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Abstract. Relational learning has become ubiquitous in many fields of
application. Here, we review tensor factorization for relational learning on
the basis of Rescal, which has shown state-of-the-art relational learning
results, while scaling to knowledge bases with millions of entities and
possibly billions of known facts.

1 Introduction

Modeling information via relationships of entities is a powerful method of knowl-
edge representation and has become ubiquitous in many fields of application.
For instance, social networks, bioinformatics, and artificial intelligence all make
extensive use of relational information, as do large knowledge bases such as
Google’s Knowledge Graph or the Semantic Web. It is well-known that statis-
tical relational learning (SRL) can improve learning results significantly over
non-relational methods in such domains. However, despite the success of SRL
in specific applications, wider adoption has been hindered by multiple factors:
without extensive prior knowledge about a domain, existing SRL methods of-
ten have to resort to structure learning for their functioning; a process that is
both time consuming and error prone. Moreover, inference is often based on
methods such as MCMC and variational inference what introduces additional
scalability issues and renders large-scale relational learning difficult to realize.
Tensor factorizations are multi-linear latent factor models, which allow for a
significantly different approach to SRL, in order to overcome aforementioned
problems and to create new applications for relational learning. We will discuss
tensor factorization for relational learning by the means of Rescal [6,7,5], which
is based on the factorization of a third-order tensor and has shown excellent
learning results, outperforming state-of-the-art SRL methods as well as related
tensor-based approaches on benchmark data sets. Moreover, the factorization
is highly scalable, such that large knowledge bases can be factorized, what is
currently out of reach for most SRL methods. During the review of the Rescal
model, we will also exemplify the general benefits of tensor factorization for re-
lational learning, as considered recently in approaches like [10,8,1,4,2]. In the
remainder, we will mostly follow the notation outlined in [3] and also assume
that all relationships are of dyadic form.
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Fig. 1. Factorization of an adjacency tensor X using the
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Fig. 2. Graphical model
of Rescal in plate nota-
tion.

2 Relational Learning via Tensor Factorization

Dyadic relational data consisting of n entities and m relations has a natural
representation as an adjacency tensor X ∈ Rn×n×m with entries xijk = 1 if the
relationship relationk(entityi, entityj) exists and 0 otherwise. Rescal [6] is a
latent factor model for relational learning, which factorizes an adjacency tensor
X as

X ≈ R×1 A×2 A, (1)

what can be equivalently stated as xijk ≈ aT
i Rkaj . In this model, the row ai ∈ Rr

of A ∈ Rn×r corresponds to the latent representation of entityi, while the frontal
slice Rk ∈ Rr×r of the tensor R ∈ Rr×r×m models the interactions of the latent
variables for relationk. The dimensionality r of the latent space is a user-given
parameter which specifies the complexity of the model. The symbol “≈” denotes
the approximation under a given loss function. Figure 1 shows a visualization of
the factorization. Probabilistically, eq. (1) can be interpreted as estimating the
joint distribution over all possible relationships

P(X|A,R) =
n∏

i=1

n∏
j=1

m∏
k=1

P(xijk|aT
i Rkaj). (2)

For the least squares loss, the probability of a relationship is proportional to
the entry in the reconstructed tensor, meaning P(xijk = 1) ∝ aT

i Rkaj [6]. Using
the logistic loss, exact probabilities can be obtained [5]. To handle attributes of
entities efficiently, coupled tensor factorization can be employed [7,11], where
simultaneously to eq. (1) an attribute matrix F ∈ Rn×` is factorized as F ≈ AW
such that A ∈ Rn×r is shared between the factorization of X and F . Rescal and
other tensor factorizations feature a number of important properties that can be
exploited for tasks like link prediction, entity resolution or link-based clustering:

Efficient Inference The latent variable structure of Rescal decouples inference,
such that global dependencies are captured during learning, whereas prediction
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relies only on a few latent variables. It can be seen from eq. (2) that a variable
xijk is conditionally independent from all other variables given aT

i Rkaj , what
enables fast query answering independently of the size of a knowledge base and
what can essentially be computed in real-time. It is important to note that this
locality of computation does not imply that the likelihood of a relationship is only
influenced by local information. On the contrary, the conditional independence
assumptions depicted in fig. 2 show that information is propagated globally when
computing the factorization. Due to the repeated colliders in fig. 2, latent variables
(ai, aj , Rk) can not be d-separated from any other variable and thus are possibly
dependent on all these variables. Since xijk depends only on {ai,aj , Rk}, it
depends indirectly on the state of any other variable, such that global dependencies
between relationships can be captured. Similar arguments apply to factorizations
such a Tucker and CP what explains the generally strong relational learning
results of Rescal and CP compared to state-of the-art methods such as MLN
or IRM [6,7,2,5].

Unique Representation A distinctive feature of Rescal is the unique repre-
sentation of entities via the latent space A. Standard tensor factorization models
such as CP and Tucker compute a bipartite model of relational data, such that
entities have different latent representations whether the occur as subjects or
objects in a relationship. For instance, factorizing a frontal slice as Xk ≈ ARkB

T

would represent entities as subjects in A and as objects in B. However, relations
are usually not bipartite and this modeling would effectively break the flow of
information from subjects to objects in these cases, as it does not account for the
fact that latent variables ai and bi refer to identical entities. In contrast, Rescal
uses exactly one latent representation ai for the i-th entity, what enables an effi-
cient propagation of information via the dependency structure shown in fig. 2. It
has been demonstrated that this property is critical to propagate information over
relational chains such as vicePresident(x, y) ∧ party(y, z) ⇒ party(x, z), what
allows Rescal to outperform CP and Tucker significantly on such prediction
tasks [6,7].

Latent Representation In relational data, the similarity of entities is determined
by the similarity of their relationships, following the intuition that “if two objects
are in the same relation to the same object, this is evidence that they may be the
same object” [9]. This notion of similarity is reflected in Rescal via the latent
space A. For the i-th entity, all possible occurrences as a subject are grouped in
slice Xi,:,: of an adjacency tensor, while all possible occurrences as an object are
grouped in X:,i,: (see figs. 3 and 4). According to the Rescal model, these slices
are computed by vec

(
Xi,:,: ≈ aiR(1)(I ⊗A)T

)
andX:,i,: ≈ aiR(2)(I ⊗A)T . Since

R(1)(I⊗A)T andR(2)(I⊗A)T are constant for different values of i, it is sufficient to
consider the similarity of ap and aq to compute the relational similarity of entityp
and entityq. As this measure of similarity is based on the latent representations of
entities, it reflects that if two objects are in similar relations to similar objects, this
is evidence that they may be the same object, what is an important extension to the
previous definition. Latent representations of entities have been exploited very
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successfully for entity resolution and also enabled the first large-scale hierarchical
clustering approach on relational data [6,7]. Moreover, since the matrix A is a
vector space representation of entities, non-relational machine learning algorithms
such as k-means or kernel methods can be conveniently applied to any of these
tasks.

X:,i,:

X:,j,:

Fig. 3. Incoming Links

Xi,:,:

Xj,:,:

Fig. 4. Outgoing Links

High Scalability The scalability of algorithms has become of utmost importance
as relational data is generated in an unprecedented amount and the size of
knowledge bases grows rapidly. Rescal-ALS is a highly scalable algorithm to
compute the Rescal model under a least-squares loss. It has been shown that
it can efficiently exploit the sparsity of relational data as well as the structure
of the factorization, such that it features linear runtime complexity with regard
to the number of entities n, the number of relations m, and the number of
known relationships nnz(X), while being cubic in the model complexity r. This
property allowed, for instance, to predict various high-level classes of entities
in the Yago 2 ontology, which consists of over three million entities, over 80
relations or attributes, and over 33 million existing relationships, by computing
low-rank factorizations of its adjacency tensor on a single desktop computer [7].

3 Conclusion and Outlook

Rescal has shown state-of-the-art relational learning results, while scaling up to
the size of complete knowledge bases and being straightforward to use without
any need for prior knowledge. Moreover, its latent representations of entities
enable the application of non-relational algorithms to relational data for a wide
range of tasks, such that proven methods can be reused. This set of features
opens up new applications for relational learning and can be an important step
towards large-scale relational learning.
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