on an €%rtain interval¥, we evaluate the performance of the PMCF
if the item is in set/. Otherwise it is left unrated, simulating method, based on the profile space constructed so far, on the test

13Query items might also be presented one by one, instead of using batci$: We use the mean absolute error MAE in the BUTONE

of 10 items. We chose the variant with 10 items since it seems more natural
in an application scenario. Presenting items one by one can easily make user$Evaluation is done when the profile space has reached a size of 60, 125,
impatient. 250, 500, 1000, 2000 and 4000.
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TABLE |
ACCURACY OF PREDICTIONS MEASURED BY MEAN ABSOLUTE ERRORMAE, OF DIFFERENTCF METHODS. DETAILS ON THE INDIVIDUAL
EXPERIMENTS ARE GIVEN INSEC. V-B AND V-C. BOTH PMCFP AND PMCFD CONSISTENTLY OUTPERFORM THE COMPETING METHODN
PARTICULAR WHEN LITTLE INFORMATION IS GIVEN ABOUT THE ACTIVE USER IN THEGIVENS SCENARIO. THE RESULTS SHOWN HERE ARE BASED ON
THE TRAINING/TEST SPLIT REPORTED INSEC. V-B.3. ADDITIONAL EXPERIMENTS WITH 5 RANDOM SPLITS AND PAIRED{-TEST CONFIRMED THAT
PMCFOUTPERFORMED THE COMPETING METHODS AT A SIGNIFICANCE LEVEL 089% OR ABOVE

EACHMOVIE JESTER
ALL EXTREME ALL EXTREME
ALLBUTONE GIVENS ALLBUTONE GIVENS ALLBUTONE GIVENS ALLBUTONE GIVEND

Pearson correlation 0.996 1.150 1.130 1.290 3.927 4.258 5.062 5.730
Bayesian networks 1.066 1.154

Naive Bayes 0.987 1.162 1.096 1.223 4.132 4.263 4.753 5.512
PMCFD 0.966 1.008 1.010 1.112 3.544 3.967 4.408 5.219
PMCFP 0.984 1.008 1.040 1.110 3.724 3.972 4.523 5.464

TABLE Il

ACCURACY OF RECOMMENDATIONS MEASURED BY PRECISION AND RECALL OF DIFFERENTCF METHODS. ALL RESULTS IN THIS TABLE ARE
AVERAGED OVER5 RUNS, WHERE TRAINING AND TEST SETS HAD BEEN DRAWN AT RANDOM FROM THE TOTAL DATA SETSMARKED IN BOLD ARE
PMCFRESULTS THAT ARE SIGNIFICANTLY BETTER(WITH A SIGNIFICANCE LEVEL OF 95% OR ABOVE IN A PAIRED ¢t-TEST) THAN THE COMPETING

APPROACHES MARKED IN ITALIC ARE PMCFRESULTS THAT ARE BETTER THAN THE COMPETING APPROACHES WITH A SIGNIFICANCE LEVEL 080%
OR ABOVE. FURTHER DETAILS ON THE INDIVIDUAL EXPERIMENTS ARE GIVEN INSEC. V-B AND V-C

EACHMOVIE JESTER
Top5 Toprl10 Topr5 Toprl10
Precision Recall Precision Recall Precision Recall Precision Recall
Pearson correlation  0.703 0.284 0.656 0.510 0.406 0.251 0.386 0.454

Naive Bayes 0.663 0.264 0.617 0.484 0.383 0.235 0.381 0.443
PMCFD 0.715 0.291 0.665 0.520 0.425 0.264 0.397 0.468
PMCFP 0.713 0.288 0.659 0.512 0.416 0.256 0.591 0.464
1.1 T T T T T T T T 0.67 T T T T T T T T
- Like-miul gmropymiu' i -/~ Like- .. gntropyuu' imi
g Unoeraly sanping | osssf| 5" preetanysaning
~A— Popularity-based sampling A Popularity-based sampling
“'1". — Entropy-based sampling 1 0.66-| - Entropy-based sampling
E 1.04r c 0.655F )
im] g
2102} 'S oss| N
] o
2 1 S 045
é 0.98r '9 0.64r
0.96 0.635F 9
]
0.94r 0.631 9
0.92 0.629%
1 2 3 4 S 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Interactions Interactions
(a) Mean absolute errdAE(t) (b) precision(t)

Fig. 2. Learning individual user profiles for theaEHMoVIE data. Mean absolute errdf AE(¢) andprecision(¢) achieved aftet = 1,2,... steps of user
interaction with different strategies for query item selection. Details of the experimental setup are given in Sec. V-E
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(a) Mean absolute errdvAE(t) (b) precision(t)

Fig. 3. Learning individual user profiles for thesTER data. Mean absolute errdf AE(¢) and precision(t) achieved aftet = 1,2,... steps of user
interaction with different strategies for query item selection. Details of the experimental setup are given in Sec. V-E

setting and precision in thedP10 setting as the measures of In Sec. IV we used the probabilistic framework to derive
performance. a data selection scheme that allows the recommender system

We so obtain a curve of performance versus size of the profite make fast and accurate predictions. Instead of operating
space. Since constructing the profile space uses a randomiaged possibly huge database of user preferences (as traditional
strategy to select candidate profiles (see Sec. IV-C), we repeaimory-based CF does), the data selection scheme allows us
this procedure 10 times. Thus, error bars for the performan@euse only a carefully selected subset, which we call the profile
of PMCF with a profile space of a given size can be plotted. Apace. Using the so selected profile space in the PMCF model
the baseline method, we use a PMCF model with a profile spaiws making fast predictions with only a small drop in perfor-
drawn at random from the full training dafa mance over a PMCF model operating on the full data.

The resulting curves for accuracy of prediction (MAE) We believe that the PMCF framework will allow more exten-
and recommendation (precision) on thedeiMOVIE data are sjons and thus can contribute to further improvements of recom-
shown in Fig. 4, and in Fig. 5 for thee3TERdata. All plots mender systems. A particularly promising research direction is
clearly indicate that the profile space construction presentedtie combination of CF methods with content based filtering into
Sec. IV does bring significant advantages in terms of perfaiybrid systems. We are currently working on a PMCF based
mance over a randomly chosen profile space. The gain in peybrid system for image and text retrieval [33]. This system
formance was particularly large for accuracy of recommendignplicitly also solves the new item problem: If no user ratings

tion on the #sTERdata. are available for an item, predictions can still be made on the
basis of the content description.
VI. CONCLUSIONS Our further work on the PMCF model will also include an

In this paper we proposed a probabilistic framework fdmproved model for user preferences. In Eq. (3), only items
memory-based collaborative filtering (PMCF). The PMCF ithat were actually rated contribute to the model. An improved
based on user profiles in a specially constructed profile spao®del could also take into account the information which items
With PMCF the posterior distribution of user ratings can blad not been rated. For example, in thecEMoOVIE data, a
used to predict an active user’s ratings. An experimental comovie may have been unrated because a friend had dissuaded
parison with other CF methods (memory-based CF with Pe#ne user from seeing the movie. Thus, one may be able to ex-
son correlation, Bayesian networks,veaBayes) showed thattract a certain degree of information from the set of unrated
PMCF outperforms the competing methods both in terms of dtems as well and further improve the accuracy of a CF system.
curacy for prediction and recommendation. For the current PMCF system, as described in this article, the

As one of its major advantages, PMCF allows extensions afficiency of the active learning scheme still needs to be im-
the basic model on a sound probabilistic basis. We showprbved. Active learning based on minimization of the entropy
in Sec. lll how an active learning approach can be integratefllike-mindedness achieves the best recommendation accuracy,
smoothly into the PMCF framework. Through active learningset the computational complexity is higher than that of compet-
the CF system can interactively learn about a new user’s preferg methods such as uncertainty sampling.
ences, by presenting well selected query items to the user. Our
results showed that the active learning approach performed bet-
ter than other methods for learning user profiles, in the sense
that it can make accurate predictions with only a minimum Anton Schwaighofer gratefully acknowledges support
amount of user input. through an Ernst-von-Siemens scholarship. The authors thank
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