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Abstract. Statistical relational learning (SRL) provides effective tech-
niques to analyze social network data with rich collections of objects and
complex networks. Infinite hidden relational models (IHRMs) introduce
nonparametric mixture models into relational learning and have been
successful in many relational applications. In this paper we explore the
modeling and analysis of complex social networks with IHRMs for com-
munity detection, link prediction and product recommendation. In an
IHRM-based social network model, each edge is associated with a ran-
dom variable and the probabilistic dependencies between these random
variables are specified by the model, based on the relational structure.
The hidden variables, one for each object, are able to transport informa-
tion such that non-local probabilistic dependencies can be obtained. The
model can be used to predict entity attributes, to predict relationships
between entities and it performs an interpretable cluster analysis. We
demonstrate the performance of IHRMs with three social network appli-
cations. We perform community analysis on the Sampson’s monastery
data and perform link analysis on the Bernard & Killworth data. Finally
we apply IHRMs to the MovieLens data for prediction of user preference
on movies and for an analysis of user clusters and movie clusters.

Key words: Statistical Relational Learning, Social Network Analysis,
Nonparametric Mixture Models, Dirichlet Process, Variational Inference

1 Introduction

Social network mining has gained in importance due to the growing availability
of data on novel social networks, e.g. citation networks (DBLP, Citeseer), SNS
websites (Facebook), and social media websites (Last.fm). Social networks usu-
ally consist of rich collections of objects, which are linked into complex networks.
Generally, social network data can be graphically represented as a sociogram as
illustrated in Fig. 1 (left). In this simple social network, there are persons, person
profiles (e.g., gender), and these persons are linked together via friendships. Some
interesting applications in social network mining include community discovery,
relationship prediction, social recommendation, etc.

Statistical relational learning (SRL) [8, 17, 11] is an emerging area of machine
learning research, which attempts to combine expressive knowledge representa-
tion formalisms with statistical approaches to perform probabilistic inference
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and learning on relational networks. Fig. 1 (right) shows a simple SRL model for
the above sociogram example. For each potential edge, a random variable (RV) is
introduced that describes the state of the edge. For example, there is a RV asso-
ciated with the edge between the person 1 and the person 2. The binary variable
is YES if the two persons are friends and No otherwise. The edge between an
object (e.g., person 1) and object property (e.g., Male) is also associated with
a RV, whose value describes the person’s profile. In the running example, all
variables are binary. To infer the quantities of interest, e.g., whether the person
1 and the person 2 are friends, we need to learn the probabilistic dependencies
between the random variables. Here we assume that friendship is conditioned
on the profiles (gender) of the involved persons, shown as Fig. 1 (right). The
directed arcs, for example, the ones between G1 and R1,2 and between G2 and
R1,2 specify that the probability that person 1 and the person 2 are friends de-
pends on their respective profiles. Given the probabilistic model, we can learn
the parameters and predict the relationships of interest.

Fig. 1. Left: A simple sociogram. Right: A probabilistic model for the sociogram. Each
edge is associated with a random variable that determines the state of the edge. The
directed arcs indicate direct probabilistic dependencies.

In the simple relational model of social network, the friendship is locally
predicted by the profiles of the involved objects: whether a person is a friend
of another person is only dependent on the profiles of the two persons. Given
that the parameters are fixed, and given the parent attributes, all friendships
are independent of each other such that correlations between friendships, i.e.,
the collaborative effect, cannot be taken into account. To solve this limitation,
structural learning might be involved to obtain non-local dependencies but struc-
tural learning in complex relational networks is considered a hard problem [9].
Non-local dependencies can also be achieved by introducing for each person a
hidden variable as proposed in [24]. The state of the hidden variable represents
unknown attributes of the person, e.g. the particular habit of making friends
with certain persons. The hidden variable of a person is now the only parent
of its profiles and is one of the parents of the friendships in which the person
potentially participates. Since the hidden variables are of central importance,
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this model is referred to as the hidden relational model (HRM). In relational
domains, different classes of objects generally require a class-specific complexity
in the hidden representation. Thus, it is sensible to work with a nonparamet-
ric method, Dirichlet process (DP) mixture model, in which each object class
can optimize its own representational complexity in a self-organized way. Con-
ceptionally, the number of states in the hidden variables in the HRM model
becomes infinite. In practice, the DP mixture sampling process only occupies a
finite number of components. The combination of the hidden relational model
and the DP mixture model is the infinite hidden relational model (IHRM) [24].

The IHRM model has been first presented in [24]. This paper is an extended
version of [25] and we explore social network modeling and analysis with IHRM
for community detection, link prediction, and product recommendation. We
present two inference methods for efficient inference: one is the blocked Gibbs
sampling with truncated stick-breaking (TSB) construction, the other is the
mean-field approximation with TSB. We perform empirical analysis on three so-
cial network datasets: the Sampson’s monastery data, the Bernard & Killworth
data, and the MovieLens data. The paper is organized as follows. In the next sec-
tion, we perform analysis of modeling complex social network data with IHRMs.
In Sec. 3 we describe a Gibbs sampling method and a mean-field approximation
for inference in the IHRM model. Sec. 4 gives the experimental analysis on so-
cial network data. We review some related work in Sec. 5. Before concluding, an
extension to IHRMs is discussed in Sec. 6.

2 Model Description

Based on the analysis in Sec. 1, we will give a detailed description of the IHRM
model for social network data. In this section, we first introduce the finite hidden
relational model (HRM), and then extend it to an infinite version (IHRM). In
addition, we provide a generative model describing how to generate data from
an IHRM model.

2.1 Hidden Relational Model

A hidden relational model (HRM) for a simple sociogram is shown in Fig. 2.
The basic innovation of the HRM model is introducing for each object (here:
person) a hidden variable, denoted as Z in the figure. They can be thought of as
unknown attributes of persons. We then assume that attributes of a person only
depend on the hidden variable of the person, and a relationship only depends on
the hidden variables of the persons involved in the relationship. It implies that
if hidden variables were known, both person attributes and relationships can be
well predicted.

Given the HRM model shown in Fig. 2, information can propagate via inter-
connected hidden variables. Let us predict whether the person 2 will be a friend
of the person 3, i.e. predict the relationship R2,3. The probability is computed
on the evidence about: (1) the attributes of the immediately related persons,
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Fig. 2. A hidden relational model (HRM) for a simple sociogram.

i.e. G2 and G3, (2) the known relationships associated with the persons of inter-
est, i.e. the friendships R2,1 and R2,4 about the person 2, and the friendships R1,3

and R3,4 about the person 3, (3) high-order information transferred via hidden
variables, e.g. the information about G1 and G4 propagated via Z1 and Z4. If
the attributes of persons are informative, those will determine the hidden states
of the persons, therefore dominate the computation of predictive probability of
relationship R2,3. Conversely, if the attributes of persons are weak, then hidden
state of a person might be determined by his relationships to other persons and
the hidden states of those persons. By introducing hidden variables, information
can globally distribute in the ground network defined by the relational structure.
This reduces the need for extensive structural learning, which is particularly dif-
ficult in relational models due to the huge number of potential parents. Note that
a similar propagation of information can be observed in hidden Markov models
used in speech recognition or in the hidden Markov random fields used in image
analysis [26]. In fact, the HRM can be viewed as a directed generalization of
both for relational data.

Additionally, the HRM provides a cluster analysis of relational data. The
state of the hidden variable of an object corresponds to its cluster assignment.
This can be regarded as a generalization of co-clustering model [13]. The HRM
can be applied to domains with multiple classes of objects and multiple classes of
relationships. Furthermore, relationships can be of arbitrary order, i.e. the HRM
is not constraint to only binary and unary relationships[24]. Also note that the
sociogram is quite related to the resource description framework (RDF) graph
used as the basic data model in the semantic web [3] and the entity relationship
graph from database design.

We now complete the model by introducing the variables and parameters in
Fig. 2. There is a hidden variable Zi for each person. The state of Zi specifies the
cluster of the person i. Let K denote the number of clusters. Z follows a multino-
mial distribution with parameter vector π = (π1, . . . , πK) (πk > 0,

∑
k πk = 1),

which specifies the probability of a person belonging to a cluster, i.e. P (Zi =
k) = πk. π is sometimes referred to as mixing weights. It is drawn from a conju-
gated Dirichlet prior with hyperparameters α0.
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All person attributes are assumed to be discrete and multinomial variables
(resp., binary and Bernoulli). Thus a particular person attribute Gi is a sample
drawn from a multinomial (resp., Bernoulli) distribution with parameters θk,
where k denotes the cluster assignment of the person. θk is sometimes referred
to as mixture component, which is associated with the cluster k. For all persons,
there are totally K mixture components Θ = (θ1, . . . , θK). Each person in the
cluster k inherits the mixture component, thus we have: P (Gi = s|Zi = k, Θ) =
θk,s (θk,s > 0,

∑
s θk,s = 1). These mixture components are independently drawn

from a prior G0. For computational efficiency, we assume that G0 is a conjugated
Dirichlet prior with hyperparameters β.

We now consider the variables and parameters concerning the relationships
(FriendOf). The relationship R is assumed to be discrete with two states. A
particular relationship Ri,j between two persons (i and j) is a sample drawn
from a binomial distribution with a parameter φk,`, where k and ` denote cluster
assignments of the person i and the person j, respectively. There are totally K×
K parameters φk,`, and each φk,` is independently drawn from the prior Gr

0. For
computational efficiency, we assume that Gr

0 is a conjugated Beta distribution
with hyperparameters βr.

From a mixture model point of view, the most interesting term in the HRM
model is φk,`, which can be interpreted as a correlation mixture component. If a
person i is assigned to a cluster k, i.e. Zi = k, then the person inherits not only
θk, but also φk,`, ` = {1, . . . ,K}.

2.2 Infinite Hidden Relational Model

Since hidden variables play a key role in the HRM model, we would expect that
the HRM model might require a flexible number of states for the hidden vari-
ables. Consider again the sociogram example. With little information about past
friendships, all persons might look the same; with more information available,
one might discover certain clusters in persons (different habits of making friends);
but with an increasing number of known friendships, clusters might show increas-
ingly detailed structure ultimately indicating that everyone is an individual. It
thus makes sense to permit an arbitrary number of clusters by using a Dirichlet
process mixture model. This permits the model to decide itself about the optimal
number of clusters and to adopt the optimal number with increasing data. For
our discussion it suffices to say that we obtain an infinite HRM by simply letting
the number of clusters approach infinity, K → ∞. Although from a theoretical
point of view there are indeed an infinite number of components, a sampling
procedure would only occupy a finite number of components.

The graphical representations of the IHRM and HRM models are identical,
shown as Fig. 2. However, the definitions of variables and parameters are differ-
ent. For example, hidden variables Z of persons have infinite states, and thus
parameter vector π is infinite-dimensional. The parameter is not generated from
a Dirichlet prior, but from a stick breaking construction Stick(·|α0) with a hy-
perparameter α0 (more details in the next section). Note that α0 is a positive
real-valued scalar and is referred to as concentration parameter in DP mixture
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modeling. It determines the tendency of the model to either use a large number
or a small number of states in the hidden variables [2]. If α0 is chosen to be
small, only few clusters are generated. If α0 is chosen to be large, the coupling
is loose and more clusters are formed. Since there are an infinite number of clus-
ters, there are an infinite number of mixture components θk, each of which is
still independently drawn from G0. G0 is referred to as base distribution in DP
mixture modeling.

2.3 Generative Model

Now we describe the generative model for the IHRM model. There are mainly
two methods to generate samples from a Dirichlet Process (DP) mixture model,
i.e. the Chinese restaurant process (CRP) [2] and the stick breaking construction
(SBC) [22]. We will discuss how SBC can be applied to the IHRM model (see
[24] for CRP-based generative model). Notations is summarized in Table 1.

Table 1. Notation used in this paper.

Symbol Description

C number of object classes
B number of relationship classes
Nc number of objects in a class c
αc

0 concentration parameter of an object class c
ec

i an object indexed by i in a class c
Ac

i an attribute of an object ec
i

θc
k mixture component indexed by a hidden state k in an object class c

Gc
0 base distribution of an object class c

βc parameters of a base distribution Gc
0

Rb
i,j relationship of class b between objects i, j

φb
k,` correlation mixture component indexed by hidden states k for ci and ` for

cj , where ci and cj are object classes involved in a relationship class b

Gb
0 base distribution of a relationship class b

βb parameters of a base distribution Gb
0

The stick breaking construction (SBC) [22] is a representation of DPs, by
which we can explicitly sample random distributions of attribute parameters
and relationship parameters. In the following we describe the generative model
of IHRM in terms of SBC.

1. For each object class c,
(a) Draw mixing weights πc ∼ Stick(·|αc

0), defined as

V c
k

iid∼ Beta(1, αc
0); πc

1 = V c
1 , πc

k = V c
k

k−1∏

k′=1

(1− V c
k′), k > 1. (1)
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(b) Draw i.i.d. mixture components θc
k ∼ Gc

0, k = 1, 2, . . .
2. For each relationship class b between two object classes ci and cj , draw

φb
k,` ∼ Gb

0 i.i.d. with component indices k for ci and ` for cj .
3. For each object ec

i in a class c,
(a) Draw cluster assignment Zc

i ∼ Mult(·|πc);
(b) Draw object attributes Ac

i ∼ P (·|θc, Zc
i ).

4. For eci
i and e

cj

j with a relationship of class b, draw Rb
i,j ∼ P (·|φb, Zci

i , Z
cj

j ).

The basic property of SBC is that: the distributions of the parameters (θc
k

and φb
k,`) are sampled, e.g., the distribution of θc

k can be represented as Gc =∑∞
k=1 πc

kδθc
k
, where δθc

k
is a distribution with a point mass on θc

k. In terms of
this property, SBC can sample objects independently; thus it might be efficient
when a large domain is involved.

3 Inference

The key inferential problem in the IHRM model is computing posterior of unob-
servable variables given the data, i.e. P ({πc, Θc, Zc}c, {Φb}b|D, {αc

0, G
c
0}c, {Gb

0}b).
Unfortunately, the computation of the joint posterior is analytically intractable,
thus we consider approximate inference methods to solve the problem.

3.1 Inference with Gibbs Sampling

Markov chain Monte Carlo (MCMC) sampling has been used to approximate
posterior distribution with a DP mixture prior. In this section, we describe
the efficient blocked Gibbs sampling (GS) with truncated stick breaking rep-
resentation [14] for the IHRM model. The advantage is that given the posterior
distributions, we can independently sample hidden variables in a block, which
highly accelerates the computation. The Markov chain is thus defined not only
on hidden variables, but also on parameters.

Truncated stick breaking construction (TSB) fixes a value Kc for each class
of objects by letting V c

Kc = 1. That means the mixing weights πc
k are equal to 0

for k > Kc (refer to Equ. 1). The number of the clusters is thus reduced to Kc.
Note, that Kc is an additional parameter in the inference method.

At each iteration, we first update the hidden variables conditioned on the
parameters sampled in the last iteration, and then update the parameters con-
ditioned on the hidden variables. In detail:

1. For each class of objects,
(a) Update each hidden variable Z

c(t+1)
i with probability proportional to:

π
c(t)
k P (Ac

i |Zc(t+1)
i = k, Θc(t))

∏

b′

∏

j′
P (Rb′

i,j′ |Zc(t+1)
i = k, Z

cj′ (t)
j′ , Φb′(t)), (2)

where Ac
i and Rb′

i,j′ denotes the known attributes and relationships about

i. cj′ denotes the class of the object j′, Z
cj′ (t)
j′ denotes hidden variable

of j′ at the last iteration t. Intuitively, the equation represents to what
extent the cluster k agrees with the data Dc

i about the object i.
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(b) Update πc(t+1) as follows:
i. Sample v

c(t+1)
k from Beta(λc(t+1)

k,1 , λ
c(t+1)
k,2 ) for k = {1, . . . , Kc − 1}

λ
c(t+1)
k,1 = 1 +

Nc∑
i=1

δk(Z
c(t+1)
i ), λ

c(t+1)
k,2 = αc

0 +

Kc∑

k′=k+1

Nc∑
i=1

δk′(Z
c(t+1)
i ), (3)

and set v
c(t+1)
Kc = 1. δk(Zc(t+1)

i ) equals to 1 if Z
c(t+1)
i = k and 0

otherwise.
ii. Compute πc(t+1) as: π

c(t+1)
k = v

c(t+1)
k

∏k−1
k′=1(1 − v

c(t+1)
k′ ) for k > 1

and π
c(t+1)
1 = v

c(t+1)
1 .

2. Update θ
c(t+1)
k ∼ P (·|Ac, Zc(t+1), Gc

0) and φ
b(t+1)
k,` ∼ P (·|Rb, Z(t+1), Gb

0). The
parameters are drawn from their posterior distributions conditioned on the
sampled hidden states. Again, since we assume conjugated priors as the base
distributions (Gc

0 and Gb
0), the simulation is tractable.

After convergence, we collect the last W samples to make predictions for
the relationships of interest. Note that in blocked Gibbs sampling, the MCMC
sequence is defined by hidden variables and parameters, including Zc(t), πc(t),
Θc(t), and Φb(t). The predictive distribution of a relationship Rb

new,j between a
new object ec

new and a known object e
cj

j is approximated as

P (Rb
new,j |D, {αc

0, G
c
0}C

c=1, {Gb
0}B

b=1)

≈ 1

W

W+w∑
t=w+1

P (Rb
new,j |D, {Zc(t), πc(t), Θc(t)}C

c=1, {Φb(t)}B
b=1)

∝ 1

W

W+w∑
t=w+1

Kc∑

k=1

P (Rb
new,j |φb(t)

k,` ) π
c(t)
k P (Ac

new|θc(t)
k )

∏

b′

∏

j′
P (Rb′

new,j′ |φb′(t)
k,`′ ),

where ` and `′ denote the cluster assignments of the objects j and j′, respectively.
The equation is quite intuitive. The prediction is a weighted sum of predictions
P (Rb

new,j |φb(t)
k,` ) over all clusters. The weight of each cluster is the product of

the last three terms, which represents to what extent this cluster agrees with
the known data (attributes and relationships) about the new object. Since the
blocked method also samples parameters, the computation is straightforward.

3.2 Inference with Variational Approximation

The IHRM model has multiple DPs which interact through relationships, thus
blocked Gibbs sampling is still slow due to the slow exchange of information
between DPs. To solve the problem, we outline an alternative solution by varia-
tional inference method. The main strategy is to convert a probabilistic inference
problem into an optimization problem, and then to solve the problem with the
known optimization techniques. In particular, the method assumes a distribution
q, referred to as a variational distribution, to approximate the true posterior P
as close as possible. The difference between the variational distribution q and
the true posterior P can be measured via Kullback-Leibler (KL) divergence. Let
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ξ denote a set of unknown quantities, and D denote the known data. The KL
divergence between q(ξ) and P (ξ|D) is defined as:

KL(q(ξ)||P (ξ|D)) =
∑

ξ

q(ξ) log q(ξ)−
∑

ξ

q(ξ) log P (ξ|D). (4)

The smaller the divergence, the better is the fit between the true and the ap-
proximate distributions. The probabilistic inference problem (i.e. computing the
posterior) now becomes: to minimize the KL divergence with respect to the
variational distribution. In practice, the minimization of the KL divergence is
formulated as the maximization of the lower bound of the log-likelihood:

log P (D) ≥
∑

ξ

q(ξ) log P (D, ξ)−
∑

ξ

q(ξ) log q(ξ). (5)

A mean-field method was explored in [6] to approximate the posterior of un-
observable quantities in a DP mixture model. The main challenge of using
mean-field inference for the IHRM model is that there are multiple DP mix-
ture models coupled together with relationships and correlation mixture com-
ponents. In the IHRM model, unobservable quantities include Zc, πc, Θc and
Φb. Since mixing weights πc are computed on V c (see Equ. 1), we can replace
πc with V c in the set of unobservable quantities. To approximate the posterior
P ({V c, Θc, Zc}c, {Φb}b|D, {αc

0, G
c
0}c, {Gb

0}b), we define a variational distribution
q({Zc, V c, Θc}C

c=1, {Φb}B
b=1) as:

[
C∏
c

Nc∏
i

q(Zc
i |ηc

i )

Kc∏

k

q(V c
k |λc

k)q(θc
k|τ c

k)

] 


B∏

b

Kci∏

k

K
cj∏

`

q(φb
k,`|ρb

k,`)


 , (6)

where ci and cj denote the object classes involved in the relationship class b.
k and ` denote the cluster indexes for ci and cj . Variational parameters in-
clude {ηc

i , λ
c
k, τ c

k , ρb
k,`}. q(Zc

i |ηc
i ) is a multinomial distribution with parameters

ηc
i . Note, that there is one ηc

i for each object ec
i . q(V c

k |λc
k) is a Beta distribution.

q(θc
k|τ c

k) and q(φb
k,`|ρb

k,`) are respectively with the same forms as Gc
0 and Gb

0.
We substitute Equ. 6 into Equ. 5 and optimize the lower bound with a coor-

dinate ascent algorithm, which generates the following equations to iteratively
update the variational parameters until convergence:

λc
k,1 = 1 +

Nc∑
i=1

ηc
i,k, λc

k,2 = αc
0 +

Nc∑
i=1

Kc∑

k′=k+1

ηc
i,k′ , (7)

τ c
k,1 = βc

1 +

Nc∑
i=1

ηc
i,kT(Ac

i ), τ c
k,2 = βc

2 +

Nc∑
i=1

ηc
i,k, (8)

ρb
k,`,1 = βb

1 +
∑
i,j

ηci
i,kη

cj

j,`T(Rb
i,j), ρb

k,`,2 = βb
2 +

∑
i,j

ηci
i,kη

cj

j,`, (9)

ηc
i,k ∝ exp

(
Eq[log V c

k ] +

k−1∑

k′=1

Eq[log(1− V c
k′)] + Eq[log P (Ac

i |θc
k)]

+
∑

b′

∑
j

∑

`

η
cj

j,`Eq[log P (Rb′
i,j |φb′

k,`)]

)
, (10)
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where λc
k denotes parameters of Beta distribution q(V c

k |λc
k), λc

k is a two-dimensional
vector λc

k = (λc
k,1, λ

c
k,2). τ c

k denotes parameters of the exponential family distri-
bution q(θc

k|τ c
k). We decompose τ c

k such that τ c
k,1 contains the first dim(θc

k) com-
ponents and τ c

k,2 is a scalar. Similarly, βc
1 contain the first dim(θc

k) components
and βc

2 is a scalar. ρb
k,`,1, ρb

k,`,2, βb
1 and βb

2 are defined equivalently. T(Ac
i ) and

T(Rb
i,j) denote the sufficient statistics of the exponential family distributions

P (Ac
i |θc

k) and P (Rb
i,j |φb

k,`), respectively.
It is clear that Equ. 7 and Equ. 8 correspond to the updates for variational

parameters of object class c, and they follow equations in [6]. Equ. 9 represents
the updates of variational parameters for relationships, which is computed on the
involved objects. The most interesting updates are Equ. 10, where the posteriors
of object cluster-assignments are coupled together. These essentially connect the
DPs together. Intuitively, in Equ. 10 the posterior updates for ηc

i,k include a
prior term (first two expectations), the likelihood term about object attributes
(third expectation), and the likelihood terms about relationships (last term). To
calculate the last term we need to sum over all the relationships of the object
ec
iweighted by η

cj

j,` that is variational expectation about cluster-assignment of
the other object involved in the relationship.

Once the procedure reaches stationarity, we obtain the optimized varia-
tional parameters, by which we can approximate the predictive distribution
P (Rb

new,j |D, {αc
0, G

c
0}C

c=1, {Gb
0}B

b=1) of the relationship Rb
new,j between a new

object ec
new and a known object e

cj

j with q(Rb
new,j |D,λ, η, τ, ρ) proportional to:

Kc∑

k

K
cj∑

`

q(Rb
new,j |ρb

k,`)q(Z
cj

j = `|ηcj

j )q(Zc
new = k|λc)

× q(Ac
new|τ c

k)
∏

b′

∏

j′

∑

`′
q(Z

cj′
j′ = `′|ηcj′

j′ )q(Rb′
new,j′ |ρb′

k,`′). (11)

The prediction is a weighted sum of predictions q(Rb
new,j |ρb

k,`) over all clusters.
The weight consists of two parts. One is to what extent the cluster ` agrees with
the object e

cj

j (i.e. the 2nd term), the other is to what extent the cluster k agrees
with the new object (i.e. the product of the last 3 terms). The computations
about the two parts are different. The reason is that e

cj

j is a known object, we
have optimized variational parameters η

cj

j about its cluster assignment.

4 Experimental Analysis

4.1 Monastery Data

The first experiment is performed on the Sampson’s monastery dataset [19] for
community discovery. Sampson surveyed social relationships between 18 monks
in an isolated American monastery. The relationships between monks included
esteem/disesteem, like/dislike, positive influence/negative influence, praise and
blame. Breiger et al. [7] summarized these relationships and yielded a single
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Fig. 3. Left: The matrix displaying interactions between Monks. Middle: A sociogram
for three monks. Right: The IHRM model for the monastery sociogram.

relationship matrix, which reflected interactions between monks, as shown in
Fig. 3 (left).

After observing the monks in the monastery for several months, Sampson pro-
vided a description of the factions among the monks: the loyal opposition (Peter,
Bonaventure, Berthold, Ambrose and Louis), the young turks (John Bosco, Gre-
gory, Mark, Winfrid, Hugh, Boniface and Albert) and the outcasts (Basil, Elias
and Simplicius). The other three monks (Victor, Ramuald and Amand) wavered
between the loyal opposition and the young turks, and were identified as the
fourth group, the waverers. Sampson’s observations were confirmed by the event
that the young turks group resigned after the leaders of the group were expelled
over religious differences. The task of the experiment is to cluster the monks.

Fig. 3 (middle) shows a sociogram with 3 monks. The IHRM model for the
monastery network is illustrated as Fig. 3 (right). There is one hidden variable
for each monk. The relationships between monks are conditioned on the hidden
variables of the involved monks. The mean field method is used for inference.
We initially assume that each monk is in his own cluster. After convergence, the
cluster number is optimized as 4, which is exactly the same as the number of
the groups that Sampson identified. The clustering result is shown as Table 2. It
is quite close to the real groups. Cluster 1 corresponds to the loyal opposition.
Cluster 2 is the young turks, and cluster 3 is the outcasts. The waverers
are split. Amand is assigned to cluster 4, Victor and Ramuald are assigned
to the loyal opposition. Actually, previous research analysis has questioned the
distinction of the waverers, e.g., [7, 12] clustered Victor and Ramuald into the
loyal opposition, which coincides with the result of the IHRM model.

Table 2. Clustering result of the IHRM model on Sampson’s monastery data.

Cluster Members

1 Peter, Bonaventure, Berthold, Ambrose, Louis, Victor, Ramuald
2 John, Gregory, Mark, Winfrid, Hugh, Boniface, Albert
3 Basil, Elias, Simplicius
4 Amand
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Table 3. Link prediction on the Bernard & Killworth data with the IHRM.

Prediction Accuracy (%)
50% 60% 70% 80%

IHRM Pearson IHRM Pearson IHRM Pearson IHRM Pearson

BKFRAT 66.50 61.82 67.63 64.56 68.26 66.91 68.69 67.41

BKOFF 66.21 57.32 67.89 59.45 69.20 60.58 69.82 61.54

BKTEC 65.47 58.85 66.79 62.04 68.31 63.61 69.58 64.46

4.2 Bernard & Killworth Data

Fig. 4. Left: Interaction matrix on the BKOFF data. Right: The predicted one, which
is quite similar with the real situation.

In the second experiment, we perform link analysis with IHRM on the Bernard
& Killworth data [5]. Bernard and Killworth collected several data sets on hu-
man interactions in bounded groups. In each study they obtained measures of
social interactions among all actors, and ranking data based on the subjects’
memory of those interactions. Our experiments are based on three datasets. The
BKFRAT data is about interactions among students living in a fraternity at
a West Virginia college. All subjects had been residents in the fraternity from
three months to three years. The data consists of rankings made by the subjects
of how frequently they interacted with other subjects in the observation week.
The BKOFF data concern interactions in a small business office. Observations
were made as the observer patrolled a fixed route through the office every fifteen
minutes during two four-day periods. The data contains rankings of interaction
frequency as recalled by employees over the two-week period. The BKTEC data
is about interactions in a technical research group at a West Virginia university.
It contains the personal rankings of the remembered frequency of interactions.

In the experiments, we randomly select 50% (60%, 70%, 80%) interactions as
known and predict the left ones. The experiments are repeated 20 times for each
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setting. The average prediction accuracy is reported in Table 3. We compare our
model with the Pearson collaborative filtering method. It shows that the IHRM
model provides better performance on all the three datasets. Fig. 4 illustrates
the link prediction results on the BKOFF dataset with 70% known links. The
predicted interaction matrix is quite similar with the real one.

4.3 MovieLens Data

Fig. 5. Top: A sociogram for movie recommendation system, illustrated with 2 users
and 3 movies. For readability, only two attributes (user’s occupation and movie’s genre)
show in the figure. Bottom: The IHRM model for the sociogram.

We also evaluate the IHRM model on the MovieLens data [21]. There are in
total 943 users and 1680 movies, and we obtain 702 users and 603 movies after
removing low-frequent ones. Each user has about 112 ratings on average. The
model is shown in Fig. 5. There are two classes of objects (users and movies)
and one class of relationships (Like). The task is to predict preferences of users.
The users have attributes Age, Gender, Occupation, and the movies have at-
tributes Published-year, Genres and so on. The relationships have two states,
where R = 1 indicates that the user likes the movie and 0 otherwise. The user
ratings in MovieLens are originally based on a five-star scale, so we transfer each
rating to binary value with R = 1 if the rating is higher than the user’s aver-
age rating, vice versa. The performance of the IHRM model is analyzed from
2 points: prediction accuracy and clustering effect. To evaluate the prediction
performance, we perform 4 sets of experiments which respectively select 5, 10,
15 and 20 ratings for each test user as the known ratings, and predict the re-
maining ratings. These experiments are referred to as given5, given10, given15
and given20 in the following. For testing the relationship is predicted to exist
(i.e., R = 1) if the predictive probability is larger than a threshold ε = 0.5.
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Fig. 6. Left: The traces of the number of user clusters for the runs of two Gibbs
samplers. Middle: The trace of the change of the variational parameter ηu for mean
field method. Right: The sizes of the largest user clusters of the three inference methods.

We implement the following three inference methods: Chinese restaurant pro-
cess Gibbs sampling (CRPGS), truncated stick-breaking Gibbs sampling (TS-
BGS), and the corresponding mean field method TSBMF. The truncation pa-
rameters Ks for TSBGS and TSBMF are initially set to be the number of entities.
For TSBMF we consider α0 = {5, 10, 100, 1000}, and obtain the best prediction
when α0 = 100. For CRPGS and TSBGS α0 is 100. For the variational infer-
ence, the change of variational parameters between two iterations is monitored
to determine the convergence. For the Gibbs samplers, the convergence was an-
alyzed by three measures: Geweke statistic on likelihood, Geweke statistic on
the number of components for each class of objects, and autocorrelation. Fig. 6
(left) shows the trace of the number of user clusters in the 2 Gibbs samplers.
Fig. 6 (middle) illustrates the change of variational parameters ηu in the varia-
tional inference. For CRPGS, the first w = 50 iterations (6942 s) are discarded
as burn-in period, and the last W = 1400 iterations are collected to approxi-
mate the predictive distributions. For TSBGS, we have w = 300 (5078 s) and
W = 1700. Although the number of iterations for the burn-in period is much
less in the CRPGS if compared to the blocked Gibbs sampler, each iteration is
approximately a factor 5 slower. The reason is that CRPGS samples the hidden
variables one by one, which causes two additional time costs. First, the expec-
tations of attribute parameters and relational parameters have to be updated
when sampling each user/movie. Second, the posterior of hidden variables have
to be computed one by one, thus we can not use fast matrix multiplication tech-
niques to accelerate the computation. Therefore if we include the time, which is
required to collect a sufficient number of samples for inference, the CRPGS is
slower by a factor of 5 (the row Time(s) in Table 4 ) than the blocked sampler.
The mean field method is again by a factor around 10 faster than the blocked
Gibbs sampler and thus almost two orders of magnitude faster than the CRPGS.

The prediction results are shown in Table 4. All IHRM inference methods
under consideration achieve comparably good performance; the best results are
achieved by the Gibbs samplers. To verify the performance of the IHRM, we
also implement Pearson-coefficient collaborative filtering (CF) method [18] and
a SVD-based CF method [20]. It is clear that the IHRM outperforms the tra-
ditional CF methods, especially when there are few known ratings for the test
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Table 4. Performance of the IHRM model on MovieLens data.

CRPGS TSBGS TSBMF Pearson SVD

Given5 65.13 65.51 65.26 57.81 63.72
Given10 65.71 66.35 65.83 60.04 63.97
Given15 66.73 67.82 66.54 61.25 64.49
Given20 68.53 68.27 67.63 62.41 65.13
Time(s) 164993 33770 2892 - -
Time/iter. 109 17 19 - -
#C.u 47 59 9 - -
#C.m 77 44 6 - -

users. The main advantage of the IHRM is that it can exploit attribute infor-
mation. If the information is removed, the performance of the IHRM becomes
close to the performance of the SVD approach. For example, after ignoring all
attribute information, the TSBMF generates the predictive results: 64.55% for
Given5, 65.45% for Given10, 65.90% for Given15, and 66.79% for Given20.

The IHRM provides cluster assignments for all objects involved, in our case
for the users and the movies. The rows #C.u and #C.m in Table 4 denote
the number of clusters for users and movies, respectively. The Gibbs samplers
converge to 46-60 clusters for the users and 44-78 clusters for the movies. The
mean field solution have a tendency to converge to a smaller number of clusters,
depending on the value of α0. Further analysis shows that the clustering results
of the methods are actually similar. First, the sizes of most clusters generated
by the Gibbs samplers are very small, e.g., there are 72% (75.47%) user clusters
with less than 5 members in CRPGS (TSBGS). Fig. 6 (right) shows the sizes
of the 20 largest user clusters of the 3 methods. Intuitively, the Gibbs samplers
tend to assign the outliers to new clusters. Second, we compute the rand index
(0-1) of the clustering results of the methods, the values are 0.8071 between
CRPGS and TSBMF, 0.8221 between TSBGS and TSBMF, which demonstrates
the similarity of the clustering results.

Fig. 7 gives the movies with highest posterior probability in the 4 largest
clusters generated from TSBMF. In cluster 1 most movies are very new and
popular (the data set was collected from September 1997 through April 1998).
Also they tend to be action and thriller movies. Cluster 2 includes many old
movies, or movies produced by the non-USA countries. They tend to be drama
movies. Cluster 3 contains many comedies. In cluster 4 most movies include
relatively serious themes. Overall we were quite surprised by the good inter-
pretability of the clusters. Fig. 8 (top) shows the relative frequency coefficient
(RFC) of the attribute Genre in these movie clusters. RFC of a genre s in a
cluster k is calculated as (fk,s − fs)/σs, where fk,s is the frequency of the genre
s in the movie cluster k, fs is mean frequency, and σs is standard deviation of
frequency. The labels for each cluster specify the dominant genres in the cluster.
For example, action and thriller are the two most frequent genres in cluster 1. In
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Fig. 7. The major movie clusters generated by TSBMF on MovieLens data.

general, each cluster involves several genres. It is clear that the movie clusters
are related to, but not just based on, the movie attribute Genre. The clustering
effect depends on both movie attributes and user ratings. Fig. 8 (bottom) shows
RFC of the attribute Occupation in user clusters. Equivalently, the labels for
each user cluster specify the dominant occupations in the cluster.

Note that in the experiments we predicted a relationship attribute R in-
dicating the rating of a user for a movie. The underlying assumption is that
in principle anybody can rate any movie, no matter whether that person has
watched the movie or not. If the latter is important, we could introduce an
additional attribute Exist to specify if a user actually watched the movie. The
relationship R would then only be included in the probabilistic model if the
movie was actually watched by a user.

5 Related Work

The work on infinite relational model (IRM) [15] is similar to the IHRM, and has
been developed independently. One difference is that the IHRM can specify any
reasonable probability distribution for an attribute given its parent, whereas the
IRM would model an attribute as a unary predicate, i.e. would need to transform
the conditional distribution into a logical binary representation. Aukia et al. also
developed a DP mixture model for large networks [4]. The model associates an
infinite-dimensional hidden variable for each link (relationship), and the objects
involved in the link are drawn from a multinomial distribution conditioned on the
hidden variable of the link. The model is applied to the community web data
with promising experimental results. The latent mixed-membership model [1]
can be viewed as a generalization of LDA model on relational data. Although
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Fig. 8. Top: The relative frequency coefficient of the attribute Genre in different movie
clusters, Bottom: that of the attribute Occupation in different user clusters.

it is not nonparametric, the model exploits hidden variables to avoid the ex-
tensive structure learning and provides a principled way to model the relational
networks. The model associates each object with a membership probability-like
vector. For each relationship, cluster assignments of the involved objects are gen-
erated with respect to their membership vectors, and then relationship is drawn
conditioned on the cluster assignments.

There are some other important SRL research works for complex relational
networks. The probabilistic relational model (PRM) with class hierarchies [10]
specializes distinct probabilistic dependency for each subclass, and thus obtains
refined probabilistic models for relational data. A group-topic model is proposed
in [23]. It jointly discovers latent groups in a network as well as latent topics
of events between objects. The latent group model in [16] introduces two latent
variables ci and gi for an object, and ci is conditioned on gi. The object attributes
depends on ci and relations depend on gi of the involved objects. The limitation
is that only relations between members in the same group are considered. These
models demonstrate good performance in certain applications. However, most are
restricted to domains with simple relationships. These models demonstrate good
performance in certain applications. However, most are restricted to domains
with simple relationships.
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6 Extension: Conditional IHRM

We have presented the IHRM model and an empirical analysis of social network
data. As a generative model, the IHRM models both object attributes and re-
lational attributes as random variables conditioned on clusters of objects. If the
goal is to predict relationship attributes, one might expect to obtain improved
prediction performance if one trains a model conditioned on the attributes. As
part of ongoing work we study the extension of the IHRM model to discrimina-
tive learning. A conditional IHRMs directly models the posterior probability of
relations given features derived from attributes of the objects. Fig. 9 illustrates
the conditional IHRM model with a simple sociogram example.

Fig. 9. A conditional IHRM model for a simple sociogram. The main difference from
the IHRM model in Fig. 2 is that attributes G are not indirect influence over relations
R via object clusters Z, but are direct conditions of relations.

The main difference to the IHRM model in Fig. 2 is that relationship at-
tributes are conditioned on both the states of the latent variables and features
derived from attributes. A simple conditional model is based on logistic regression
of the form

log P (Ri,j |Zi = k, Zj = `, F (Gi, Gj)) = σ(〈ωk,`, xi,j〉),

where xi,j = F (Gi, Gj) denotes a vector describing features derived from all
attributes of i and j. ωk,` is a weight vector, which determines how much a
particular attribute contributes to a choice of relation and can implicitly imple-
ment feature selection. Note that there is one weight vector for each cluster pair
(k, `). 〈·, ·〉 denotes an inner product. σ(·) is a real-valued function with any form
σ : R→ R. The joint probability of the conditional model is now written as:

P (R, Z|G) =
∏

i

P (Zi)
∏
i,j

P (Ri,j |Zi, Zj , F (Gi, Gj)), (12)

where P (Zi) is still defined as a stick breaking construction (Equ. 1). The prelim-
inary experiments show promising results, and we will report the further results
in future work.
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7 Conclusions

This paper presents a nonparametric relational model IHRM for social network
modeling and analysis. The IHRM model enables expressive knowledge represen-
tation of social networks and allows for flexible probabilistic inference without
the need for extensive structural learning. The IHRM model can be applied to
community detection, link prediction, and product recommendation. The em-
pirical analysis on social network data showed encouraging results with inter-
pretable clusters and relation prediction. For the future work, we will explore
discriminative relational models for better performance. It will also be interest-
ing to perform analysis on more complex relational structures in social network
systems, such as domains including hierarchical class structures.
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