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Abstract

The paper is concerned with relation predic-
tion in multi-relational domains using ma-
trix factorization. While most past predic-
tive models focussed on one single relation
type between two entity types, in the paper
a generalized model is presented that is able
to deal with an arbitrary number of relation
types and entity types in a domain of inter-
est. The novel multi-relational matrix fac-
torization is domain independent and highly
scalable. We validate the performance of our
approach using two real-world data sets, i.e.
user-movie recommendations and gene func-
tion prediction.

1. Introduction

In recent years there has been an enormous increase
in interest in the analysis of multi-relational data that
contain several entity types and multiple relations. As
an example consider social networks, such as Facebook
where users tag other users as their friends and take
part in various kinds of events. There are also various
applications in other science fields as e.g. bioinformat-
ics.

The paper aims at relation prediction based on a set
of relation types. In this paper we consider rela-
tion types1 that can be represented in matrix form

1In this paper an entity is an instance of an entity type
and a relation is an instance of a relation type.

NIPS 2008 workshop on ”Structured Input, Structured
Output” (SISO 2008)

R ∈ Rn×m, where (R)ij either stands for the exis-
tence of a relation ((R)ij ∈ {0, 1}) or for some at-
tribute associated with a relation ((R)ij ∈ R). Ma-
trix factorizations such as Singular Value Decomposi-
tion (SVD) have often been applied to relation predic-
tion. Traditionally, SVD based approaches complete
the original matrix by multiplying the two decom-
posed matrices U ∈ Rn×k and V ∈ Rm×k, denoted
by R ≈ X = UVT , where k is the rank maximum
of X. For example in the topic modeling approach
pLSI (Hofmann, 1999) (R)ij stands for the frequency
of word i in document j. PLSI then produces nonzero
values for words not occuring in the document. The
conventional approach would be to supplement a de-
fault value (e.g., zero) for missing entries. This is prob-
lematic for two reasons. First, the approach cannot
distinguish between a zero rating and a missing rat-
ing. Second, the computational cost of the SVD scales
cubic in the number of elements. Low-norm factoriza-
tion such as the one described by (Takacs et al., 2007)
specifies a matrix decomposition approach only based
on known ratings. By doing this, improved scalabil-
ity towards hundreds of millions observed entries was
achieved.

We extend low-norm matrix factorization to multi-
relational domains. The goal is to improve the per-
formance of relation prediction by simultaneously uti-
lizing all relation types in a domain of interest. Our
multi-relational matrix factorization is able to deal
with any number of entity types and relation types.
The experiments described in the paper focus on two
large scale multi-relational domains and demonstrate
that the proposed approach is capable to significantly
improve the accuracy of relation prediction while be-
ing well scalable. We use the approach to analyze the
MovieLens data set, consisting of user-movie ratings,
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and to perform gene function prediction in yeast.

2. Related Work

The maximum margin matrix factorization (MMMF)
introduced by (Srebro et al., 2004) is a matrix fac-
torization approach based only on the known matrix
entries. Instead of a low-rank constraint the model ap-
plies a constraint on the Frobenius norm leading to a
convex optimization problem which can be formulated
as a semi-definite program (SDP). Unfortunately the
MMMF model can only handle up to a few hundred
entities. A way to make the model scalable is to mini-
mize the objective by using gradient descent methods.
In (Rennie & Srebro, 2005) the Polak-Ribière variant
of Conjugate Gradients was utilized yielding matrix
completion on the EachMovie data set with 2.6 mil-
lion ratings and on the MovieLens data set containing
1 million ratings. In (Takacs et al., 2007), one of the
leading approaches in the Netflix Prize2, a simple gra-
dient descent method was applied by cycling over non-
zero values and iteratively updating U and V until a
convergence criterium is met.

(Cohn & Hofmann, 2001) have presented a specific
joint probabilistic model which attempts to explain
both the content and the link structure of documents.
(Yu et al., 2005) have proposed a supervised extension
of LSI exploiting both the entity features and multi-
ple (category) labels and applied the model to multi-
label text classification. These models, however, are
limited to handle two relation types. Recently some
unsupervised approaches have been proposed to deal
with graph clustering problems on multi-relational do-
mains (Long et al., 2006b; Long et al., 2006a). (Singh
& Gordon, 2008) have proposed a collective matrix fac-
torization based on minimizing Bregman divergences
between the model and the involved relation matrices.

3. Multi-Relational Matrix
Factorization

Established matrix factorization models focused on a
single relation type connecting two entity types. How-
ever, in many real world applications, a set of entity
types are connected by multiple relation types which
could be strongly correlated to each other. This pa-
per proposes a novel approach called multi-relational
matrix factorization (MRMF) which can handle an ar-
bitrary number of entity types and relation types in a
given domain and exploits multiple relation types si-
multaneously. Before presenting the approach some
concepts and notions are defined.

2http://www.netflixprize.com/

Assume that there are N entity types {E1,. . .,EN} and
M (binary) relation types {R1,. . .,RM} in a domain
of interest. An entity type E consists of the indices
of n entities, while Rf = {(Eaf

; Ebf
)} denotes the

set of all observed relations of the f -th relation type,
where Eaf

and Ebf
are the involved entity types with

af , bf ∈ {1,. . .,N}. E ∈ Rn×k stands for the entity
factor matrix of E , where k > 0 is the number of the
most informative factors. The relation values (zeros
and non-zeros) of the f -th relation type are formed
by a matrix Rf which is reconstructed via multiplying
the corresponding entity factor matrices Eaf

and Ebf
,

denoted by Rf ≈ Eaf
ET

bf
. Here we do not distinguish

the factor and the loading matrix. Each entity type is
considered as one real valued factor matrix, as it can
be involved in reconstruction of multiple relation ma-
trices. Note that in case of af = bf the relation type
Rf is reflexive.

3.1. The Novel Approach

The factor matrices are trained by minimizing the fol-
lowing objective:

J = λ

N∑
i=1

‖Ei‖2F +
M∑

f=1

∑
(i,j)∈Rf

(
(Rf )ij − eaf ieT

bf j

)2

(1)
where λ ∈ R+ is a parameter making a tradeoff be-
tween the squared approximation error and the Frobe-
nius norm of the model. M refers to the number of
relation types. The objective is solved by gradient de-
scent algorithm following the idea in (Takacs et al.,
2007). The algorithm iteratively cycles over all rela-
tion matrices and updates the entity factor matrices.

∂Jij

∂eaf i
= λeaf i − 2((Rf )ij − eaf ieT

bf j)ebf j (2)

e(t)
af i = e(t−1)

af i − µ ∂Jij

∂e(t−1)
af i

(3)

where µ ∈ R+ is the learning rate. Algorithm 1 shows
the training process of the MRMF model as we have
implemented it. It is important to note that Equation
(1) is not the sum of independent terms as a factor
matrix typically appears in several terms. Instead, in
each iteration, every factor matrix is updated with re-
spect to all relation types it involves until a common
convergence is met as stated in Algorithm 1.

By optimizing a joint objective over all relation types
the model reflects correlations between the relation
types in a domain of interest. Intuitively MRMF finds
the k most informative factors for each entity type that
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have to fit all involved relation types. It prevents the
model from over-fitting one relation type if this con-
tradicted to other relation types in which the same
entity types take part. Thus, by jointly decomposing
all relation matrices as stated above the individual fac-
tor matrices regularize each other. This way our new
method achieves a better generalization of prediction
on unobserved relations and improves the prediction
performance. Matrix completion is achieved by multi-
plying the two involved entity factor matrices.

Algorithm 1 MRMF Training
Require: entity types {E1, . . . , EN};

relation types {R1, . . . ,RM} 3 Rf = {(Eaf
; Ebf

)};
k ∈ N; µ ∈ R+; λ ∈ R+; ∆min ∈ R+

1: for all Ei ∈ {E1, . . . , EN} do
2: Ei ← random|Ei|×k

3: end for
4: repeat
5: for all Rf do
6: for all (i, j) ∈ Rf do
7: Calculate the gradients of the residual error

for Eaf
and Ebf

as stated in Equation (2).
8: Update Eaf

and Ebf
as stated in equation

(3).
9: end for

10: end for
11: until J (t−1) − J (t) < ∆min

The time complexity of the approach is O(k ∗∑M
f=1 |Rf |) per iteration, where k is the rank maxi-

mum of the entity type matrices and | · | denotes the
number of the observed relations of each relation type.

4. Experiments

4.1. Movie Rating Prediction

Preference learning is a common task in machine learn-
ing where users give ratings for items. For this prob-
lem setting, matrix factorizations like the one stated
in (Takacs et al., 2007) belong to the current state of
the art. The advantage of our MRMF approach is that
attribute information of users and items can be easily
incorporated, which is difficult or impossible for state-
of-the-art matrix decomposition approaches. In the
experiment we used the MovieLens data set that con-
tains 1,000,209 movie-ratings for 3,900 movies made by
6,040 users. The ratings range from one (worst) to five
(best). The data set also contains information about
the gender, age and occupation of the users. Addition-
ally, the movies are categorized into twenty different
genres. Figure 1 (a) shows the entity classes users and
movies as well as their feature entities. The challenge

(a)

user movie

gender age occupation

rates

has hashas has

genre

(b)

genefunction has

has at has in

motif complexlocation phenotype

interacts

Figure 1. ER-diagrams showing (a) the MovieLens data
and (b) an extract of the relations contained in the yeast
gene data

RMSE MAE
MRMF 0.8381± 0.0012 0.6541± 0.0014
MF 0.8401± 0.0013 0.6583± 0.0015

Table 1. 10 fold RMSE and MAE values and 95% confi-
dence intervals for MovieLens for MRMF and MF

is the high sparsity of the rating matrix that is filled
for about 4.2%. For validation purposes 10-fold cross
validation over known ratings was applied. We com-
pared the MF method re-implemented as proposed by
(Takacs et al., 2007) and the MRMF. MRMF mod-
els were trained with parameters k = 100, λ = 0.06
and µ = 0.005. The parameters of the MF method
were thoroughly tuned to get meaningful results and
are close to the parameters used for the MRMF. The
RMSE values for the MRMF and MF are shown in Ta-
ble 1. We proved the significance of the improvement
using a paired t-test with α = 5%.

4.2. Gene Function Prediction

S. cerevisiae, the baker’s yeast, has a genome of 6.275
predicted genes. The data set used in this paper is
the version dated March 2007 of the Comprehensive
Yeast Genome Database.3 It gives a lot of relational
information. Function denotes the functional role of
the encoded protein in the organism. The annotations
follow the FunCat annotation scheme. The FunCat
categories are organized in a hierarchical structure. In
the data 17 different FunCat terms are annotated on
the most general level. Overall there are 506 terms
annotated in yeast. The entity types are gene, func-
tion, disruption, chromosome, type, phenotype, motif,
protein class, subcellular location, classification and
complex. The entities are connected by relations as

3http://mips.gsf.de/genre/proj/yeast/
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(a) (b)

Figure 2. Gene function prediction in yeast; ROC curve
comparison of MRMF (solid blue line), MF (dotted red
line) and SVM (large green point) with 95% confidence
intervals for 17 FunCat terms on the top level (a) and for
all 506 FunCat terms (b); the experiments follow the 5
repeats all-but-one sampling scheme described in the text.

shown Figure 1 (b) in a simplified manner. Because
of the logical constraints implied by the hierarchical
nature of the FunCat labels we adapted an all-but-
one sampling. One of the 17 most general functions
including its whole appended subtree was randomly
removed from each gene and used in the test set. This
sampling process was repeated five times. The MRMF
was tested against the MF used above and SVM. For
the latter we propositionalized the data to build a fea-
ture vector for each gene. Then a separate SVM was
trained for each function. We experimented with a
number of kernels (Gaussian, polynomial, linear) and
found that the linear kernel was the most effective.
Figures 2 (a) and (b) show ROC curves. The MRMF
models used for gene function prediction were trained
with parameters k = 100, λ = 0.01 and µ = 0.005.
The results for both experiments are presented in Ta-
ble 2. For MRMF and MF F1-measure and accuracy
were obtained by introducing a threshold on the out-
put values. As can be seen in Table 2 the MRMF
is comparable to the SVM in terms of accuracy. Be-
cause of the imbalance of the data F1, a combination
of precision and recall, should give a better idea of the
performance. MRMF significantly outperformes both
the MF and the SVM in terms of F1. The ROC curves
of the MRMF and the MF in Figures 2 (a) and (b) are
clearly separated which is also reflected by the area
under curve. Interestingly, the MF gives quite com-
petitive results even though it does not rely on any
feature information at all. This shows that there are
strong correlations between the functions of genes.

5. Conclusion

In this paper, a novel multi-relational learning method
is introduced. The MRMF extends matrix factoriza-
tion to multi-relational domains by stating an opti-

# F1 Acc. AUC
MRMF 63.1± 1.1 85.7± 0.5 88.0± 0.7
MF 17 55.8± 1.6 79.7± 0.8 83.9± 1.1
SVM 56.7± 2.1 85.9± 0.8 —
MRMF 53.6± 1.8 98.3± 0.1 93.65± 0.5
MF 506 45.6± 1.5 97.6± 0.1 89.2± 0.5
SVM 46.4± 3.0 98.0± 0.1 —

Table 2. Results and 95% confidence intervals for gene
function prediction in yeast, 5 repeats all-but-one. All val-
ues are in %.

mization criterion over all relation matrices. By using
gradient descent to solve the MRMF optimization cri-
terion, our solution stays well scalable with the number
of updates per iteration being linear in the number of
observed relations times the rank k. The experiments
clearly show a performance gain over single relational
matrix factorization. We showed that using multiple
relations helps improve the performance of recommen-
dation systems based on matrix factorization. When
doing gene function prediction, MRMF outperforms
the propositional SVM by exploiting correlations be-
tween the observed values in the target relation.
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