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Probabilistic Memory-based Collaborative Filtering
Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu, Hans-Peter Kriegel

Abstract—Memory-based collaborative filtering (CF) has been
studied extensively in the literature and has proven to be success-
ful in various types of personalized recommender systems. In this
paper we develop a probabilistic framework for memory-based
CF (PMCF). While this framework has clear links with classi-
cal memory-based CF, it allows us to find principled solutions to
known problems of CF-based recommender systems. In partic-
ular, we show that a probabilistic active learning method can be
used to actively query the user, thereby solving the “new user prob-
lem”. Furthermore, the probabilistic framework allows us to re-
duce the computational cost of memory-based CF by working on a
carefully selected subset of user profiles, while retaining high accu-
racy. We report experimental results based on two real world data
sets, which demonstrate that our proposed PMCF framework al-
lows an accurate and efficient prediction of user preferences.

Index Terms— Collaborative filtering, recommender systems,
profile density model, active learning, data sampling.

I. I NTRODUCTION

Information on the web has been growing explosively in re-
cent years. Information filters emerged to meet the challenge
of information search on the WWW, a problem which may be
compared to “locating needles in a haystack that is growing ex-
ponentially” [1]. Recommender systems are a class of informa-
tion filters which have proven to be successful. For example,
recommender systems on e-commerce web sites assist users to
find their favorite CDs or books. Similarly recommender sys-
tems assist in locating items like web pages, news, jokes, or
movies, from thousands or even millions of items.

Content-based filtering (CBF) and collaborative filtering
(CF) are two technologies used in recommender systems. CBF
systems analyze the contents of a set of items together with the
ratings provided by individual users to infer which non-rated
items might be of interest for a specific user. Examples include
[2], [3], [4]. In contrast, collaborative filtering methods [5], [6],
[1] typically accumulate a database of item ratings cast by a
large set of users, and then use those ratings to predict a query
user’s preferences for unseen items. Collaborative filtering does
not rely on the content descriptions of items, but purely depends
on preferences expressed by a set of users. These preferences
can either be expressed explicitly by numeric ratings, or can be
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indicated implicitly by user behaviors, such as clicking on a hy-
perlink, purchasing a book or reading a particular news article.

One major difficulty in designing CBF systems lies in the
problem of formalizing human perception and preferences.
Why one user likes or dislikes a joke, or prefers one CD over
another is virtually impossible to formalize. Similarly it is dif-
ficult to derive features which represent the difference between
an average news article and one of high quality. CF provides a
powerful way to overcome these difficulties. The information
on personal preferences, tastes, and quality are all carried in
(explicit or implicit) user ratings.

CF-based recommender systems have successfully been ap-
plied in areas ranging from e-commerce (for example, Amazon
and CDnow1) to computer-supported collaborative work [7].
CF research projects include Grouplens (the first automatic CF
algorithm, [5]), Ringo [6], Video Recommender [8], Movielens
[9], and Jester [10].

A. Collaborative Filtering Algorithms

A variety of CF algorithms have been proposed in the last
decade. One can identify two major classes of CF algorithms
[11], memory-based approaches and model-based approaches.

Memory-based CF can be motivated from the observa-
tion that people usually trust the recommendations from like-
minded friends. These methods apply a nearest-neighbor-like
scheme to predict a user’s ratings based on the ratings given
by like-minded users. The first CF systems Grouplens [5] and
Ringo [6] fall into this category. In the literature, the term
collaborative filtering is sometimes used to refer only to the
memory-based methods.

In contrast, model-based CF first learns a descriptive model
of user preferences and then uses it for predicting ratings. Many
of these methods are inspired from machine learning algo-
rithms. Examples include neural network classifiers [1], in-
duction rule learning [12], linear classifiers [13], Bayesian net-
works [11], dependency networks [14], latent class models or
mixture models [15], [16], item-based CF [17], principle com-
ponent analysis based CF [10], association rule mining [18],
and hybrids of model- and memory-based approaches [19].

B. Motivation

Up to now, research on CF primarily focused on exploring
various learning methods, hoping to improve the prediction ac-
curacy of recommender systems. Other important aspects, like
scalability, accommodating to new data, and comprehensibility
have received little attention. In the following we will review
five general issues which are important for CF and greatly mo-
tivated the work presented in this paper.

1www.amazon.com , www.cdnow.com
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1) Accuracy: As a central issue in CF research, prediction
accuracy has received a high degree of attention, and various
methods were proposed for improvement. Still, conventional
memory-based methods using Pearson correlation coefficient
remain among the most successful methods in terms of accu-
racy. The experiments presented in Sec. V-D show that our
proposed probabilistic interpretation of memory-based CF can
outperform a set of other memory- and model-based CF ap-
proaches.

2) Interactive Learning of User Profiles:A recommender
system cannot provide accurate service to a new user, whose
preferences are initially unknown. This has been referred to
as the “new user problem” [2], [20], [21] Before being able to
make predictions, a CF system typically requires the new user
to rate a list of query items in an initial information gathering
stage. Efficient heuristics [21] are essential to select informative
query items and thus keep the information gathering stage as
short as possible, since users may easily lose patience when
faced with a long list of query items.

Within our proposed probabilistic framework for CF, we
show in Sec. III how informative query items can be selected
in a principled way. At each information gathering step, those
query items are presented to the user which are expected to
maximally sharpen the user’s profile. Our experiments (see
Sec. V-E) confirm that this interactive approach outperforms
other ways of selecting query items [21] both in terms of nec-
essary user effort and achieved accuracy of predictions.

3) Efficiency: Memory-based CF often suffers from slow
response time, because each single prediction requires the scan-
ning of a whole database of user ratings. This is a clear disad-
vantage when compared to the typically very fast responses of
model-based CF. In the proposed probabilistic memory-based
CF approach, predictions are generated from a carefully se-
lected small subset of the overall database of user ratings, which
we call profile space. As a consequence, predictions can be
made much faster than in a classical memory-based CF system.
Still, the accuracy of a system using the full data set can be
maintained. We will describe this process of data selection in
Sec. IV. The results presented in Sec. V-F confirm that the con-
structed profile space does indeed allows a both accurate and
fast prediction of user ratings.

4) Incrementally accommodating to new data:Recom-
mender systems must be capable of handling new data, be it
new users or new items. For example, in a music recommender
system, the recommender system must be able to adapt itself to
newly arising styles of music and thus new preference patterns.
This suggests that the training process of any underlying CF
algorithm should be incremental. However, model-based CF
approaches are typically trained using batch algorithms. To our
knowledge, little work has addressed the use of on-line learn-
ing in CF. Thus, re-training a model with new data can become
quite expensive, in particular if it needs to be performed regu-
larly [11]. In contrast, memory-based CF can easily accommo-
date to new data by simply storing them. In the proposed proba-
bilistic memory-based CF framework, this goal can be achieved
by a straight-forward extension of the data selection procedure
introduced in Sec. IV.

5) Comprehensibility: The results in [22] indicate that al-
lowing users to know more about the result-generating process
can help them understand the strengths and weaknesses of CF
systems. With this knowledge, users can make low-risk de-
cisions. For example, consider the following two cases: (1)
Among Julia’s like-minded users there are50% percent of users
who rated ‘like’ to Titanic, while50% of them rated ‘dislike’.
(2) In the other case, most of her neighbors give neutral rat-
ings to that movie. A traditional CF system may only give a
neutral rating in both of the cases. A more sophisticated system
may remind Julia of the underlying reasons in the first case and,
for example, output an estimated distribution of a user’s rating
for some item, either in graphical or textual form (“I guess you
will like that movie, and I am pretty sure (or very unsure) about
that”). This suggests that a probabilistic CF approach, as pre-
sented in this paper, can improve the comprehensibility and thus
the acceptance of a CF system. Furthermore, memory-based CF
has a clear interpretation that can be easily conveyed to users,
such as “You seem to be sharing opinions with user A, who
liked the following items. . . ”.

C. Overview of Our Approach

In this paper, we introduce probabilistic memory-based col-
laborative filtering (PMCF), a probabilistic framework for CF
systems that is similar in spirit to the classical memory-based
CF approach. A schematic drawing of the components of
PMCF is shown in Fig. 1.

As the basic ingredient, we present a probabilistic model for
user preferences in Sec. II. We use a mixture model built on
the basis of a set of stored user profiles; thus the model clearly
links with memory-based CF methods.

Various heuristics to improve memory-based CF have been
proposed in the literature. In contrast, extensions to PMCF can
be based on a principled probabilistic way. We argue that this is
one of the major advantages of PMCF. We use PMCF to derive
solutions for two particularly important problems in CF.

The first one concerns the new user problem. An active learn-
ing extension to the PMCF system can actively query a user for
additional information, in case the available information is in-
sufficient.

The second major extension aims at reducing the computa-
tional burden in the prediction phase typically associated with
memory-based CF. PMCF allows us to select a small subset,
called theprofile space, from a (possibly huge) database of user
ratings. The selection procedure is derived directly from the
probabilistic framework and ensures that the small profile space
leads to predictions that are as accurate as predictions made by
using the whole data base of user ratings.

D. Structure of this Article

This paper is organized as follows. In Sec. II, we describe
the framework of probabilistic memory-based CF (PMCF). In
Sec. III, we present an active learning extension of PMCF to
gather information about a new user in a particularly efficient
way that requires a minimum of user interaction. In Sec. IV, we
show how to construct the profile space for the PMCF model,
which is a small subset of the available user rating data. We
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Fig. 1. A schematic drawing of the components of probabilistic memory-based
collaborative filtering (PMCF). Through an active learning scheme (presented
in Sec. III), the profile of a new user can be inferred with a minimum of re-
quired user effort. User ratings are stored in a database, from which a compact
representation—the profile space—can be constructed in order to make fast
predictions (presented in Sec. IV)

present experimental results that demonstrate the effectiveness
of PMCF, the active learning extension and the profile space
construction in Sec. V. We end the paper by conclusions and an
outlook in Sec. VI.

II. PROBABILISTIC MEMORY-BASED CF

In this section a general probabilistic memory-based CF
(PMCF) approach is introduced. Probabilistic CF has been a
vivid research topic. Examples include Bayesian networks [11],
dependency networks [14], latent class models or mixture mod-
els [15], [16], and hybrids of memory- and model based systems
[19]. The work presented here has been inspired by [19], in that
we also aim at connecting memory- and model-based CF in a
probabilistic way. While [19] mainly focusses on making pre-
dictions, we use the probabilistic model for further extensions
of the CF system, some of which will be described in Sec. III
and IV.

A. Notation

Suppose that we have gatheredK users’ ratings on a given
item setI of sizeM = |I|. Let xi,j ∈ R be the rating of
useri on itemj and letD with (D)i,j = xi,j be theK ×M
matrix of all ratings.Ri is the set of items for which useri has
actually given ratings,Ri ⊆ I. If an item has not been rated,
we setxi,j to a neutral ratingni, which we will define later. We
denote byxi the vector of all ratings of useri. In the following
text, useri’s ratingsxi are often referred as useri’s profile. We
also maintain a smaller set of user profiles, theprofile space
P, which consists of a subset of rows ofD. Without loss of

generality, we assume that the profile space is built up2 from
the ratings of the firstN users, i.e. the firstN rows ofD, where
typically N � K.

In CF terminology, theactive useris the user that queries the
CF system for recommendations on some items. We denote the
active user’s ratings bya. By ar, we denote the ratings the
active user has already provided (for items∈ Ra), andan are
the yet unknown ratings. The total rating vectora is thus the
union ofar andan.

As mentioned above, we use a neutral ratingni for all items
a useri has not given an explicit rating, i.e.xi,j = ni if j 6∈ Ri.
In order to computeni, we assume a Gaussian prior for the neu-
tral rating with meanm0 which is estimated as the overall mean
of user ratings. If we further assume thatni is also Gaussian
distributed with meanm0 we can estimate the neutral rating as

ni =

∑
j∈Ri

xi,j + Cm0

|Ri|+ C
(1)

whereC is the ratio of the variance of the ratings for useri
and the variance ofm0. We determined a suitable value forC
based on cross validation experiments. We foundC = 9 to
work effectively on the data we consider.

B. A Density Model for Preference Profiles

We assume a generative probabilistic model in which the rat-
ings a of an active user are generated based on a probability
density of the form

p(a|P) =
1
N

N∑
i=1

p(a|i), xi ∈ P (2)

wherep(a|i) is the probability of observing the active user’s
ratingsa if we assume thata has the same profile class as the
ith profile prototype inP, i.e. useri’s profile. The density ex-
pressed by Eq. (2) models the influences of other like-minded
users’ preferences on the active usera. For the mixture com-
ponentsp(a|i), we use Gaussian3 density functions. Assuming
that ratings on individual items are independent, given a profile
i, we get

p(a|i) =
∏
j∈I

p(aj |i) (3)

=
∏
j∈I

(2π)−1/2√
σ2 + dj 6∈Riσ

2
0

exp
(
−1

2
(aj − xi,j)2

σ2 + dj 6∈Ri
σ2

0

)
Here,dj 6∈Ri

= 1 if xi,j is unrated anddj 6∈Ri
= 0 otherwise.

This model can be motivated as a mixture model, with the pro-
totype profilesxi serving as cluster centers, or as a Parzen den-
sity model on the profile spaceP. The additional variance for
unrated items takes into account the uncertainty of the estimated
rating.

2We will show in Sec. IV how a compact and accurate profile spaceP can be
incrementally built from a given set of user ratingsD.

3We are a little inaccurate here and assume for simplicity that our rating scale
is continuous and unbounded, ignoring the fact that ratings are often given on
a discrete scale. One might also chose mixture components that fit particular
data, for example binomial distributions for discrete ratings.
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In our experiments, we setσ2
0 to be the overall variance of

user ratings.σ2 was optimized by maximizing the leave-one-
out likelihood of profiles∑

a∈P
p(a|P \ a) (4)

with respect toσ2. σ2 is tuned after constructing the profile
space (see Sec. IV) and left constant thereafter. Note that, tech-
nically, profiles take on different meanings: If they are part
of the data base, they represent prototype vectors defining the
component densities in Eq. (3). If we consider the active user’s
profile, the profile corresponds to a sample generated from the
probability density defined in the same equation.

C. A Probabilistic Approach to Estimating User Ratings

We can now calculate the posterior density of the active user
a’s ratings on not yet rated items, denoted byan, based on the
ratingsar usera has already given. Using the previously de-
fined density model for user ratings, we find

p(an|ar,P) =
p(an,ar|P)

p(ar|P)
(5)

=
∑N

i=1 p(an,ar|i)∑N
i=1 p(ar|i)

(6)

=
N∑

i=1

p(an|i) Pr(i|ar,P). (7)

Pr(i|ar,P) indicates thea posterioriprobability of usera hav-
ing theith prototype profile, given the ratings usera already has
provided. It thus models the “like-mindedness” of active usera
to other usersi in the profile spaceP:

Pr(i|ar,P) =
p(ar|i)∑N
i=1 p(ar|i)

. (8)

Within the PMCF model, predictions for the active user are thus
made by combining the predictions based on other prototype
usersxi, weighted by their degree of like-mindedness to usera.
This puts the key idea of memory-based collaborative filtering
into a probabilistic framework.

Note that the computational complexity of prediction is
O(NM), i.e. it is linear in the size of the profile space. In
Sec. IV we will show how to obtain a profile space that is much
smaller than the complete user rating databaseD. Making pre-
dictions only on basis of the small profile space thus brings a
significant reduction of overall computational cost.

III. A N ACTIVE LEARNING APPROACH TOLEARNING

USERPROFILES

In the previous section, we introduced the PMCF framework
and showed how predictions can be made. In this section we
will use an active learning approach to efficiently learn the pro-
file of an individual user. The active learning approach inte-
grates smoothly into the PMCF framework and provides a so-
lution for the “new user problem”. By presenting a set of most
informative query items in an interactive process, we can learn
about the profile of a new user with a minimum of user effort.

A. The New User Problem

For users that are new to a recommender system, no infor-
mation about their preferences is initially known. Thus, the
recommender system typically requests them to rate a set of
query items. Using the ratings on these query items, the CF
system can then start making recommendations.

There are several important reasons why this set of query
items should be selected carefully: (1) Users are not willing to
rate a long list of items; (2) Users cannot rate items unknown
to them; (3) Rating results for some items might be very infor-
mative for determining a user’s profile whereas rating results
for other items might not provide useful new information. So
far little work has been done to address4 the new user problem.
[21].

In the next sections, we will present an approach for select-
ing query items that requires particularly little user effort, yet
allows fast learning about the user’s preferences.

B. Identifying Informative Query Items

To achieve an efficient interactive learning of user profiles,
we put the selection of query items into a decision theoretic
framework (see for example Sec. 4.3 of [24]). First, one needs
to define a loss function, evaluating the quality of the system
before querying a new itemλ(ar,P) and after querying the
user for itemj, j 6∈ Ri and after having obtained ratingaj . We
denote the loss after querying byλ(aj ,a

r,P). The goal is now
to select the query itemj such that the expected loss

Ep(aj |ar,P)

[
λ(aj ,a

r,P)
]

(9)

is minimized. The expectation is calculated here with respect
to the predicted probability of usera’s ratings for itemj.

The most important ingredient is the loss function
λ(aj ,a

r,P). We propose to use the entropy of the like-
mindednessPr(i|ar,P) as the loss function.Pr(i|ar,P) de-
scribes the like-mindedness of a useri in the profile spaceP
with active usera, given a’s ratingsar. In an extreme case,
Pr(i|ar,P) has a uniform distribution, which means that the
profile of usera is completely unclear. In contrast, a sharp peak
in the distribution ofPr(i|ar,P) indicates that usera has sim-
ilar preferences as a small group of like-minded users. It thus
seems natural to choose those query items that minimize the
uncertainty (thus, the entropy) of usera’s like-mindedness.

Putting this into a formal setting, we can write for the loss
function

λ(aj ,a
r,P) = −

N∑
i=1

Pr(i|aj ,a
r,P) log Pr(i|aj ,a

r,P).

(10)
By Pr(i|ar, aj ,P) we denote like-mindedness, computed with
an updated vector of ratings for the active user, who now also
has rated the (previously unrated) itemj.

We can now define the expected benefit (Sec. 4.3.2 of [24])
for querying itemj as

E[B(j)] = Ep(aj |ar,P) [λ(aj ,a
r,P)]− λ(ar,P) (11)

4A method for improving the accuracy of CF systems by adding extra query
items has been presented in [23]. This approach might also be adapted to solve
the new user problem.
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and terminate the query process if the expected benefit is less
than a threshold related to the cost of querying.

Our algorithm for query item selection is myopic in the sense
that the algorithm only looks one step ahead. In contrast, a hy-
peropic algorithm would aim at finding the optimalsequence
of query items to be presented. However, since hyperopic opti-
mization is computationally intractable, myopia is a standard
approximation used in sequential decision-making problems
[25], [26].

C. Identifying the Items Possibly Known to the Active User

If we wanted to use the active learning approach described in
the previous section directly, we would most often get a “don’t
know” as the answer to most of the query items. Users of a CF
system can typically provide ratings for only few of the items.
For example, in a recommender system for movies, users may
typically have seen a few dozen movies out of the several hun-
dred movies contained in the data base. It may be quite infor-
mative to know the user’s opinion on an unusual movie, yet it
is likely that the user will not be able to give this movie any
rating.

Thus, we must also predict the probability that a user is able
to rate5 a given query item. This can be achieved by again re-
ferring to the like-mindedness of users. In Eq. (5), predictions
for active usera were built from a sum of other users’ ratings,
weighted by their degree of like-mindednessPr(i|ar,P). Sim-
ilarly, we can predict the probability of usera being able to rate
item j, given his or her other ratingsar, by checking usera’s
like-minded users:

Pr(usera can rate itemj|ar,P) =
N∑

i=1

Pr(usera can rate itemj|i) Pr(i|ar,P)

(12)
Pr(usera can rate itemj|i) is the probability thata can rate
item j, given that usersa andi (as described by prototype pro-
file xi) agree on which items they are able to rate. We assume
for simplicity that usera can rate exactly the same6 movies as
useri:

Pr(usera can rate itemj|i) =

{
1 if useri has rated itemj

0 otherwise
(13)

D. A Summary of the Active Learning Process

Using the ideas described in the previous sections, we pro-
pose the following iterative scheme to learn the profile of the
active usera:

1) Out of the set of items that have not yet been rated by
usera, find thosek1 items with the highest probability of
being known to usera, i.e. those items with the highest
value for Eq. (12).

2) Out of thesek1 items, select a subset ofk2 items that lead
to the highest reduction of uncertainty about the user’s

5Another way of solving this problem would be to integrate this probability
into the loss function Eq. (10) for the active learning approach. We do not
pursue this solution in the present article.

6This is a strong assumption, yet due to the weighting introduced by the like-
mindedness we obtain meaningful results

profile, i.e. the items with the highest expected benefit in
Eq. (11).

3) Display thosek2 items to the user for rating. Collect the
ratings and update the vector of ratingsa.

4) Terminate if the user is not willing to answer any more
queries or if the expected benefit of querying (as defined
in Eq. (11)) is below a certain threshold. Otherwise, go
to step 1.

In the very first step, where nothing is known about usera, we
assume equal like-mindedness of usera with all profiles inP.
Thus, usera will be presented thek2 most popular items as
query items.

E. Implementation

1) Parameters for Active Learning:The value ofk1 (see
step 1 of Sec. III-D) should be carefully selected. Ifk1 is too
small, for example, as small ask2, then the selection procedure
is too much biased by Eq. (12), and thus might miss out infor-
mative items—the system performs too little exploration. Ifk1

is too large, too many items will be presented to the user which
the user is not able to rate. In cross validation experiments, we
found thatk1 = 50 gives the best results for the data we con-
sider. The value fork2 is rather uncritical. We usedk2 = 10,
because it seems reasonable to display10 items on a normal-
sized PC screen. Thus, at each iteration, we first find the50
candidate items with largest probability of being known, and
then identify10 query items according to the expected reduc-
tion of uncertainty in like-mindedness.

2) Computational Complexity:The most costly part in this
active learning approach is the evaluation of Eq. (11), where the
expected reduction of uncertainty in like-mindedness is com-
puted. The algorithm needs to exhaustO(ck1) possibilities of
user feedbacks at each iteration (wherec is the number of rat-
ings a user might possibly give to a presented query item, and
k1 is the number of candidate items) and calculate the entropy
of the like-mindedness for each case. This again requires eval-
uating Eq. (2) with changed preference vectora. Fortunately,
Eq. (2) factorizes along items, thus the distances only need to
be re-calculated along the dimensions of the newly rated items.
This greatly reduces the overall computational cost.

3) Alternative Methods: Several of the approaches pro-
posed in the active learning literature may be adopted for CF. A
common approach isuncertainty sampling[27], which has been
successfully applied to text categorization [27] and image re-
trieval [26] to reduce the number of training examples. The gen-
eral idea behind all proposed variants of uncertainty sampling
is to present the unlabeled examples for which the outcome is
most uncertain, based on the current predictions. In a CF sce-
nario, one is interested in predicting a user’s ratings for non-
rated items. Thus, the variance of predictionsvar p(aj |ar,P) is
an appropriate measure of uncertainty. An advantage of this ap-
proach lies in its low computational cost, since we only have to
compute the predictionsp(aj |ar,P) for all yet unrated items.

Another low complexity method for query item selection is
entropy sampling[21]. Here, we considerPrj(s), the fraction
of users who had given a particular ratings ∈ {s1, . . . , sc} for
itemj. Query items are selected such that the entropy ofPrj(s)
is maximized.
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We will show in Sec. V-E that the method based on uncer-
tainty of like-mindedness (as outlined in Sec. III-B) achieves
best results, both in terms of achieved accuracy and in terms of
required user input.

IV. I NCREMENTALLY CONSTRUCTINGPROFILE SPACE

In Sec. II we introduced a probabilistic model for describing
user preferences. This model was based on a given set of user
profiles, the profile spaceP. In this section, we will show how
this profile space can be constructed, by selecting informative
user profiles from the overall database of user ratingsD. Since
the profile space typically contains only a low number of user
profiles (as compared to the often hugeD), it allows us to build
compact models and make predictions efficiently, while main-
taining a high accuracy. It thus solves the well-known problem
that predictions of traditional memory-based CF methods are
rather time-consuming.

A. Kullback-Leibler Divergence for User Profile Sampling

Let’s assume that there exists an optimal density model for
user ratings, which we denote bypopt(x). Naturally we do
not have access to this optimal model but we work with a non-
optimal modelp(x|P), as given in Eq. (2), based on some pro-
file spaceP. The key idea of our proposed selection procedure
is to select the profile spaceP such that the densityp(x|P) is
as close as possible to the optimal densitypopt(x).

To measure the distance of these two distributions, we use the
Kullback-Leibler divergence (KL-divergence [28]). We denote
the KL-divergence of the two distributions by

D
(
p(x|P)||popt(x)

)
=

∫
popt(x) log

popt(x)
p(x|P)

dx (14)

where the integral is over the whole space of user rating vectors.
The KL-divergence is always non-negative and is zero when
two compared distributions are identical. Assuming that the to-
tal set of user ratingsD constitutes a set of independent samples
drawn frompopt(x), we can approximate the KL-divergence by
Monte-Carlo integration [29]:

D̃
(
p(x|P)||popt(x)

)
=

1
K

K∑
i=1

log
popt(xi)
p(xi|P)

(15)

=
1
K

log
popt(D)
p(D|P)

(16)

whereK is the number of users inD.
As stated above, we wish to minimize the KL-divergence

D̃(p(x|P)||popt(x)) so that the densityp(x|P) best approxi-
matespopt(x). Sincepopt(D) is constant, Eq. (15) can be mini-
mized by maximizing the likelihood of the user rating database
D with respect to the profile spaceP. Finding the optimal pro-
file spaceP is clearly an intractable task, we thus switch to an
iterative greedy approach for constructingP.

B. Incremental Profile Space Construction

For constructing the profile spaceP from a data baseD of
user ratings, we consider an incremental scenario. Given the
current profile spaceP, which profile patternxi ∈ D should
be included such that the updated profile spaceP ∪ xi can
achieve the maximum reduction in KL-divergence, according
to Eq. (15)?

The reduction in KL-divergence caused by includingxi in P
can be written as

∆i =
=D̃

(
p(x|P)||popt(x)

)
− D̃

(
p(x|P ∪ xi)||popt(x)

)
=

1
K

log
p(D|P ∪ xi)

p(D|P)
(17)

Mind that this step causes the optimal densitypopt(x) to drop
out. According to Bayes’ rule, the likelihood of the overall data
D, given the updated profile spaceP ∪ xi can be written as
follows:

p(D|P ∪ xi) = p(D|P)
p(xi|D)
p(xi|P)

(18)

wherep(xi|D) is the likelihood ofxi, based on a model that
uses the complete data as the profile space. Combining Eq. (17)
and (18), the optimal profilex to be selected is given by:

arg max
i

∆i = arg max
xi∈D\P

p(xi|D)
p(xi|P)

(19)

An intuitive interpretation of this selection scheme is as follows:
Eq. (19) suggests that profilesxi with low p(xi|P) but high
p(xi|D) will be selected.p(xi|P) encodes how likely a profile
xi is, given our current knowledgeP, while p(xi|D) encodes
the likelihood and thus the “degree of typicalness” of profile
xi in the overall dataD. The profile selection scheme thus
focusses on profiles that are novel to our current knowledge
(encoded by the current profile space), but are in fact typical
in the real world (represented by the whole dataD). Thus, this
sampling scheme will result in removing redundancies (we only
focus on novel data that is not yet included in the profile space)
and in removing outliers (outliers can be considered untypical
data).

Still, Eq. (19) does not give a practical algorithm, since it re-
quires evaluatingO(K) profiles,K = |D|, where each evalua-
tion requiresO(K) steps to actually buildp(xi|D). This leads
to the clearly impractical overall runtime ofO(K2). Practical
variants will be discussed in the next section.

C. Implementation

Constructing a profile spaceP according to Eq. (19) is some-
times referred to asfull greedy selection. This can only be done
efficiently if the associated objective function can be computed
cheaply—which is not the case for the likelihood ratio we con-
sider here. In related problems, it has been suggested to con-
sider small subsets of candidates, evaluate the objective func-
tion for each candidate, and select the best candidate out of this
subset (see, for example, Sec. 6.5 of [30]).

We thus obtain the following profile sampling scheme to
buildP fromD:
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1) Select a subsetC of candidate profiles at random from
D \ P.

2) Compute the likelihoodp(xi|P) for each candidate pro-
file xi ∈ C, based on the current profile spaceP.

3) Compute the likelihoodp(xi|D) for eachxi ∈ C, based
on the complete dataD.

4) Include the best candidate profile in the profile space:

P ← P ∪ arg max
xi∈C

p(xi|D)
p(xi|P)

(20)

5) Terminate, if the profile space has reached a given maxi-
mum size or if the reduction of KL-divergence is below a
given threshold.

It has been suggested in [30] that subsets of size|C| = 59 can
be guaranteed to select profiles that are better than95% of all
other profiles with confidence95%. In our experiments, we
aim at achieving higher efficiency and thus use subsets of size
|C| = 7. This corresponds to selecting profiles that are better
than80% of all others with confidence80%.

D. Constructing Profile Spaces in a Dynamic Environment

While the sampling approach presented in the previous sec-
tion works fine in a static environment with a fixed database of
user ratings, it needs to be refined to work in a dynamic environ-
ment. The dynamics arises from changing preferences patterns
(for example, new styles of music in a music recommender sys-
tem) and the ever growing database of user ratings. Since user
profiles are typically collected incrementally, we suggest an in-
cremental extension to the basic sampling scheme presented in
Sec. IV-C. We assume that the profile space is being updated
after a fixed period of time, e.g. each day or week. The new
user profiles gathered during this period are being processed
and some of them will be added to the profile space.

Assuming that we have a data base of user ratingsD. From
D, we have already constructed a profile spaceP. After col-
lecting user profile data for some time, we get an updated data
baseD+, withD+ = D ∪∆D. In order to build the according
profile spaceP+, select the set of candidate itemsC fromD+.
Select the most informative profile and update the profile space
P+:

P+ ← P+ ∪ arg max
xi∈C

p(xi|D+)
p(xi|P+)

(21)

Terminate if the new profile spaceP+ has reached a given size
or if none of the candidate itemsxi ∈ C leads to a reduction
of KL-divergence. Otherwise, select a new candidate set and
proceed.

Through this straight-forward extension we can retain the ba-
sic idea of using a small profile space, as introduced in Sec. IV-
B, while now being capable of incrementally processing new
data.7

E. Computational Complexity

For the basic profile space construction, as outlined in
Sec. IV-B, the computational complexity is as follows:

7One might also consider the case of removing certain (outdated) user pro-
files fromP, yet we did not evaluate this idea in the present work.

Evaluating the density functionp(xi|D) for a candidate pro-
file xi (see Eq. (19)) requires scanning the whole data baseD
with K user ratings. Its complexity is thusO(K). Since all
potential profile spacesP are subsets ofD, P ⊆ D, one can
easily constructp(xi|P) as a “by-product” when scanning the
data base in order to findp(xi|D). Both steps are thusO(K),
with K = |D|. Constructing a profile space of sizeN requires
a total ofO(KN) operations. Once the profile space, is con-
structed, one also needs to update the varianceσ2 according to
Eq. (4). This is done with a leave-one-out scheme, its complex-
ity is thusO(N2).

Since one would typically keep the profile space resident in
memory, the memory consumption of the profile space con-
struction isO(N), with N = |P|.

The suggested method for constructing a profile spaceP thus
has the same complexity as making predictions in a traditional
memory-based CF method. Yet, as described in Sec. IV-D, pro-
file space construction can be seen as a background process that
is being triggered by time or when unused computing power is
available. Thus, its time consumption is not visible to a user of
the CF system. We argue that the so achievedshift of workload
is important, since it greatly improves the efficiency of front-
end processing, namely, making predictions.

V. EMPIRICAL STUDY

In this section we report results from applying the probabilis-
tic memory-based collaborative filtering (PMCF) framework to
two CF benchmark data sets, EACHMOVIE and JESTER. We
report results on prediction accuracy, efficiency of learning in-
dividual user profiles (based on the ideas presented in Sec. III)
and accuracy of the constructed profile spaces (using the incre-
mental scenario of Sec. IV).

A. Data Sets

We apply the PMCF framework to the following two bench-
mark data sets:

• EACHMOVIE8 contains ratings from72, 916 users on
1, 628 movies. User ratings were recorded on a discrete
scale from zero to five. On average, each user rated about
30 movies. EACHMOVIE is one of the most widely used
data sets in recommender system research.

• JESTER9 contains ratings from17, 998 users on 100 jokes,
continuously valued from−10 to 10. On average, each
user rated about 50 jokes. We transferred the ratings to a
discrete scale{−10,−9, . . . , 9, 10}.

B. Evaluation Metrics and Experimental Setup

In collaborative filtering research, one is typically interested
in two types of accuracy, the accuracy for predicting ratings
and the accuracy for making recommendations. The first one
measures the performance when explicitly predicting the active
users ratings on some unseen items. The second one focusses

8Available from the Digital Equipment Research Center at
http://www.research.digital.com/SRC/EachMovie/

9JESTER stems from a WWW-based joke recommender system, devel-
oped at the University of California, Berkeley [10]. It is available from
http://shadow.ieor.berkeley.edu/humor/
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on finding an accurate ordering of a set of unseen items, in order
to recommend the top ranked items to the active user. These
two scenarios require different experimental setups and metrics,
which we will describe now.

1) Accuracy of Predicting Ratings:To evaluate the accu-
racy when the CF system is asked to predict an active user’s
ratings, we use the mean absolute error (MAE, the average ab-
solute difference between the actual ratings and the predicted
ratings). This measure has been widely used in previous col-
laborative filtering research [11], [31], [19], [5], [6].

We examine the accuracy of predictions in two experimental
setups, ALL BUTONE and GIVEN5, which were introduced in
[11]:

• ALL BUTONE evaluates the prediction accuracy when suf-
ficient information about the active user is available. For
each active user (from the test set10) we randomly hide one
of the rated items and predict its rating, based on the rat-
ings on other non-hidden items.

• GIVEN5 evaluates the performance of a CF system when
only little information about a user is available. For each
active user, we retain only 5 ratings. The CF system pre-
dicts the ratings of hidden items, based on the 5 visible
ratings.

It has been argued that the accuracy of a CF system is most
critical when predicting extreme ratings (very high or very low)
for items [19], [6]. Since the goal of a CF system is to make
recommendations, high accuracy on high and low rated items is
of most importance. One would like to present those items (in
particular, products) that the active user likes most, and avoid
anything the user dislikes. Therefore, for both of the above
ALL BUTONE and GIVEN5 setups, we use two settings EX-
TREME and ALL (see [19]). The ALL setting corresponds to
the standard case where the CF system is asked to predict any
of the hidden ratings. In the EXTREME setting, the CF system
only predicts ratings that are on the end of the rating scales.
For EACHMOVIE, these extreme ratings are{0, 1, 2, 4, 5}, and
ratings below -5 or above 5 for JESTER.

2) Accuracy of Recommendations:We use precision and
recall to evaluate the accuracy of recommendations. These two
metrics have been extensively used in information retrieval and
collaborative filtering research [1], [18]. In our experiments,
precision is the percentage of items recommended to a user that
the user actually likes. Recall is the percentage of items the
user likes that are also recommended by the CF system. For
the EACHMOVIE data, we assume that users like those items
(movies) which they had rated 4 or 5. For JESTER, we assume
that users like those jokes that had been given a rating larger
than 5.

To compute precision and recall, we use the following setup.
For each active user (from the test set11) we randomly hide 30
of the user’s ratings12. The CF system then predicts the ratings
for these items, based on the remaining visible ratings. The top

10This naturally requires that we skip users in the test set that have only rated
one single item, respectively users that rated less than 6 items in the GIVEN5
setup.

11The setup requires that we skip users who had rated less than 31 items.
12We experimented with different numbers here, for example, hiding 20 of

the user’s ratings. We found that the results were consistent throughout these
experiments, thus we present only results for one setup.

ranked items out of these 30 items are then recommended to
the user and used to evaluate precision and recall. We compute
precision and recall for two cases, where we either recommend
the top 5 or the top 10 ranked items. These two cases will be
labeled TOP5 and TOP10 in the table of results.

3) Training and Test Sets:For comparing the accuracy of
predictions of PMCF with that of Bayesian network CF [11] on
the EACHMOVIE data, we use exactly the same split as reported
in [11], [19] with training and test sets of size 5000. To be able
to evaluate the significance of our results, we use training and
test sets (both of size 5000) drawn at random from the data, and
repeat this five times.

Similarly, for evaluating the accuracy of prediction on the
JESTER data, we take the first 5000 users as the training set,
and the next 5000 as the test set. Five random splits are used
for significance tests.

As mentioned above, we skip all test users that have rated
less than 31 items when computing precision and recall, respec-
tively less than two (six) items when computing the MAE in the
ALL BUTONE (GIVEN5) setup. Final results for MAE, preci-
sion and recall are always averaged over all users in the test
set.

C. Comparison With Other CF Methods

To compare the results of PMCF with other established CF
methods, we report results in terms of MAE, precision and re-
call for PMCF and for the following methods that have proven
successful in the CF literature.

• Memory-based CF with Pearson correlation coefficient
[5], one of the most popular memory-based CF algorithms.

• Bayesian network CF [11]. Since we use exactly the same
experimental setup and evaluation metrics for the EACH-
MOVIE data as reported in [11], we can directly compare
the performance of Bayesian network CF with other meth-
ods. We did not implement Bayesian network CF for the
JESTERdata.

• Näıve Bayesian CF [32]. Despite its simplicity, the naı̈ve
Bayesian classifier has proven to be competitive with Pear-
son correlation CF.

All methods are evaluated in the setup described in Sec. V-B.
We compare the above listed methods with two variants

of PMCF, which we label PMCFP and PMCFD. For the
PMCFD variant, we use the full training set to build the den-
sity model in Eq. (2), that is, the profile space is taken to be
the full training dataP = D. The other variant PMCFP is
PMCF with profile space constructed from the training setD
in the way described in Sec. IV. For both EACHMOVIE and
JESTER, we constructed profile spaces with 1000 profiles (out
of the training data of size 5000).

D. Evaluation of Accuracy

Tab. I and II summarize the performance of all evaluated CF
methods in terms of accuracy for prediction and recommenda-
tion.

Tab. I lists results for accuracy of prediction that are based
on one particular split of the data into training and test set that
has also been used in [11]. It can be clearly seen that PMCF
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achieves an MAE that is about 7-8% lower than the MAE of
the competing methods. The results also suggest that PMCF
is particularly suitable for making predictions when only very
little information about the active user is given: PMCF achieved
a particularly high improvement of accuracy for the GIVEN5
scenarios.

For the accuracy of predictions, we also evaluated all meth-
ods (except for the Bayesian network) with five different ran-
domly drawn training and test sets of size 5000, and did a pair-
wise comparison of results using a pairedt-test. The test con-
firmed that both variants of PMCF performed better than all
of the competing method with a significance level of99% or
above. Comparing PMCFP and PMCFD, we noted that both
performed almost identical for the GIVEN5 setups. For the two
ALL BUTONE setups, PMCFD achieved a slightly better per-
formance.

The results for accuracy of recommendation listed in Tab. I
are averages over five different random splits into training and
test data, as described above. The large advantage of PMCF
in terms of accuracy of prediction does not fully carry over to
the accuracy of recommendation. Still, a consistent and statis-
tically significant gain in performance could be achieved. Pre-
cision and recall of PMCF are typically about 2-3% better than
those of the competing methods. A larger performance gain was
always achieved in the TOP5 setup. Again, a pairwise compar-
ison of results in a pairedt-test was conducted. Results for one
of the two PMCF variants that are marked in bold in Tab. I are
better than those of the two competing methods with a signifi-
cance level of95% or above. Similarly, results marked in italics
achieve a significance level of90% or above.

Overall, we could verify that our proposed probabilistic
memory-based CF framework achieves an accuracy that is com-
parable or superior to other approaches that have been proposed
for collaborative filtering.

E. Evaluation of Profile Learning

In Sec. III, we proposed an active learning approach to in-
teractively learn user profiles. In this section we investigate
the performance of this learning process in a series of experi-
ments that simulate the interaction between users and the rec-
ommender system.

We use the training/test split described in Sec. V-B.3. For
each test user, ratings are randomly split into a setS of 30
items and the remaining itemsU . We assume that the test user
initially has not rated any items, and we wish to infer his pro-
file using the active learning approach. To obtain long learning
curves, we restrict the test set to users who had rated at least 60
items. This leaves us with 972 and 1340 test users respectively
for the EACHMOVIE and JESTERdata sets.

The interactive sessions are simulated as follows: The rec-
ommender system selects the 10 most informative items13 ac-
cording to the criterion described in Sec. III-D. User feedback
is taken from the actual ratings the user has given on an item,
if the item is in setU . Otherwise it is left unrated, simulating

13Query items might also be presented one by one, instead of using batches
of 10 items. We chose the variant with 10 items since it seems more natural
in an application scenario. Presenting items one by one can easily make users
impatient.

that the user is not able to give feedback on this particular item.
We make a series of such simulated interactions,t = 1, 2, . . . ,
gaining more and more knowledge about the user’s profile. For
test usera, we compute the MAE when predicting the ratings in
setS and the precision for making recommendations in setS,
denoted byMAE(a, t) andprecision(a, t). By averaging over
all users in the test set, we obtainMAE(t) andprecision(t).

Using MAE and precision, we compare the following 5
methods for selecting the query items:

1) Query item selection by minimizing the entropy of the
like-mindedness, as outlined in Sec. III-D.

2) Uncertainty sampling, as described in Sec. III-E
3) Entropy sampling, as described in Sec. III-E
4) Popularity sampling: At each iteration, we present 10 of

the most popular items to the test user
5) Random sampling: At each iterationt, we randomly se-

lect 10 query items
Methods 3, 4 and 5 have also been studied in [21].

The resulting learning curvesMAE(t) andprecision(t) for
the above 5 methods are shown in Fig. 2 (for the EACHMOVIE

data) and in Fig. 3 (for JESTER). The graphs clearly indicate
that query item selection based on like-mindedness outperforms
all other tested methods. Like-mindedness based selection is
thus a method which achieves a maximum gain of information
about a particular user with only a minimum of user effort.

For all of the tested methods, we also investigated the aver-
age number of items the user is being able to rate at a particular
iterationt. The low performance of random and entropy based
sampling, in particular on EACHMOVIE, can be explained by
the fact that users are not able to answer the posed queries. The
remaining three methods all achieve similar results for the av-
erage number of rated items. Yet, like-mindedness sampling
seems to ask more informative questions, leading to the steep-
est learning curves among all methods in Fig. 2 and 3.

From the presented results, we conclude that like-
mindedness based sampling is a sensible and accurate method
of inferring user profiles and requires only a minimum amount
of user effort. It has a particularly good performance on data
sets with high sparsity such as EACHMOVIE, where only 3% of
the items are rated, yet it also performs better than competing
approaches on dense data sets (JESTER).

F. Evaluation of Constructing Profile Spaces

We showed in Sec. IV how a small profile spaceP for the
PMCF model can be constructed out of a large data base of user
ratingsD. In this section, we investigate how the profile space
construction relates to the achievable accuracy for predictions
and recommendations in the PMCF model.

To this aim, we use the split of training and test data de-
scribed in Sec. V-B.3. From the training dataD, the profile
spaceP is constructed iteratively as outlined in Sec. IV. At
certain intervals14, we evaluate the performance of the PMCF
method, based on the profile space constructed so far, on the test
set. We use the mean absolute error MAE in the ALL BUTONE

14Evaluation is done when the profile space has reached a size of 60, 125,
250, 500, 1000, 2000 and 4000.
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TABLE I
ACCURACY OF PREDICTIONS, MEASURED BY MEAN ABSOLUTE ERRORMAE, OF DIFFERENTCF METHODS. DETAILS ON THE INDIVIDUAL

EXPERIMENTS ARE GIVEN INSEC. V-B AND V-C. BOTH PMCFP AND PMCFD CONSISTENTLY OUTPERFORM THE COMPETING METHOD, IN

PARTICULAR WHEN LITTLE INFORMATION IS GIVEN ABOUT THE ACTIVE USER IN THEGIVEN5 SCENARIO. THE RESULTS SHOWN HERE ARE BASED ON

THE TRAINING/TEST SPLIT REPORTED INSEC. V-B.3. ADDITIONAL EXPERIMENTS WITH 5 RANDOM SPLITS AND PAIREDt-TEST CONFIRMED THAT

PMCF OUTPERFORMED THE COMPETING METHODS AT A SIGNIFICANCE LEVEL OF99% OR ABOVE

EACHMOVIE JESTER
ALL EXTREME ALL EXTREME

ALL BUTONE GIVEN5 ALL BUTONE GIVEN5 ALL BUTONE GIVEN5 ALL BUTONE GIVEN5
Pearson correlation 0.996 1.150 1.130 1.290 3.927 4.258 5.062 5.730
Bayesian networks 1.066 1.154
Näıve Bayes 0.987 1.162 1.096 1.223 4.132 4.263 4.753 5.512
PMCFD 0.966 1.008 1.010 1.112 3.544 3.967 4.408 5.219
PMCFP 0.984 1.008 1.040 1.110 3.724 3.972 4.523 5.464

TABLE II
ACCURACY OF RECOMMENDATIONS, MEASURED BY PRECISION AND RECALL, OF DIFFERENTCF METHODS. ALL RESULTS IN THIS TABLE ARE

AVERAGED OVER 5 RUNS, WHERE TRAINING AND TEST SETS HAD BEEN DRAWN AT RANDOM FROM THE TOTAL DATA SETS. MARKED IN BOLD ARE

PMCF RESULTS THAT ARE SIGNIFICANTLY BETTER(WITH A SIGNIFICANCE LEVEL OF 95% OR ABOVE IN A PAIRED t-TEST) THAN THE COMPETING

APPROACHES. MARKED IN ITALIC ARE PMCF RESULTS THAT ARE BETTER THAN THE COMPETING APPROACHES WITH A SIGNIFICANCE LEVEL OF90%

OR ABOVE. FURTHER DETAILS ON THE INDIVIDUAL EXPERIMENTS ARE GIVEN INSEC. V-B AND V-C

EACHMOVIE JESTER
TOP5 TOP10 TOP5 TOP10

Precision Recall Precision Recall Precision Recall Precision Recall
Pearson correlation 0.703 0.284 0.656 0.510 0.406 0.251 0.386 0.454
Näıve Bayes 0.663 0.264 0.617 0.484 0.383 0.235 0.381 0.443
PMCFD 0.715 0.291 0.665 0.520 0.425 0.264 0.397 0.468
PMCFP 0.713 0 .288 0 .659 0 .512 0.416 0.256 0 .391 0.464

(a) Mean absolute errorMAE(t) (b) precision(t)

Fig. 2. Learning individual user profiles for the EACHMOVIE data. Mean absolute errorMAE(t) andprecision(t) achieved aftert = 1, 2, . . . steps of user
interaction with different strategies for query item selection. Details of the experimental setup are given in Sec. V-E
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(a) Mean absolute errorMAE(t) (b) precision(t)

Fig. 3. Learning individual user profiles for the JESTER data. Mean absolute errorMAE(t) andprecision(t) achieved aftert = 1, 2, . . . steps of user
interaction with different strategies for query item selection. Details of the experimental setup are given in Sec. V-E

setting and precision in the TOP10 setting as the measures of
performance.

We so obtain a curve of performance versus size of the profile
space. Since constructing the profile space uses a randomized
strategy to select candidate profiles (see Sec. IV-C), we repeat
this procedure 10 times. Thus, error bars for the performance
of PMCF with a profile space of a given size can be plotted. As
the baseline method, we use a PMCF model with a profile space
drawn at random from the full training dataD.

The resulting curves for accuracy of prediction (MAE)
and recommendation (precision) on the EACHMOVIE data are
shown in Fig. 4, and in Fig. 5 for the JESTER data. All plots
clearly indicate that the profile space construction presented in
Sec. IV does bring significant advantages in terms of perfor-
mance over a randomly chosen profile space. The gain in per-
formance was particularly large for accuracy of recommenda-
tion on the JESTERdata.

VI. CONCLUSIONS

In this paper we proposed a probabilistic framework for
memory-based collaborative filtering (PMCF). The PMCF is
based on user profiles in a specially constructed profile space.
With PMCF the posterior distribution of user ratings can be
used to predict an active user’s ratings. An experimental com-
parison with other CF methods (memory-based CF with Pear-
son correlation, Bayesian networks, naı̈ve Bayes) showed that
PMCF outperforms the competing methods both in terms of ac-
curacy for prediction and recommendation.

As one of its major advantages, PMCF allows extensions to
the basic model on a sound probabilistic basis. We showed
in Sec. III how an active learning approach can be integrated
smoothly into the PMCF framework. Through active learning,
the CF system can interactively learn about a new user’s prefer-
ences, by presenting well selected query items to the user. Our
results showed that the active learning approach performed bet-
ter than other methods for learning user profiles, in the sense
that it can make accurate predictions with only a minimum
amount of user input.

In Sec. IV we used the probabilistic framework to derive
a data selection scheme that allows the recommender system
to make fast and accurate predictions. Instead of operating
on a possibly huge database of user preferences (as traditional
memory-based CF does), the data selection scheme allows us
to use only a carefully selected subset, which we call the profile
space. Using the so selected profile space in the PMCF model
allows making fast predictions with only a small drop in perfor-
mance over a PMCF model operating on the full data.

We believe that the PMCF framework will allow more exten-
sions and thus can contribute to further improvements of recom-
mender systems. A particularly promising research direction is
the combination of CF methods with content based filtering into
hybrid systems. We are currently working on a PMCF based
hybrid system for image and text retrieval [33]. This system
implicitly also solves the new item problem: If no user ratings
are available for an item, predictions can still be made on the
basis of the content description.

Our further work on the PMCF model will also include an
improved model for user preferences. In Eq. (3), only items
that were actually rated contribute to the model. An improved
model could also take into account the information which items
had not been rated. For example, in the EACHMOVIE data, a
movie may have been unrated because a friend had dissuaded
the user from seeing the movie. Thus, one may be able to ex-
tract a certain degree of information from the set of unrated
items as well and further improve the accuracy of a CF system.

For the current PMCF system, as described in this article, the
efficiency of the active learning scheme still needs to be im-
proved. Active learning based on minimization of the entropy
of like-mindedness achieves the best recommendation accuracy,
yet the computational complexity is higher than that of compet-
ing methods such as uncertainty sampling.
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(a) Mean absolute errorMAE(t) (b) precision(t)

Fig. 4. Evaluating the profile space construction for the EACHMOVIE data set. Mean absolute error MAE and precision achieved with profile spaces of different
size, that are either constructed based on KL-divergence (see Sec. IV) or drawn at random from the training data. The plot is averaged over 10 runs, with error
bars

(a) Mean absolute errorMAE(t) (b) precision(t)

Fig. 5. Evaluating the profile space construction for the JESTERdata set. Mean absolute error MAE and precision achieved with profile spaces of different size,
that are either constructed based on KL-divergence (see Sec. IV) or drawn at random from the training data. The plot is averaged over 10 runs, with error bars
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