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Abstract. Trust learning is a crucial aspect of information exchange,
negotiation, and any other kind of social interaction among autonomous
agents in open systems. But most current probabilistic models for com-
putational trust learning lack the ability to take context into account
when trying to predict future behavior of interacting agents. Moreover,
they are not able to transfer knowledge gained in a specific context to
a related context. Humans, by contrast, have proven to be especially
skilled in perceiving traits like trustworthiness in such so-called initial
trust situations. The same restriction applies to most multiagent learn-
ing problems. In complex scenarios most algorithms do not scale well
to large state-spaces and need numerous interactions to learn. We argue
that trust related scenarios are best represented in a system of relations
to capture semantic knowledge. Following recent work on nonparametric
Bayesian models we propose a flexible and context sensitive way to model
and learn multidimensional trust values which is particularly well suited
to establish trust among strangers without prior relationship. To evaluate
our approach we extend a multiagent framework by allowing agents to
break an agreed interaction outcome retrospectively. The results suggest
that the inherent ability to discover clusters and relationships between
clusters that are best supported by the data allows to make predictions
about future behavior of agents especially when initial trust is involved.

Keywords: Trust in Multiagent Systems, Information Agents, Agent Ne-
gotiation, Initial Trust, Relational Learning

1 Introduction

The assessment of trust values is getting increasingly important in distributed in-
formation systems since contemporary developments such as the Semantic Web,
Service Oriented Architecture, Information Markets, Social Software, Pervasive
and Ubiquitous Computing and Grid Computing are targeted mainly at open
and dynamic systems with interacting autonomous entities. Such entities possi-
bly show a highly contingent behavior, and it is often not feasible to implement
effective mechanisms to enforce socially fair behavior as pursued in mechanism



design or preference aggregation. Although computational trust has been fo-
cussed by research in Artificial Intelligence for several years (for an overview
see [1]), current approaches still lack certain features of human trustability as-
sessment which we consider to be of high importance for the computational
determination of trust values in open systems. E.g., recent studies in psychology
[2] have shown that people can robustly draw trait inferences like trustworthi-
ness from the mere facial appearance of unknown people after a split second.
Although seemingly neither the time span nor the available information allow
to make a well-founded judgement, the derived trust (or distrust) provides af-
ter all a foundation for immediate decision making, and a significant reduction
of social complexity especially under time pressure . Whereas the ”quality” of
such so-called initial trust (i.e., trusting someone without having accumulated
enough experiences from relevant past behavior of the trustee) might be limited
in the described scenario, this example shows that humans are able to estimate
the trustability of others using information which are at a first glance unrelated
to the derived expectation. (e.g., the facial appearance, or any contextual in-
formation in general). In contrast, the vast majority of approaches to empirical
trust value learning in Artificial Intelligence lack this ability, as these approaches
strongly rest on well-defined past experiences with the trustee, from which it is
directly concluded that the trustee will behave in the future as he did in the
past, regardless of the concrete context (cf. Section 6 for related work). These
approaches come to their limits in cases where the trustor could not make such
experiences and thus has to rely on “second order” information such as the
context of the respective encounter instead. In order to make such initial trust
computationally feasible, we not only need to relate trust values to a specific
context, but we also need to provide a mechanism in order to take over contex-
tualized trust to a new, possibly somewhat different context.

In particular, the general requirements that we wish to meet are:

Context sensitivity and trust transfer: Contextual information that might
be related to the trust decision to be made needs to be incorporated. This
shall include attributes of the person one needs to trust, attributes of the
external circumstances under which the trust decision is made, and actions
and promises the person has given to seek one’s confidence. Furthermore,
specific trust values gained in a certain context need to be transferrable to
new, unknown "trigger” situations.

Multi-dimensionality: Most trust models assign a single trust value per
agent. This ignores the fact that human trust decisions are made in relation
to a whole spectrum of aspects (e.g., what a person is likely to do, such as
the expected outcome of some information trading, even in the same context.
For instance a certain information supplier agent might be trustworthy in
terms of delivery date, but not in terms of information quality (e.g., preci-
sion, topicality, credibility...). Combining several trust related measures as in
our approach is considerably much more flexible. In contrast, most existing



approaches to trust still relate trust to ”whole persons” only instead of their
contextualized behavior.

At this, we focus on interaction-trust (i.e., (dis-)trust formed by agents during
the course of an interaction regarding their opponents’ behavior) in order to
tailor our model to the specifics of the probably most relevant application field
for empirical trustability assessment.

The remainder of this work is organized as follows: The next two Sections
describes the basic scenario underlying our approach. Section 4 introduces our
model for relational learning of initial trust, and Section 5 explores the general
capabilities of our model with example data. Section 6 presents an application
of initial trust learning in the context of simulated social interaction in order to
provide a concrete evaluation of our approach. Section 7 discusses related work,
and Section 8 outlines future research directions and concludes.

2 Modeling Interactions

Our scenario can be based on one of the most general frameworks for learning
interactions in multiagent systems namely general-sum stochastic games (see
[4]). A stochastic game can be represented as a tuple (A4, C, Ac, R, T)3. A is the
set of agents, C is the set of stage games (sometimes denoted as states), Ac is the
set of actions available to each agent, R is the immediate reward function and
T is a stochastic transition function, specifying the probability of the next stage
game to be played. The topic of multiagent learning (MAL) has become one
of the most fertile grounds for interaction between game theory and Artificial
Intelligence [5].

It is in the nature of trust that we are dealing with incomplete and partially
observable information. We neither assume the knowledge of the reward func-
tion R of the opponent nor their current state C. In fully observable games with
perfect monitoring, incentives to betray can be estimated and trust becomes
irrelevant because agents can be punished effectively [6]. Furthermore trust de-
cisions require general sum games where joined gains can be exploited. Both
zero-sum (e.g., [7]) and common-payoff (e.g., [8]) games are not relevant because
either there are no joint gains or the agents’ interests do not conflict.

Building on that formal setting our goal is to predict trust values O¢ associ-
ated with the expectation of the next actions Ac given agent A and state C. We
neither are trying to learn a strategy or policy nor are we interested in finding
equilibria or proofing convergence. But we make contributions on how to scale
MAL to more complex scenarios as postulated by [9] and show how an opponent
model can be learned efficiently:

Predicting the next action of an opponent is an essential part of any model-
based approaches to MAL [5]. The best-known instance of a model-based ap-
proach is fictitious play [10] where the opponent is assumed to be playing a

3 Our notation differs slightly from the commonly used ones, where A denotes actions
and S states. Our notation should become clear in the next section



stationary strategy. The opponent’s past actions are observed, a mixed strat-
egy is calculated according to the frequency of each action and then the best
response is played, accordingly. This technique does not scale well to a large
state-space |C| as we experienced in our second experiment (Section 6): The
same stage game is on average not observed before 400 interactions. Thus, this
kind of naive approach does not allow to make an informed decision before 400
interactions and is obviously not suited for initial trust scenarios.

In our approach we make use of two techniques to face this issue. First,
we allow to model any context related to the next trust-decision in a rich re-
lational representation. This includes non-binding arrangements among agents
also known as “cheap talk” [6] which take place before the actual interaction O¢
is carried out and which are denoted as OP. Second, we make use of techniques
from the mature field of Transfer Learning [11] to reuse knowledge from previ-
ous interactions for potentially unknown future actions by inherently clustering
states and agents with latent variables. This can be seen as a first step towards
an automated detection of different agent types as pursued by the “prescriptive,
non-cooperative agenda” postulated in [5].

3 Modeling Interaction-Trust

The basic precondition for the emergence of trust are entities and social inter-
actions between those entities. Hence, we chose a scenario that is interaction-
centered as seen from the perspective of one agent who needs to trust (trustor)
in someone/something (trustee). As usual in agent trust scenarios, (dis-)trust
is related to the expected occurrence of some promised outcome (e.g., the com-
munication of correct and precise information as negotiated before with some
information trading agent, or the delivery of some other kind of product at the
agreed price). The basic interaction-trust scenario then consists of:

1. A set of agents A (trustees) that are willing to interact with the trustor,
each characterized by a set of observable attributes Att4. An agent can be
considered as a person or more general any instance that can be trusted, like
an information source, a company, a brand, or an authority.

2. A set of external conditions or state C' with corresponding attributes AttC.
An apparent condition would be the type of service provided by the trustee,
for instance a specific merchandize or an information supply in case of infor-
mation trading agents. Moreover this implies all external facts comprising
this particular state like the trustor’s own resources or the current market
value of the merchandize in question.

3. A relation interacts(a, c) with a set of relationship attributes Att® captur-
ing all negotiable interaction issues depending on a specific agent a € A
and specific conditions ¢ € C. In general those attributes can be directly
manipulated by the interacting agents and separated into two different sets:
(a) Promised outcome OP: Attributes Att?" of this set are (in general) ob-

servable before the trust-act is carried out.



A typical attribute of this category is for example the price for the mer-
chandize or the scope of the services offered, such as the amount and
precision of information in case of a negotiation among agents regarding
the delivery of information. A promised outcome oP € OP is an assign-
ment of values to the corresponding attribute vector Att?”, which can be
negotiated by the trustor and trustee. In game theory this kind of non-
binding negotiations among agents before the actual interaction takes
place is known as “cheap talk” [6].

(b) Effective outcome O°: The set of attributes Att?" are not observable until
the trust-act has been carried out. Those attributes act as a feedback
or judgment for the trustee in respect to his expectations. Att°" can be
thought of as quality aspects of the merchandize, like the delivery time.
From a decision theoretic point of view those attributes are the objectives
or interests of the trustor and need to be optimized in a multi-criteria
optimization problem. From a MAL perspective Att©° depends on the
actions Ac carried out by the opponent.

This way of modeling interaction-trust scenarios allows us to capture almost

any context relevant for trust-based decision making.

Our goal is to learn the value function o — 0° that allows to predict 0o® from
a given oP offered by agent a under external conditions c. Moreover, it might be
possible to calculate the utility of the trustor for a given o¢. Hence, the ultimate
objective is to find the utility function o? — [0,1]. If this function is known
the trustor knows what assignment to OP he should try to achieve (e.g., in a
negotiation) to maximize its payoff / reward.

4 Infinite Relational Trust Model

Relational models are an obvious formalization of requirements arising from
the relational nature of social interactions. As a start exploiting the structural
information allows for a more condensed representation compared to a “flat”
vector-based attribute-value representations. By transforming the data into a
flat representation, also known as propositionalization, the same redundant in-
formation needs to be added for each reoccurring entity instance.

Thus, based on nonparametric probabilistic relational models as recently
proposed by [12] or [13] our Infinite Relational Trust Model (IRTM) intuitively
follows from the interaction-trust scenario.

Entity and relationship classes are the two basic building blocks of such a
model. In our scenario agents A and conditions C' are both modeled as entities
with a corresponding relation interacts(A4,C). As a visual representation we
make use of the DAPER model (cf. [14]). Figure 1 illustrates the DAPER model
for the interaction-trust scenario. Entity classes A and C are depicted as rect-
angles and the relationship class as a rhombus. Actual evidence Att is modeled
as attribute classes of entities and relationships (oval). Local distribution classes
denoting the parameters and hyperparameters of the probability distributions
are shown in small gray circles.
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Fig. 1. Infinite Relational Trust Model

The most distinctive feature of the IRTM are the hidden variables Z (circles).
They provide clustering capabilities of entities with a potentially infinite num-
ber of clusters. Assuming for every entity class one hidden variable our IRTM
contains Z4 and Z¢ with r® and ¢ clusters, respectively.

4.1 Sampling and Inference

Given the IRTM the essential goal is to infer the conditional distribution
P(Z4, ZC| Att?, AttC | Att©)

of cluster assignments Z given evidence about attributes Att (including re-
lationship attributes). This posterior distribution can be formed from the gen-
erative model by

P(zZ, Att) = [ P(Att|2) [] P(2)

The prior on cluster assignments 74 and 7 is a Dirichlet distribution with
hyperparameters «, where sampling can be induced by a Chinese Restaurant
Process: Z|ag ~ CRP(ayp). By the use of the Chinese Restaurant Process the
number of clusters can be determined in an unsupervised fashion. Entities are
assigned to (potentially new) clusters corresponding to the size of the existing
clusters. Entity attributes Att* and Att¢ are samples from multinomial distribu-
tions with parameters 84, 0¢ ~ Gy = Dir(-|3) and are generated for each cluster



in Z4 and Z¢. The same applies for the relationship attributes Att® which can
be induced by a multinomial distribution with parameters vy ~ GOO . However, ~
needs to be generated for every combination of entity attribute clusters, resulting
in r® X r¢ parameter vectors.

Now inference can be carried out based on Gibbs sampling by estimating
P(Z|Att) x P(Att|Z)P(Z). For instance the probability of agent i being as-
signed to cluster k% is proportional to P(Z4 = k4|Z4,Z¢,04,7°" 4°")
NkAP(Att,‘LA|9i?A,"}/1?:1*,’}/]?:’*) where Npa is the number of agents already as-
signed to cluster k“. Finally, standard statistical parameter estimation tech-
niques can be used for estimating 7,?: kC from given cluster assignments.

The parameters ag and 3 affect the number of clusters and the certainty
of priors and can be tuned. However, we experienced that results were quite
robust without extensive tuning. Moreover our experiments are rather targeted
at feasibility than absolute performance so we fixed ag = 10 and 8 = 20 in all
our experiments.

For a detailed description of the algorithm we refer to [12]. We extended the
algorithm, as just described, to enable the handling of more than one relationship
attribute. Using an arbitrary number of relationships is essential to enable a rich
representation of the interaction context and multidimensional trust values.

4.2 TImplications

The ultimate goal of the IRTM is to group entities into clusters Z. A good set of
partitions allows to predict the value of attributes Att©” by their mere cluster
assignments. Hereby, our model assumes that each entity belongs to exactly one
cluster. It simultaneously discovers clusters and the relationships in-between
clusters that are best supported by the data, ignoring irrelevant attributes.

Although the value of attributes is determined entirely by the cluster as-
signment of associated entities, there is no need for direct dependencies between
attributes or extensive structural learning. The clustering is influenced by all
attributes and clusterings of related entities. This way information can prop-
agate through the whole network while the infinite hidden variables Z act as
“hubs”. As shown in [12] this allows for a collaborative filtering effect. Cross-
attribute and cross-entity dependencies can be learned which is not possible
with a “flat” propositional approach that assumes independent and identical
distributed (i.i.d.) data.

At the same time the number of clusters needs not to be fixed in advance.
Thus, it can be guaranteed that the representational power is unrestricted.

5 Experiment 1: Synthetic Data

To explore the learning and modeling capabilities of our IRTM we generated
synthetic data and evaluated its ability to find clusters in this data. For this
purpose we constructed an interaction-trust scenario with the fixed number of
2 entity attributes per entity and 2 relationship attributes, one for OP and one
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Fig. 2. Results on experiment 1: Synthetic data, setup 1 and 2. Top row graphs show
the classification error metric (CE), subjacent graphs show the related accuracy (AC).

for O°. The number of entities |A| and |C| was prespecified but varied in dif-
ferent runs, as well as the underlying clustersize r® and r¢ for Z* and Z¢. Each
entity was randomly assigned to a cluster and its attributes were sampled from
a multinomial distribution with 4 possible outcomes and parameter vector 6
each. # in turn, was once randomly generated for each cluster. Accordingly,
r% x r¢ Bernoulli-parameters v for relationship attribute att®” and att©” were
constructed.

In Figure 2 and 3 two different error metrics measuring the performance
of IRTM averaged over 10 runs are shown. The top row graphs visualize the
classification error metric (CE) for clusterings while the bottom row depicts
the accuracy (AC) of classifying att®” correctly. Both are supplemented by a
95% confidence interval. CE reflects the correspondences between the estimated
cluster labels and the underlying cluster labels measuring the difference of both
(cf. [15]). A value of 0 relates to an exact match, 1 to maximum difference. In this
experiment AC is a binary classification task and denotes the ratio of classifying
att®” correctly. Results are averaged over both hidden variables Z* and Z°¢.

5.1 Evaluation

We considered three different experimental setups:



1. We analyzed the performance for different numbers of entities with fixed
cluster sizes r* = r¢ = 4. The performance shown in Figure 2-1 expectedly
suffers for small numbers of entities |A| = |C| < 20. Nonetheless, this result
suggests that the IRTM is quite robust even with few training samples. This
makes it especially interesting for initial trust problems as discussed in the
next Section.

2. Correctly recovering different cluster sizes r* and r¢ while the number of
entities was fixed to |A| = |C|] = 50 was the goal of setup 2. In Figure 2-2
we see that the IRTM underestimates the cluster sizes if r* = r¢ > 16. This
suggests that the number of combinations in such a simple scenario is not
enough and entities from different clusters tend to become alike. Still, the
AC is almost perfect. Besides that the number of entites per cluster (|A|/r®
and |C|/r€, respectively) gets so small that not all clusters are represented
in the training set.

3. Finally, missing and noisy data sets were used in two different ways for
training:

(a) Half of the relationship attribute O° data was omitted while missing
values for OP was varied. The variance of all measures in figure 3-3a
increases with the increase of missing values. Still, the AC is good al-
though cluster correspondences deviate. This clearly shows that depen-
dencies across relationship-attributes have a significant effect on the per-
formance and can be exploited by IRTM. As mentioned before, standard
techniques working with a “flat” vector-based attribute-value represen-
tations cannot use such information. In contrast IRTM can propagate
information through the network.

(b) First, evidence for O° was partially omitted. The AC in Figure 3-3b
expectedly drops because less training samples of the effective outcome
that is to be predicted are available. Still, clustering abilities are hardly
affected because other attributes can replace the missing information .

(¢) Second, in order to measure the influence of the entity attributes we
added noise to Att4 and Att®. With the used parameter settings IRTM
did obviously (see Figure 3-3¢) not suffer in predicting AC. However the
ability to infer the correct clusters was slightly hindered.

6 Experiment 2: Negotiation Data

Finding an agreement amongst a group of conflicting interests is one of the core
issues of distributed Artificial Intelligence. For instance auctions, information
markets, preference aggregation and judgement aggregation, game theory and
automated negotiations are all research areas that deal with those kind of prob-
lems. However most of the approaches neglect the fact that finding the best
agreeable solution is not sufficient if the execution of the negotiated outcome
can not be enforced by the interaction mechanism. Especially in open systems
where agents can enter and leave or change their identity at will, initial trust
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Fig. 3. Results on experiment 1: Synthetic data, setup 3a-c. Top row graphs show the
classification error metric (CE), subjacent graphs show the related accuracy (AC).

plays an important role in this regard. The purpose of the IRTM is to make pre-
dictions about Att°" which can be utilized by the agent to adjust its negotiation
strategy or trading decisions.

In order to investigate this issue we extended the implementation of a multia-
gent negotiation framework by an additional trading step. As defined before, let
OP be the promised outcome the agents are negotiating over (e.g., the punctual
delivery of information some information agents requested or offered to supply,
respectively). This outcome is without loss of generality specified by a set of dis-
crete attributes Att©”. Now given an assignment of values OP that two agents
have agreed on and promised to fulfill the agents enter an additional trading
step where each of them is free to change the assignments of values related to
their commitments. Doing so, the agent can decide whether to stick to a bargain
or break it at will. One interaction round in this negotiation framework consists
of three phases:

1. Negotiation: A strategy that calculates a possible outcome OP both parties
can agree on (e.g., an exchange of goods).

2. Trading: The decision made by every agent whether to stick to a bargain
or break it (possibly only partially). The outcomes regarding the agent’s
obligations are executed according to the agent’s decision.
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3. Evaluation: The agents can review the effective actions Att©" of the opponent
by observing the received goods and draw conclusions for future interactions

This procedure is repeated over a specified number of rounds with different
types of agents.

6.1 Evaluation

Four different agent types were used as opponents in the negotiation game. Every
round the negotiation outcome OP and the effective outcome O° was recorded.
To keep it simple, all agent types follow the same static negotiation strategy but
each one acts differently in the trading phase. The agent denoted Greedy always
maximizes its utility regardless of OP. Sneaky-agent only deviates from OP if
it increases its utility by a large margin, while Honest-agent always sticks to
OP. Finally, the agent named Unstable deviates only slightly from OP (by giving
away +/-1 amount) if its utility is increased hereby.

As the negotiation strategies were the same for all agent types the negotiation
outcome was modeled as attributes of C' and not of OP. Furthermore no specific
attributes for A were available except for its identity. Besides the raw negotiation
outcome and the state of the own resources, features describing the risk of losing
utility and the chance of gaining utility were extracted and added to AttC. Att©”
was set to be the binary classification task whether the utility would increase
less than negotiated or not. This way about 120 interactions were carried out per
agent type containing a total of 165 different negotiation outcomes alltogether.
1/3 of the data was randomly withhold and used for testing. Again, all results
are averaged over 10 runs.

The predictive performance was measured by calculating the area under the
ROC curve (AUC). We compare the results of IRTM to two content based ap-
proaches, namely a support vector machine (SVM) using a PolyKernel and a
Decision Tree (DecTree, ID3). The SVM and DecTree got an additional input
by assigning each agent in A an unique ID number. This way the relational
model did not have more information than a “flat” model. We also evaluated
the clustering abilities by plotting the most frequent assignment of cluster by
the IRTM.

In the top left of Figure 4 one can see that in the end the four agent types
(rows) were clustered into three groups in Z4 (columns). Interestingly, the as-
signment of Sneaky- and Honest-agent to the same cluster suggests that it is a
good strategy to act reliable and provide confidence most of the time in order
to convince an opponent of the own trustworthiness. But if it is clear that the
gain is really worth it one should betray the opponent’s trust.

The rectangles in the lower left corner of Figure 4 visualize P(0°|Z4, Z°).
From the 165 different negotiation outcomes and external conditions 8 clusters
emerged in Z¢. Each row indicates one condition-cluster ZZ-C , each column an
agent-cluster ZiA. Thus, each element stands for P(O¢) given the cluster assign-
ments. Brighter rectangles indicate a lower probability for a utility increase as
negotiated. As expected the first column (Greedy-agent cluster) is on average
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Fig. 4. Results on experiment 2: Negotiation data. Top left shows final clustering of
agent types. Bottom left visualizes P(O°) for each pair of clusters (the darker the more
probable). Bar graph shows AUC for classifying P(O°).

brighter than the third column (Unstable-agent cluster) which in turn is brighter
than the middle column (Sneaky- and Honest-agent).

The overall performance, shown in the bar graph on the right of Figure 4,
demonstrates that IRTM has a slightly better performance in classifying P(O¢)
than the SVM and the DecTree.

The inherent clustering of the IRTM suggests that it is especially well suited
for initial trust situation when unknown but related agents and conditions are
observed. Actually, entities can be correctly assigned to a cluster without having
seen a single effective outcome related to this entity just by their attributes. To
check this assumption we gathered data from interactions with another Unstable
type agent and evaluated the performance for different numbers of training sam-
ples. In the top graph of Figure 5 the AUC is plotted for different numbers of
training samples. Especially for a small sample size < 10 the performance of
IRTM is clearly better than those of the content based approach.

7 Related Work

As already pointed out, connecting trust to the trusted agent alone without con-
sidering contextual and different aspects (dimensions) of trust is not sufficient
in many scenarios. Whereas much research on trust concede the importance of
context information, most of them do not actually use such information for the
calculation of trust degrees in a general and automatic way [16]. To our knowl-
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Fig. 5. Results on experiment 2: Negotiation data. Graph shows AUC for different
number of samples in an initial trust setup.

edge using contextual information for initial trust assessment and the transfer
of trust between contexts is completely new.

Regarding its dimensionality, most work represent trust as a single discrete or
continuous variable associated with one specific agent. Modeling trust in multiple
dimensions is only considered by a few elaborate approaches such as [17]. We
leave it to the actual scenario how trust needs to be modeled in this respect.
In principle, IRTM can handle an arbitrary number of trust variables, each
associated with one aspect of the trustor’s expectations and represented with
any probability distribution needed.

Analogously, we argue that a fine grained modeling of relations between
agents and their environment is essential to capture the essence of trust, es-
pecially in initial trust situations. There exist a few approaches that can take
relationships into account when modeling trust. But in most of this research such
relationships are either only considered as reputation or recommendations [18§],
or as interactions between a group of agents (e.g., [19]). The manifold different
kinds of relations that exist between two agents in a specific situational context
are not modeled in detail. In addition, most learning techniques are “improvised”
for one specific scenario only.

As just mentioned a main focus of research in trust learning is gathering
evidence indirectly via third parties in the form of reputation and recommenda-
tions (e.g., [20], [21]). Even though we didn’t give any details in this paper how
to model such relationships between, IRTM is assumably well suitable for this
task since relations are the essence of Probabilistic Relational Models.

Assessing initial trust values for unknown agents based on pre-specified mem-
bership to a certain group has been addressed by [22]. A group-based reputation
architecture is proposed here where new agents are assessed according to their
pre-specified membership to a certain group of agents. Likewise, the TRAVOS-
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C system proposed by [16] includes rudimentary ideas from hierarchical Bayes
modeling by assigning parameter distributions to groups of agents but doesn’t
come to the point to give a fully automated and intuitive way of how to build
clusters. However, we refer to work from the mature field of Transfer Learning
[11] in this regard.

8 Conclusions and Future Work

In this work, we presented an Infinite Relational Trust Model (IRTM) for interaction-
trust and have shown how interactions can be modeled and learned in theory
and in two experimental setups. We believe that our model will be especially use-

ful for trust learning in initial trust situations, where the trustor interacts with
other agents without having recorded sufficiently enough relevant past experi-
ences in order to judge trustability using traditional methods. E.g., this would
typically be the case in short-lived communities of practice, where information
agents gather in a kind of ad-hoc manner in order to exchange knowledge, or

in open information markets, where mutually more or less unknown information
sellers and buyers interact with each other.

IRTM is more powerful and flexible in representing intial trust and fine
grained contextual relations, adding a new level of semantics to trust learning.
The experimental results suggest that IRTM shows a performance comparable
to a “flat” feature-based machine learning approach if trained with independent
and identical distributes (i.i.d.) data. We expect to see superior performance of
IRTM if no i.i.d. assumption is made and cross-attribute and cross-entity depen-
dencies can be exploited. However, our second experiment shows that in initial
trust situations the IRTM can outperform a traditional feature-based approach
even if the i.i.d. assumption is made. Besides that, IRTM can handle missing at-
tribute values and enables a clustering analysis which is not possible in existing
feature-based trust learning approaches.

Furthermore the experiments deliver preliminary insights into the effect of
different strategies on trustworthiness in negotiations. We plan on continuing our
work in this direction. Furthermore we intend to address issues like reputation
and recommendations which should naturally fit in our relational model.
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