
Missing and Noisy Data in Nonlinear Time-Series

Prediction

Volker Tresp and Reimar Hofmann
Siemens AG, Central Research

81730 Munich, Germany∗

Published in: Neural Networks for Signal Processing 5, F. Girosi, J. Makhoul,

E. Manolakos and E. Wilson, eds., IEEE Signal Processing Society, New York,

New York, 1995, pp. 1-10.

Abstract

[Comment added in October, 2003: This paper is now of mostly historical im-
portance. At the time of publication (1995) it was one of the first machine learning
papers to stress the importance of stochastic sampling in time-series predic-

tion and time-series model learning. In this paper we suggested to use Gibbs sam-
pling (Section 4), nowadays particle filters are commonly used instead. Secondly,
this is one of the first papers in machine learning to derive the gradient equations
for control optimization in reinforcement learning policy-space search meth-

ods (Section 6.3). The only previous publication on policy-space search methods to
our knowledge is: Williams, Ronald J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine Learning 8:229-256.
Since our paper was adressed to a neural network community, we focussed on a neu-
ral network representation with Gaussian noise. In Section 6.3, under the subtitle
Stochastic Control we derive the gradients for offline policy-space search methods.
Here, as

l keeps a trace of the gradient and es
l accumulates gradient times cost infor-

mation. Under the subtitle On-line Adaptation we derive the gradients for online
policy-space search methods and make the connection to value functions. Unfortu-
nately, we never found the time to follow-up on this paper. Part of the reason was
that the RL-experts to whom we presented this paper at the time of publication did
not exhibit much interest.]

We discuss the issue of missing and noisy data in nonlinear time-series predic-
tion. We derive fundamental equations both for prediction and for training. Our
discussion shows that if measurements are noisy or missing, treating the time series
as a static input/output mapping problem (the usual time-delay neural network
approach) is suboptimal. We describe approximations of the solutions which are
based on stochastic simulations. A special case is K-step prediction in which a one-
step predictor is iterated K times. Our solutions provide error bars for prediction
with missing or noisy data and for K-step prediction. Using the K-step iterated

∗Volker.Tresp@zfe.siemens.de, Reimar.Hofmann@zfe.siemens.de

1

logistic map as an example, we show that the proposed solutions are a consider-
able improvement over simple heuristic solutions. Using our formalism we derive
algorithms for training recurrent networks, for control of stochastic systems and for
reinforcement learning problems.

1 Introduction

Missing data in time-series prediction are a common problem in many applications. The
goal is to obtain valid predictions even if some measurements become unavailable or are
not recorded. Similarly, training data are often incomplete. In this paper we analyze
this problem from a probabilistic point of view. In previous publications the problem of
learning and prediction with missing and noisy features in (static) estimation problems
was examined (see, for example [2, 3, 4]). The solutions for both prediction and learning
consisted of integrals over the unknown variable weighted by the conditional probability
density of the unknown variable given the known variables. The basic idea is the same for
missing data in time-series prediction, but here, we can exploit the fact that the missing
measurement itself is part of the time series. Similar issues arise if we can only obtain
noisy measurements of the underlying true time series.

In this paper, we provide solutions for the problem of prediction and training with
missing or noisy data in time-series predictions. As a special case, we consider K-step
prediction in which a one-step predictor is iterated K times. We show how error bars
can be derived for prediction with missing and noisy inputs and for K-step prediction.
Finally, we point out that the learning algorithms derived in this paper can be used
to train recurrent neural networks, for stochastic control and for reinforcement learning
problems.

2 Prediction with Missing Inputs

2.1 One Missing Realization

We assume that the underlying probabilistic model of the time series can be described by

yt = f(yt−1, yt−2, . . . , yt−N) + εt (1)

where f() is either known or approximated sufficiently well by a function approximator
such as a neural network. εt is assumed to be additive uncorrelated zero-mean noise with
probability density Pε(ε) and typically represents unmodeled dynamics. The conditional
probability density of the predicted instance of the time series is then

P (yt|yt−1, yt−2, . . . , yt−N) = Pε(yt − f(yt−1, yt−2, . . . , yt−N)). (2)

2

y
t-2

y
t-6

y
t-5

y
t-4

y
t-3

y
t-2

y
t

y
t-1

...

Markov boundary of

.

Figure 1: A time series unfolded in time. The arrows indicate that the next realization of
the time series can be predicted from the two most recent values, yt = f(yt−1, yt−2) + εt.
Here, yt−2 is assumed to be missing. The Markov blanket shows which variables are
relevant for estimating yt−2.

Often, Gaussian noise is assumed such that

P (yt|yt−1, yt−2, . . . , yt−N) = G(yt; f(yt−1, . . . , yt−N), σ2) (3)

where G(x; c, σ2) is our notation for a normal density evaluated at x with center c and
variance σ2.

It is convenient to unfold the system in time which leads to the system shown in
Figure 1. The realizations of the time series are now random variables in a probabilistic
network. Our problem is to predict yt using the available information. According to our
assumptions, the joint probability density is

P (y1, y2, . . . , yt) = P (y1, . . . , yN)
t

∏

l=N+1

P (yl|yl−1, . . . , yl−N). (4)

Let’s now assume that yt−k with k ≤ N is missing. Let yu = {yt−k} and let ym =
{yt−1 . . . yt−k−N} \ {yt−k}. We can calculate the expected value of the next realization of
the time series as

E(yt|Mt−1) =
∫

f(yt−1, . . . , yt−k, . . . , yt−N) P (yu|ym) dyu (5)

where Mt−1 stands for all measurements up to t−1. The last equation is the fundamental
equation for prediction with missing data. Note, that the unknown yt−k is not only
dependent on realizations of the time series previous to t − k but also on measurements
after t− k. The reason is that the variables in ym ∪ yt form a minimal Markov blanket of
yt−k in the Bayesian net in Figure 1. A minimal Markov blanket in a Bayesian network
consists of the direct parents, the direct successors of a variable and all direct parents

3

of a variables direct successors. In our case, the direct successors are yt . . . yt−k+1, the
direct parents are yt−k−1 . . . yt−k−N and the direct parents of a variables direct successor
are yt−1 . . . yt−k−N+1. The theory of Bayesian and Markov networks now tells us that a
variable is independent of all other variables in the network if the variables in the Markov
blanket are known (see Figure 1). This discussion shows that simply approximating
yt−k ≈ f(yt−k−1, yt−k−2, . . . , yt−k−N) is suboptimal. The required conditional density in
Equation 5 is (recall that yu = yt−k)

P (yu|ym) ∝ P (yt−1|yt−2, . . . , yt−k, . . . , yt−1−N)

×P (yt−2|yt−3, . . . , yt−k, . . . , yt−2−N) . . . P (yt−k|yt−k−1, . . . , yt−k−N).

This expression can be evaluated easily using Equation 1 or in the Gaussian noise case
Equation 3.

2.2 Several Missing Realizations

From the preceding discussion it should be clear that nothing changes if the missing
realizations are separated by more than N known realizations. Then the Markov blankets
of the missing variable are still completely known. If this is not the case we obtain
Equation 5 where yu ⊆ {yt−1, yt−2, . . . , yt−N} denote all missing instances between t − 1
and t − N of the time series and where ym ⊆ {yt−1, yt−2, . . . , y1} denote the set of all
measurement up to t − 1. Also P (yu|ym) ∝ P (yt−1, . . . , y2, y1) where the right-hand side
is obtained from Equation 4.

2.3 Training with Missing Realizations

We consider the case that y1, . . . , yt are possible realizations. Let ym ⊆ {y1, . . . , yt} denote
the set of all measurements and yu = {y1, . . . , yt}\ym the set of all unknowns. Our model
is assumed to be a neural network parameterized by a set of weights w

f(yt−1, . . . , yt−N) ≈ NNw(yt−1, . . . , yt−N)

or any other kind of parameterized function approximator. The log-likelihood function of
the time series is L = log

∫

PM(yt, yt−1, . . . , y2, y1) dyu. Here

PM(yt, yt−1, . . . , y2, y1) = P M(yN , . . . , y1)
t

∏

l=N+1

PM(yl|yl−1, . . . , yl−N). (6)

is an approximation to the joint density and

PM(yt|yt−1, yt−2, . . . , yt−N) = Pε(yt − NNw(yt−1, yt−2, . . . , yt−N)). (7)

4

For backpropagation learning or other gradient based learning algorithms we need the
gradient of the log-likelihood with respect to the weights which is1

∂L

∂w
=

t
∑

l=N+1

∫ ∂ log PM(yl|yl−1, . . . , yl−N)

∂w
PM(yu(l)|ym) dyu(l). (8)

In case of Gaussian noise,

∂L

∂w
∝

t
∑

l=N+1

∫

(yl − NNw(yl−1, . . . , yl−N))
∂NNw(yl−1, . . . , yl−N)

∂w
PM(yu(l)|ym) dyu(l).

Here yu(l) = yu ∩ {yl, . . . yl−N} are the missing realizations in the input of the network.
The last equation shows that if all yl...yl−N are known, the integral “disappears”.

3 Prediction and Training with Noisy Measurements

Let again yt = f(yt−1, yt−2, . . . , yt−N) + εt but now we assume that we have no access to
yt directly. Instead, we measure zt = yt + δt where δt is independent zero-mean noise. Let
z = {z1 . . . zt−1} and y = {y1 . . . yt}. The joint probability density is

P (y, z) = P (yN , . . . , y1)
t

∏

l=N+1

P (yl|yl−1, . . . , yl−N)
t

∏

l=1

P (zl|yl).

The expression for the expected value of the next instance of the time series (prediction)
is

E(yt|z) =
∫

f(yt−1, . . . , yt−N) P (yt−1, . . . , yt−N |z) dyt−1 . . . dyt−N . (9)

Similarly the gradient of the likelihood for training can be calculated. For the special case
of Gaussian noise, with z = {z1 . . . zt}

∂L

∂w
∝

t
∑

l=N+1

∫

(yl − NNw(yl−1, . . . , yl−N))
∂NNw(yl−1, . . . , yl−N)

∂w
PM(yl, . . . , yl−N |z) dyl . . . dyt−N .

1Assuming known initial conditions for y1, . . . , yN . In this paper, we use repeatedly that if f(x) > 0,

then ∂f(x)
∂x

= ∂ log f(x)
∂x

f(x).

5

4 Approximations

4.1 Approximations of the Solution

In general, if f() is a nonlinear function the equations we obtained for prediction and
for calculating the gradient cannot be solved analytically and must be approximated
numerically. We will discuss a solution based on Monte Carlo sampling. Note that all
solutions have the general form

∫

h(u,m)P (u|m)du where u is the set of unknown variables
and m is the set of known variables. An integral of this form can be solved by drawing
random samples of the unknown variables following P (u|m). Let u1, . . . , uS denote these
samples. Then we can approximate
∫

h(u,m)P (u|m)du ≈
1

S

S
∑

s=1

h(us,m).

The problem now reduces to sampling from P (u|m). Let’s first assume that only one
variable is missing. Then the problem reduces to sampling from a one-variate distribution
which can be done using sampling-importance-resampling or other sampling techniques [1].

If more than one realization is missing the situation becomes more complicated. The
reason is that the unknown variables are in general dependent and we have to draw
from the distribution of all unknowns. A general solution is Gibbs sampling. In Gibbs
sampling we initialize the unknown variables either randomly or better with reasonable
initial values. Then we select one of the unknown variables ui and pick a sample from
P (ui|m,u \ ui) and set ui to that value. Then we repeat the procedure for the next
unknown variables and so on. Discard the first samples. Then samples are produced with
the correct distribution. This of course means that we might have to sample all unknowns
which ever occurred in the time series. In practice, one would restrict the sampling to
some reasonable chosen time window. Note, that in the missing data case, if N consecutive
values are known the coupling is broken and we do not need to consider missing values
which lie further away. Also sampling is simple if only samples of future values are required
as in K-step prediction (Section 5) and in control problems (Section 6.3). The reason is
that we can sample forward in time. Note, that sampling does not work for deterministic
systems. Finally, we want to point out the simplicity behind the complicated looking
solutions. Both for prediction and training we draw samples of the unknown variables
according to their probability density. In prediction we substitute those samples for the
missing data and average the predictions. In training calculate the average of the error
gradients using the substituted samples.

4.2 Maximum-Likelihood Substitution

Here, we do not sample but substitute the most likely values for u, that is
∫

h(u,m)P (u|m)du ≈ h(uml,m)

6

where uml = maxu log P (u|m). For the prediction model in Equation 5 where yk−1 is
missing and assuming Gaussians

yml
t−k = min

yt−k

t−1
∑

l=t−k

(yl − f(yl−1, . . . , yl−N))2

we simply find the substitution which minimizes the sum of the squared errors. In case
of noisy measurements and Gaussian distributions

yml = min
y1,...,yt−1

[− log P (y1, . . . , yN) +
1

2σ2
ε

t−1
∑

l=N+1

(yl − f(yl−1, . . . , yl−N))2 +
1

2σ2
δ

t−1
∑

l=1

(yl − zl)
2]

Where σ2
ε and σ2

δ are the variances of the two noise sources. Note, that this is a multidi-
mensional optimization problem. In training, both the weights and the estimates of the
missing or noisy realizations are adapted concurrently.

5 Experiments: K-step Prediction

We can use our preceding equations to predict K-steps into the future. In our frame-
work, this is equivalent to the problem that yt−1, . . . , yt−K+1 are missing and we want
to predict yt. In this case, Monte-Carlo sampling is very simple: generate a sample
ys

t−K+1 of the first missing value using the distribution P (yt−K+1|yt−K , . . . , yt−K−N). Us-
ing that sample and the previous measurements, generate a sample of yt−K+2 following
P (yt−K+2|y

s
t−K+1, . . . , yt−K+1−N)) and so on until a sample of each unknown is produced.

Repeat this procedure S times and approximate

E(yt|Mt−1) ≈
1

S

S
∑

s=1

f(ys
t−1, y

s
t−1, . . . , y

s
t−N)

where we have assumed that K > N . If K ≤ N substitute measured values for k ≥ K.
Note, that simply iterating the model K-times as it is usually done in K−step prediction
is suboptimal in nonlinear time-series prediction if K > 1!

In our experiments, we wanted to find out to which degree our solutions are superior
to simply iterating the time series in K-step prediction. We used the noisy logistic map
yt = 4zt−1(1 − zt−1) + εt where

zt =

yt if 0 ≤ yt < 1
yt − 1 if yt ≥ 1
yt + 1 if yt < 0

where εt is uncorrelated Gaussian noise with a variance of σ2 = 0.01. Figure 2 (left)
shows the time series. Figure 2 (right) shows the mean squared error as a function of K.
Shown are the iterated system (continuous line) and the solution following our sampling
approach. As expected, for K = 1 the iterated solution is optimal, but for K > 1, the
Monte-Carlo approximation even with only few samples is far superior.

7

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

K

me
an

squ
are

d e
rror

0 20 40 60
0

0.2

0.4

0.6

0.8

1

1.2

t

y_t

Figure 2: Left: Samples of the logistic map. Right: The mean squared error as a function
of K in K−step prediction. The iterated solution (continuous) and the Monte-Carlo
approximation with 3 (dotted) and 20 samples (dashed) are shown. Only for one-step
prediction, the iterated model is optimal. Note, that by sampling we obtained an estimate
of the prediction error of the iterated system (assuming a correct model).

6 Extensions

6.1 Error Bars

Sampling provides much more information than just expected values. In all of the cases
considered earlier — missing or noisy data, K-step prediction — we can also easily obtain
error bars of the predicted value by calculating the variance (or the covariances) in the
samples produced (Figure 2).

6.2 Recurrent Neural Networks for Stochastic Models

The approach can be applied to state space models of the form2

yt = f(yt−1) + εt zt = yt + δt

where yt, εt ∈ <Dy , zt, δt ∈ <Dz . In the following discussion and for the rest of the paper
we will assume independent Gaussian noise for all noise sources (here: for all components
of εt and δt), although the results can be easily generalized to other distributions. We
also assume that the components of εt have identical variances. Infinite variance in the
components of δt indicates an unknown (hidden) variable, a variance of zero a certain
measurement3 and a finite variance a noisy measurement. z = {z1, . . . zt−1} is the set
of measured values and y = {y1, . . . yt−1} are unknown. Let’s assume that f(yt−1) ≈

2Introducing the more general assumption that zt = g(yt) + δt poses no additional difficulties.
3For the sampling procedure to work, a small error should always be assumed, such that the noise

variance is always greater than zero.

8

NNw(yt−1) is approximated by a neural network. The gradient of the log-likelihood with
respect to a weight w is

∂L

∂w
∝

t
∑

l=2

∫ ∂NNw(yl−1)

∂w
(yl − NNw(yl−1)) P M(yl, yl−1|z) dyldyt−1. (10)

Note, that ∂NNw(yl−1)
∂w

is a Dw × Dy dimensional matrix, where Dw are the number of
weights in the network. In the Monte Carlo approximation, the main problem is the
sampling from P M(yl, yl−1|z) which can be very time-consuming. We will discuss another
learning algorithm for recurrent networks in the next section where the generation of
samples is much easier.

6.3 Control of Stochastic Systems, Reinforcement Learning and

Training of Recurrent Networks Revisited

Deterministic Control. Consider yt = f(yt−1, ut−1) + εt where ut = NNw(yt) is a pa-
rameterized controller. The task is to minimize the expected cost up to a finite horizon
T

E(cost) =
∫ T

∑

l=1

γl−1C(yl)P (y1, . . . , yT)dy1 . . . dyT

where γ ≤ 1 is a discount factor and P (y1, . . . , yT) = P (y1)
∏T

l=2 p(yl|yl−1). To optimize
the controller, we need the gradient of the expected cost with respect to w. We obtain4

∂E(cost)

∂w
∝

T
∑

l=2

∫

γl−1C(yl) (11)

×[
l

∑

m=2

∂f(ym−1, um−1))

∂um−1

∂NNw(ym−1)

∂w
(ym − f(ym−1, um−1))]P (y1, . . . yl) dy1 . . . dyl

This solution can be approximated using stochastic sampling (see the following dis-
cussion). To avoid infinite control actions, it might be useful to introduce a cost which
takes control actions into account or which adds a penalty for large weights in NNw.

Stochastic Control. Now assume that the control action is stochastic ut = NNw(yt)+δt

and that we allow that the cost depends on the control action. Then,

∂E(cost)

∂w
∝

T
∑

l=1

∫

γl−1C(yl, ul)[
l

∑

m=1

∂NNw(ym)

∂w
(um − NNw(ym))] (12)

×P (y1, . . . , yl, u1, . . . , ul−1) dy1 . . . dyldu1 . . . dul−1.

4Recall that we assume Gaussian noise distributions.

9

Note, that we do not need a model of the process f() any more! This is a result
of the fact that we execute stochastic control. The system “tries” different actions and
adapts the controller to favor actions which lead to low costs. We simply simulate the
system (or collect data on the real process) and execute control actions. In the course of
training we might want to reduce the noise variance on the control to eventually converge
to deterministic controls. Let’s assume that we generated S time series of the process by
starting at l = 1 and iterating until T generating samples us

l and ys
l . For each experiment

s, we iterate for l = 2, . . . , T (as
0 = es

0 = 0)

as
l = γas

l−1 + γl−1∂NNw(ys
l)

∂w
(us

l − NNw(ys
l))

and

es
l = es

l−1 + C(ys
l , u

s
l)a

s
l−1.

Then

∂E(cost)/∂w ≈ 1/S
S

∑

s=1

es
T .

Recurrent Neural Networks. The previous equations also contain an algorithm for
training recurrent neural networks. Assume yt = NNw(yt−1) + εt. Define C(yt) =
b′tdiag((yd

t − yt)(y
d
t − yt)

′), γ = 1. Here, yd
t is a target at time t and bt is a vector

with bti = 1 if the i-th component of yt is measured and zero otherwise (i. e. for the
hidden variables). The operator diag forms a vector of the diagonal elements of a matrix.
Then

as
l = as

l−1 +
∂NNw(ys

l−1)

∂w
(ys

l − NNw(ys
l−1))

and

es
l = es

l−1 + C(yt)a
s
l .

Finally,

∂E(cost)/∂w ≈
1

S

S
∑

s=1

es
T .

On-line Adaptation. Consider stochastic control again. We let T → ∞. We now
assume that at every time-step, we start a new experiment s. Then let al =

∑l
s=1 as

l and

al = γal−1 + [
l

∑

m=1

γl−m]
∂NNw(ys

l)

∂w
(us

l − NNw(ys
l))

10

≈ γal +
1

1 − γ

∂NNw(ys
l)

∂w
(us

l − NNw(ys
l)).

The last approximation is valid for large l. Then:

el = ρel−1 + C(ys
l)al−1

(ρ = 1). In practice, a small gradient descent learning step might be executed at every
time-step ∆w(l) ∝ el with an additional decay term on el (ρ < 1). Note that this is
easily recognized as a variant of reinforcement learning. We can reduce the variance of
the controller in the course of training and converge to a deterministic control law. The
connection with reinforcement learning is even more obvious if we write for the right-hand
side of Equation 12 (exchange the order of summations, T → ∞)

∞
∑

m=1

∫ ∂NNw(ym)

∂w
(um − NNw(ym))γm−1(C(ym, um) + γV (ym+1))

×P (ym, ym+1, um) dymdym+1dum.

The expression

V (ym+1) =
∫

C(ym+1, um+1)dum+1 +
∞
∑

l=m+2

γl−m−1
∫

C(yl, ul)P (yl, ul)dyldul

is the expected cost if the current state is ym+1 (not including the factor γm).

7 Conclusions

We have shown how the problem of missing and noisy data can be approached in a
principled way in time-series prediction. In addition, we derived equations for training
recurrent neural networks, for stochastic control and for reinforcement learning problems.
The proposed approximations are based on stochastic simulations which, in general, are
computationally expensive. Sampling is particularly simple if we can sample only forward
in time as in K-step prediction and in the control laws and learning rules discussed in
Section 6.3.

References

[1] Bernardo, J. M., Smith, A. F. M. (1994) Bayesian Theory. Wiley & Sons.

[2] Buntine, W. L. and Weigend, A. S. (1991). Bayesian Back-Propagation. Complex systems,
Vol. 5, pp. 605-643.

11

[3] Ghahramani, Z. and Jordan, M. I. (1994). Supervised Learning from Incomplete Data via
an EM approach. In: Cowan, J. D. et al., eds., Advances in Neural Information Processing
Systems 6, Morgan Kaufman.

[4] Tresp, V., Ahmad, S. and Neuneier, R. (1994). Training Neural Networks with Deficient
Data. In: Cowan, J. D. et al., eds., Advances in Neural Information Processing Systems
6, Morgan Kaufman.

12

