
Relational Models

Volker Tresp and Maximilian Nickel
Siemens AG and Ludwig Maximilian University of Munich

Draft
To appear in the

Encyclopedia of Social Network Analysis and Mining, Springer.

September 18, 2013

1 Synonyms

Relational learning, statistical relational models, statistical relational learning,
relational data mining

2 Glossary

Entities are (abstract) objects. An actor in a social network can be modelled
as an entity. There can be multiple types of entities, entity attributes and
relationships between entities. Entities, relationships and attributes are
defined in the entity-relationship model, which is used in the design of a
formal relational model

Relation A relation or relation instance I(R) is a finite set of tuples. A tuple
is an ordered list of elements. R is the name or type of the relation. A
database instance (or world) is a set of relation instances

Predicate A predicate R is a mapping of tuples to true or false. R(tuple) is a
ground predicate and is true when tuple ∈ R, otherwise it is false. Note
that we do not distinguish between the relation name R and the predicate
name R

Possible worlds A (possible) world corresponds to a database instance. In a
probabilistic database, a probability distribution is defined over all possi-
ble worlds under consideration.

RDF The Resource Description Framework (RDF) is a data model with binary
relations and is the basic data model of the Semantic Web’s Linked Data.
A labelled directed link between two nodes represents a binary tuple. In
social network analysis, nodes would be individuals or actors and links
would correspond to ties

1

Linked Data Linked (Open) Data describes a method of publishing structured
data so that it can be interlinked and can be exploited by machines. Much
of Linked Data is based on the RDF data model

Collective learning refers to the effect that an entity’s relationships, attributes
or class membership can be predicted not only from the entity’s attributes
but also from information distributed in the network environment of the
entity

Collective classification A special case of collective learning: The class mem-
bership of an entity can be predicted from the class memberships of entities
in the network environment of the entity. Example: a person’s wealth can
be predicted from the wealth of this person’s friends

Relationship prediction The prediction of the existence of a relationship be-
tween entities, for example friendship between persons

Entity resolution The task of predicting if two constants refer to the identical
entity

Homophily The tendency of a person to associate with similar other persons

Graphical models A graphical description of a probabilistic domain where
nodes represent random variables and edges represent direct probabilistic
dependencies

Latent Variables Latent variables are quantities which are not measured di-
rectly and whose states are inferred from data

3 Definition

Relational models are machine-learning models that are able to truthfully model
some or all distinguishing features of a relational domain such as long-range de-
pendencies over multiple relationships. Typical examples for relational domains
include social networks and knowledge bases.

4 Introduction

Social networks can be modelled as graphs, where actors correspond to nodes
and where relationships between actors such as friendship, kinship, organiza-
tional position, or sexual relationships are represented by directed labelled links
(or ties) between the respective nodes. Typical machine learning tasks would
concern the prediction of unknown relationships between actors, as well as the
prediction of attributes and class labels of actors. To obtain best results, ma-
chine learning should take the network environment of an actor into account.
Relational learning is a branch of machine learning that is concerned with this

2

task, i.e. to learn efficiently from data where information is represented in form
of relationships between entities.

Relational models are machine learning models that truthfully model some
or all distinguishing features of relational data such as long-range dependencies
propagated via relational chains and homophily, i.e. the fact that entities with
similar attributes are neighbors in the relationship structure. In addition to so-
cial network analysis, relational models are used to model preference networks,
citation networks, and biomedical networks such as gene-disease networks or
protein-protein interaction networks. Relational models can be used to solve
typical machine learning tasks in relational domains such as classification, at-
tribute prediction, clustering, and reinforcement learning. Moreover, relational
models can be used to solve learning tasks characteristic to relational domains
such as relationship prediction and entity resolution. Instances of relational
models are based on different machine learning paradigms such as directed and
undirected graphical models or latent variable models. Some relational models
define a probability distribution over a relational domain. Furthermore, there
is a close link between relational models and first order logic since both depend
on relational data structures.

5 Key Points

Statistical relational learning is a subfield of machine learning. Relational mod-
els learn a probabilistic model of a complete networked domain by taking into
account global dependencies in the data. Relational models can lead to more ac-
curate predictions if compared to non-relational machine learning approaches.
Relational models typically are based on probabilistic graphical models, e.g.,
Bayesian networks, Markov networks, or latent variable models.

6 Historical Background

Inductive logic programming (ILP) was maybe the first effort to seriously focus
on a relational representation in machine learning. It gained attention around
1990 and focusses on learning deterministic or close-to-deterministic dependen-
cies, with a close tie to first order logic. As a field, ILP was introduced in a
seminal paper by Muggleton [15]. A very early and still very influential algo-
rithm is Quinlan’s FOIL [19]. In contrast, statistical relational learning focusses
on domains with statistical dependencies. Statistical relational learning started
around 2000 with the work by Koller, Pfeffer, Getoor and Friedman [13, 5].
Since then many combinations of ILP and relational learning have been ex-
plored. The Semantic Web and Linked Open Data are producing vast quantities
of relational data and [27, 18] describe the application of statistical relational
learning to these emerging fields.

3

7 Learning in Relational Domains

Machine learning can be applied to relational domains in different ways. In this
section we discuss what distinguishes relational models from relational learning
and from machine learning in relational domains.

7.1 Relational Domains

A relational domain is a domain which can truthfully be represented by a set of
relations, where a relation itself is a set of tuples. For each relation R we define
a predicate R, which is a function that maps a tuple to true if the tuple belongs
to the relation R and to false otherwise. The context should make clear if we
refer to a relation or a predicate. In relational learning the term “relational” is
used rather liberally and encompasses any domain where relationships between
entities play a major role. Social networks are typical relational domains, where
information is represented via multiple types of relationships between entities
(here: actors), as well as through the attributes of entities.

7.2 Machine Learning in Relational Domains

A standard statistical learning approach applied to a relational domain would,
for instance, randomly sample entities from the domain and study their proper-
ties. Data created in such a setting is independently and identically generated
from a fixed (but maybe unknown) distribution (so-called i.i.d.) and can be
analysed by standard statistical tools. A standard statistical analysis might
not use simple random sampling; for example in a domain with different social
clusters one might want to get the same number of samples from each group
(stratified sampling). A standard statistical analysis of data sampled from a
relational domain is absolutely valid but one can often obtain more precise pre-
dictions by employing relational learning, and relational models in particular.

7.3 Learning with Relationship Information

Relational features provide additional information to support learning and pre-
diction tasks. For instance, the average income of a person’s friends might be
a good covariate to predict a person’s income in a social network. The under-
lying mechanism that forms these patterns might be homophily, the tendency
of individuals to associate with similar others. Another task might be to pre-
dict relationships themselves: in collective learning, a preference relationship
for an entity can be predicted from the preferences for other entities. In a social
network one can predict friendships for a person based on information about ex-
isting friendships of that person. Relational features are often high-dimensional
and sparse (there are many people, but only a small number of them are a
person’s friends; there are many items but a person has only bought a small
number of them). As an example of a typical learning task: to predict a friend-
ship relationship between two persons, one might obtain attribute features of

4

both involved persons (such as income, gender, age), information on existing
friendships to other persons, information on preferences on some items (e.g.
on movies and books), and information on other shared relationships (if they
attended the same school, if the know each other).

Good relational features for a particular prediction task in a relational do-
main are not always obvious and some approaches apply a systematic search
for good features. Some researchers consider this as an essential distinction be-
tween relational learning and non-relational learning: in non-relational learning
features are essentially defined prior to the training phase whereas relational
learning includes a systematic and automatic search for features in the rela-
tional context of the involved entities. Inductive logic programming (ILP) is
a form of relational learning with the goal of finding deterministic or close-to-
deterministic dependencies, which are described in logical form such as Horn
clauses. Traditionally, ILP involves a systematic search for sensible relational
features [4].

In some domains it can be easier to define useful kernels than to define
useful features. Relational kernels often reflect the similarity of entities with
regard to the network topology. For example a kernel can be defined based on
counting the substructures of interest in the intersection of two graphs defined
by neighborhoods of the two entities [14] (see also the discussion on RDF graphs
further down).

7.4 Relational Models

In the discussion so far, information on a relational domain was gained by
analysing its patterns. For a deeper analysis, one can attempt to obtain a
complete (probabilistic) relational model of a relational domain in the sense that
the model can derive predictions (typically in form of predicted probabilities)
for a large number or even all ground predicates in a relational domain.

Typically, relational models can exploit long-range or even global dependen-
cies and have principled ways of dealing with missing data. Relational models
are often displayed as probabilistic graphical models and can be thought of as
relational versions of regular graphical models, e.g., Bayesian networks, Markov
networks, and latent variable models. The approaches often have a “Bayesian
flavor” but not always a fully Bayesian statistical treatment is performed.

7.5 Possible Worlds for Relational Models

A set of possible worlds or an incomplete database is a set of database instances
(or worlds) and a probabilistic database defines a probability distribution over
the possible worlds under consideration. The goal of relational learning is to
derive a model of this probability distribution. The precise definition of the
set of possible worlds under consideration is domain and problem specific. In a
typical setting the predicate types are fixed and all entities (more generally all
constants) are known (domain closure constraints). Furthermore one assumes
that different constants refer to different entities (unique names constraint). A

5

possible world under consideration is then any database instance which follows
these constraints. All these constraints and assumptions can be relaxed. Con-
sidering the domain closure assumption, in particular: All presented relational
models have means to make predictions for entities not known during model
training; for details please consult the corresponding publications.

In a next step one maps ground predicates to states of random variables. A
canonical probabilistic model assigns a binary random variable XR(tuple) to each
ground predicate. XR(tuple) is in state one in case R(tuple) is true and is zero
otherwise. The goal now is to obtain a model for the probability distribution of
all random variables in a domain, i.e. to estimate P ({X}). It is desirable that
relational models efficiently represent and answer queries on P ({X}).

Depending on a specific application, one might want to modify this canonical
representation. For example, discrete random variables with N states are often
used to implement the constraint that exactly one out of N ground predicates
is true, e.g. that a person belongs exactly to one out of N income classes.

In probabilistic databases [25] the canonical representation is used in tuple-
independent databases, while multi-state random variables are used in block-
independent-disjoint (BID) databases.

8 RDF Graphs and Probabilistic Graphical Net-
works

If a relational domain is restricted to binary or unary relations, a graphical rep-
resentation of a database can be obtained: an entity is represented as a node
and a binary relationship is represented as a directed labelled link from the first
entity to the second entity in the relationship. The label on the link indicates the
relation type. This is essentially the representation used both in the Semantic
Web’s RDF (Resource Description Framework) standard which is able to repre-
sent web-scale knowledge bases and in sociograms that allow multiple types of
directed links. Relations of higher order can be reduced to binary relations by
introducing auxiliary entities (“blank nodes”). Figure 1 shows an example of an
RDF graph. A mapping to a probabilistic description can be achieved by intro-
ducing random variables that represent the ground predicates of interest (see
the last section). In Figure 1 these random variables are represented as elliptical
red nodes. For example we introduce the binary node Xlikes(John,HarryPotter),
which assumes the state Xlikes(John,HarryPotter) = 1 if the ground predicate
likes(John, HarryPotter) is true in the domain and zero otherwise. Similarly,
XhasAge(Jack,AgeClass) might be a random variable with as many states as there
are age classes for Jack.

9 Relational Models

Relational models describe probability distributions P ({X}) over the random
variables in a relational domain. Often, the joint distribution is described using

6

Jack John
friendsWith

likes

Harry
Potter

likes

hasAge hasAge

Young

type
book

),(rHarryPotteJohnlikesX

),(AgeClassJackhasAgeX

),(rHarryPotteJacklikesX

),(JohnJackhfriendsWitX

Middle
Old

Middle
Old

Young

Figure 1: The figure clarifies the relationship between the RDF graph and
the probabilistic graphical network. The round nodes stand for entities in the
domain, square nodes stand for attributes, and the labelled links stand for
tuples. Thus we assume that it is known that Jack is friends with John and that
John likes the book HarryPotter. The oval nodes stand for random variables and
their states represent the existence (value 1) of non-existence (value 0) of a given
labelled link; see for example the node Xlikes(John,HarryPotter) which represents
the ground predicate likes(John, HarryPotter). Striped oval nodes stand for
random variables with many states, useful for attribute nodes (exactly one out
of many ground predicates is true). Relational models assume a probabilistic
dependency between the probabilistic nodes. So the relational model might
learn that Jack also likes HarryPotter since his friend Jack likes it (homophily).
Also Xlikes(John,HarryPotter) might correlate with the age of John. The direct
dependencies are indicated by the red edges between the elliptical nodes. In
PRMs the edges are directed (as shown) and in Markov logic networks they
are undirected. The elliptical random nodes and their quantified edges form a
probabilistic graphical model. Note that the probabilistic network is dual to
the RDF graph in the sense that links in the RDF graph become nodes in the
probabilistic network.

7

probabilistic graphical models, to efficiently model high-dimensional probability
distributions by exploiting independencies between random variables. We de-
scribe three important classes of relational graphical models. In the first class,
the probabilistic dependency structure is a directed graph, i.e. a Bayesian net-
work. The second class encompasses models where the probabilistic dependency
structure is an undirected graph, i.e. a Markov network. Third, we consider la-
tent variable models.

9.1 Directed Relational Models

The probability distribution of a directed relational model, i.e. a relational
Bayesian model, can be written as

P ({X}) =
∏

X∈{X}

P (X|par(X)). (1)

Here {X} refers to the set of random variables in the directed relational model,
while X denotes a particular random variable. In a graphical representation,
directed arcs are pointing from all parent nodes par(X) to the nodeX (Figure 1).
As Equation 1 indicates the model requires the specification of the parents of
a node and the specification of the probabilistic dependency of a node from its
parent nodes. In specifying the former, one often follows a causal ordering of the
nodes, i.e., one assumes that the parent nodes causally influence the child node.
An important constraint is that the resulting directed graph is not permitted
to have directed loops, i.e. that it is a directed acyclic graph.

9.1.1 Probabilistic Relational Models

Probabilistic relational models (PRMs) were one of the first published directed
relational models and found great interest in the statistical machine learning
community [13, 6]. An example of a PRM is shown in Figure 2. PRMs combine
a frame-based (i.e., object-oriented) logical representation with probabilistic se-
mantics based on directed graphical models. The PRM provides a template
for specifying the graphical probabilistic structure and the quantification of the
probabilistic dependencies for any ground PRM. In the basic PRM models only
the entities’ attributes are uncertain whereas the relationships between entities
are assumed to be known. Naturally, this assumption greatly simplifies the
model. Subsequently, PRMs have been extended to also consider the case that
relationships between entities are unknown, which is called structural uncer-
tainty in the PRM framework [6].

In PRMs one can distinguish parameter learning and structural learning.
In the simplest case the dependency structure is known and the truth values
of all ground predicates are known as well in the training data. In this case,
parameter learning consists of estimating parameters in the conditional proba-
bilities. If the dependency structure is unknown, structural learning is applied,
which optimizes an appropriate cost function and typically uses a greedy search
strategy to find the optimal dependency structure. In structural learning, one

8

needs to guarantee that the ground Bayesian network does not contain directed
loops.

In general the data will contain missing information, i.e., not all truth values
of all ground predicates are known in the available data. For some PRMs, reg-
ularities in the PRM structure can be exploited (encapsulation) and even exact
inference to estimate the missing information is possible. Large PRMs require
approximate inference; commonly, loopy belief propagation is being used.

9.1.2 More Directed Relational Graphical Models

A Bayesian logic program is defined as a set of Bayesian clauses [12]. A Bayesian
clause specifies the conditional probability distribution of a random variable
given its parents. A special feature is that, for a given random variable, several
such conditional probability distributions might be given and combined based
on various combination rules (e.g., noisy-or). In a Bayesian logic program, for
each clause there is one conditional probability distribution and for each random
variable there is one combination rule. Relational Bayesian networks [10] are
related to Bayesian logic programs and use probability formulae for specifying
conditional probabilities. The probabilistic entity-relationship (PER) models [8]
are related to the PRM framework and use the entity-relationship model as a
basis, which is often used in the design of a relational database. Relational
dependency networks [16] also belong to the family of directed relational models
and learn the dependency of a node given its Markov blanket (the smallest
node set that make the node of interest independent of the remaining network).
Relational dependency networks are generalizations of dependency networks
as introduced by [7, 9]. A relational dependency networks typically contains
directed loops and thus is not a proper Bayesian network.

9.2 Undirected Relational Graphical Models

The probability distribution of an undirected graphical model, i.e. a Markov
network, is written as a log-linear model in the form

P ({X} = {x}) =
1

Z
exp

∑
i

wifi(xi)

where the feature functions fi can be any real-valued function on the set xi ⊆
x and where wi ∈ R. In a probabilistic graphical representation one forms
undirected edges between all nodes that jointly appear in a feature function.
Consequently, all nodes that appear jointly in a function will form a clique
in the graphical representation. Z is the partition function normalizing the
distribution.

9.2.1 Markov Logic Network (MLN)

A Markov logic network (MLN) is a probabilistic logic which combines Markov
networks with first-order logic. In MLNs the random variables, representing

9

ProfID

CourseID

RegID

StuID

teachingA

popularity

hasProf

hasCourse

hasStudent

rating

difficulty

satisfaction

grade

intelligence

H

ranking

Professor

D, I A B C

H,H 0.5 0.4 0.1

H,L 0.1 0.5 0.4

L,H 0.8 0.1 0.1

L,L 0.3 0.6 0.1

Course Student

Registration

TeachingAbility

Popularity

Rating

Difficulty

Intelligence

Ranking

Satisfaction

Grade

A
B
C

L

H
L

H
L

H
L

H
L

H
L

H
I
L

hasProf

hasCourse

h
as

St
u

d
en

t

Figure 2: Left: A PRM with domain predicates Professor(ProfID, TeachingAbil-
ity, Popularity), Course(CourseID, ProfID, Rating, Difficulty), Student(StuID,
Intelligence, Ranking), and Registration(RegID, CourseID, StuID, Satisfaction,
Grade). Dotted lines indicate foreign keys, i.e. entities defined in another re-
lational instance. The directed edges indicate direct probabilistic dependencies
on the template level. Also shown is a probabilistic table of the random variable
Grade (with states A, B, C) given its parents Difficulty and Intelligence. Note
that some probabilistic dependencies work on multisets and require some form
of aggregation: for example different students might have different numbers of
registrations and the ranking of a student might depend on the (aggregated)
average grade from different registrations. Note the complexity in the depen-
dency structure which can involve several entities: for example the Satisfaction
of a Registration depends on the the TeachingAbility of the Professor teaching
the Course associated with the Registration. Consider the additional complex-
ity when structural uncertainty is present, e.g., if the Professor teaching the
Course is unknown. Redrawn from [6]. Right: Shows an example of a corre-
sponding RDF graph as a simple ground PRM. The red directed edges indicate
the probabilistic dependency. With no structural uncertainty, the relationships
between entities are assumed known and determine the dependency structure
of the attributes.

10

ground predicates, are part of a Markov network, whose dependency structure
is derived from a set of first-order logic formulae (Figure 3).

Formally, a MLN L is defined as follows: Let Fi be a first-order formula, (i.e.,
a logical expression containing constants, variables, functions and predicates)
and let wi ∈ R be a weight attached to each formula. Then L is defined as a set
of pairs (Fi, wi) [22, 3].

From L the ground Markov network ML,C is generated as follows. First,
one generates nodes (random variables) by introducing a binary node for each
possible grounding of each predicate appearing in L given a set of constants
c1, . . . , c|C| (see the discussion on the canonical probabilistic representation).
The state of a node is equal to one if the ground predicate is true, and zero oth-
erwise. The feature functions fi, which define the probabilistic dependencies in
the Markov network, are derived from the formulae by grounding them in a do-
main. For formulae that are universally quantified, grounding is an assignment
of constants to the variables in the formula. If a formula contains N variables,
then there are |C|N such assignments. The feature function fi is equal to one
if the ground formula is true, and zero otherwise. The probability distribution
of the ML,C can then be written as

P ({X} = {x}) =
1

Z
exp

(∑
i

wini({x})

)
,

where ni({x}) is the number of formula groundings that are true for Fi and
where the weight wi is associated with formula Fi in L.

The joint distribution P ({X} = {x}) will be maximized when large weights
are assigned to formulae that are frequently true. In fact, the larger the weight,
the higher is the confidence that a formula is true for many groundings. Learning
in MLNs consists of estimating the weights wi from data. In learning, MLN
makes a closed-world assumption and employs a pseudo-likelihood cost function,
which is the product of the probabilities of each node given its Markov blanket.
Optimization is performed using a limited memory BFGS algorithm.

The simplest form of inference in a MLN concerns the prediction of the truth
value of a ground predicate given the truth values of other ground predicates.
For this task an efficient algorithm can be derived: In the first phase of the
algorithm, the minimal subset of the ground Markov network is computed that
is required to calculate the conditional probability of the queried ground pred-
icate. It is essential that this subset is small since in the worst case, inference
could involve all nodes. In the second phase, the conditional probability is then
computed by applying Gibbs sampling to the reduced network.

Finally, there is the issue of structural learning, which, in this context, means
the learning of first order formulae. Formulae can be learned by directly opti-
mizing the pseudo-likelihood cost function or by using ILP algorithms. For the
latter, the authors use CLAUDIAN [20], which can learn arbitrary first-order
clauses (not just Horn clauses, as in many other ILP approaches).

An advantage of MLNs is that the features and thus the dependency struc-
ture is defined using a well-established logical representation. On the other

11

hand, many people are unfamiliar with logical formulae and might consider the
PRM framework to be more intuitive.

9.2.2 Relational Markov Networks (RMNs)

RMNs generalize many concepts of PRMs to undirected relational models [26].
RMNs use conjunctive database queries as clique templates, where a clique in
an undirected graph is a subset of its nodes such that every two nodes in the
subset are connected by an edge. RMNs are mostly trained discriminately. In
contrast to MLNs and similarly to PRMs, RMNs do not make a closed-world
assumption during learning.

9.3 Relational Latent Variable Models

In the approaches described so far, the structures in the graphical models were
either defined using expert knowledge or were learned directly from data using
some form of structural learning. Both can be problematic since appropriate
expert domain knowledge might not be available, while structural learning can
be very time consuming and possibly results in local optima which are difficult
to interpret. In this context, the advantage of relational latent variable models
is that the structure in the associated graphical models is purely defined by the
entities and relations in the domain. Figure 4 shows an example: the green
rectangles represent the entities’ latent variables; latent variables are variables
that have not been observed in the data but are assumed to be hidden causes
that explain the observed variables. An objective of a latent variable model is
then to infer the states of these hidden causes. The probability of a labelled
link between two entities is derived from a simple operation on their latent rep-
resentations. The additional complexity of working with a latent representation
is counterbalanced by the great simplification in avoiding structural learning.

9.4 The IHRM: A Latent Class Model

The infinite hidden relational model (IHRM) [11] [29] is a directed relational
model (i.e., a relational Bayesian model) in which each entity is assigned to
exactly one out of N possible latent classes C = {C1, C2, . . . , CN}. The latent
class of an entity and the number of possible classes are assumed to be unknown
and thus have to be inferred from data. Considering the ground predicate
R(Ei, Ej) with entities Ei and Ej we would obtain

P (R(Ei, Ej) = 1|L(Ei), L(Ej)) = θR,L(Ei),L(Ej)

with 0 ≤ θR,L(Ei),L(Ej) ≤ 1. The Equation states that the probability of a
ground predicate being true depends on the predicate and the two latent classes
L(Ei) ∈ C, L(Ej) ∈ C of the involved entities. In the example in Figure 4 this
would mean that

P (friendsWith(John, Jack) = 1|L(John), L(Jack)) = θfriendsWith,L(John),L(Jack).

12

A B
friends

friends

smokes smokes

Yes

cancer cancer

friends friends

friends(A, A)

friends(A, B)

friends(B, B)

friends(B, A)
cancer(A) cancer(B)

smokes(A) smokes(B)

No
Yes
No

Yes
No No

Yes
No

Figure 3: Left: An example of a MLN. The domain has two entities (constants)
A and B and the unary relations smokes and cancer and the binary relation
friends. The 8 elliptical nodes are the ground predicates. Then there are two
logical expressions ∀x smokes(x) → cancer(x) (someone who smokes has can-
cer) and ∀x∀y friends(x, y) → (smokes(x) ↔ smokes(y)) (friends either both
smoke or both do not smoke). Obviously and fortunately both expressions are
not always true and learned weights on both formulae will assume finite values.
There are two groundings of the first formula (explaining the edges between the
smokes and cancer nodes) and four groundings of the second formula, explain-
ing the remaining edges. The corresponding features are equal to one if the
logical expressions are true and are zero else. The weights on the features are
adapted according to the actual statistics in the data. Redrawn from [3]. Right:
The corresponding RDF graph.

13

Jack John
friendsWith

likes

Harry
Potter

likes

hasAge hasAge Young

type
book

Middle
Old

Middle
Old

Young

Figure 4: In relational latent variable models, entities are represented by latent
variables, which either represent latent classes (shown as green rectangles) or
sets of latent factors (in which case the green rectangles become sets of con-
tinuous latent nodes). These latent variables are the parents of the random
variables standing for the truth values of the associated links. In the figure,
XfriendsWith(Jack,John) depends on the latent representation of the entities Jack
and John. Similarly, XhasAge(John,Y oung) depends on the latent representation
of John and of Young. Although the model appears local, information can
globally propagate through the network formed by the latent variables.

14

In the IHRM the number of states (latent classes) in each latent variable
is allowed to be infinite and fully Bayesian learning is performed based on a
Dirichlet process mixture model. For inference Gibbs sampling is employed
where only a small number of the infinite states are occupied in sampling, leading
to a clustering solution where the number of states in the latent variables is
automatically determined.

Since the dependency structure in the ground Bayesian network is local, one
might get the impression that only local information influences prediction. This
is not true, since in the ground Bayesian network common children with evidence
lead to interactions between the parent latent variables. Thus information can
propagate in the network of latent variables.

The IHRM has a number of key advantages. First, no structural learning
is required, since the directed arcs in the ground Bayesian network are directly
given by the structure of the RDF graph. Second, the IHRM model can be
thought of as an infinite relational mixture model, realizing hierarchical Bayesian
modeling. Third, the mixture model can be used for a cluster analysis providing
insight into the relational domain.

The IHRM has been applied to social networks, recommender systems, for
gene function prediction and to develop medical recommender systems. The
IHRM was the first relational model applied to trust learning [21].

In [1] the IHRM is generalized to a mixed-membership stochastic block
model, where entities can belong to several classes.

9.5 RESCAL: A Latent Factor Model

The RESCAL model was introduced in [17] and follows a similar dependency
structure as the IHRM. The main difference is that the latent variables do not
describe entity classes but are latent entity factors. The probability of a binary
link is calculated as

P
(
R(Ei, Ej) = 1|A,GR

)
∝

r∑
k=1

r∑
l=1

GR
k,lai,kaj,l

where r is the number of latent factors, A is the latent factor matrix and GR ∈
Rr×r is a full, asymmetric, relation-specific matrix. (A)i,k = ai,k ∈ R is the
k-th factor of entity Ei and (A)j,l = aj,l ∈ R is the l-th factor of entity Ej .

As in the IHRM, common children with observed values lead to interactions
between the parent latent variables in the ground Bayesian network. This leads
to the propagation of information in the network of latent variables and enables
the learning of long-range dependencies. The relation-specific matrix GR en-
codes the factor interactions for a specific relation and its asymmetry permits
the representation of directed relationships.

The calculation of the latent factors is based on the factorization of a multi-
relational adjacency tensor where two modes represent the entities in the do-
main and the third mode represents the relation type (Figure 5). The relational

15

j-th entity

i-th entity

relation R

AT

GR
A

Figure 5: The figure illustrates the factorization of the multi-relational adja-
cency tensor used in the RESCAL model. In the multi-relational adjacency
tensor on the left two modes represent the entities in the domain and the third
mode represents the relation type. The i-th row of the matrix A contains the fac-
tors of the i-th entity. GR is a slice in the G-tensor and encodes the relation-type
specific factor interactions. The factorization can be interpreted as a constrained
Tucker decomposition.

learning capabilities of the RESCAL model have been demonstrated on classi-
fication tasks and entity resolution tasks, i.e., the mapping of entities between
knowledge bases. One of the great advantages of the RESCAL model is its
scalability: RESCAL has been applied to the YAGO ontology [24] with several
million entities and 40 relation types [18]! The YAGO ontology, closely related
to DBpedia [2] and the Knowledge Graph [23], contains formalized knowledge
from Wikipedia and other sources.

RESCAL is part of a tradition on relation prediction using factorization
of matrices and tensors. [30] describes a Gaussian process-based approach for
predicting a single relation type, which has been generalized to a mutli-relational
setting in [28]. Whereas RESCAL is calculated based on a constrained Tucker
decomposition of the multi-relational adjacency tensor, the SUNS approach [27]
is based on a Tucker1 decomposition.

10 Key Applications

Typical applications of relational models are in social networks analysis, bioin-
formatics, recommendation systems, language processing, medical decision sup-
port, knowledge bases, and Linked Open Data.

16

11 Future Directions

A wider application of relational models so far was hindered by their complexity
and scalability issues. With a certain personal bias, we believe that the relational
latent variable models (RESCAL, SUNS) point in a promising direction. Maybe
an application with billions of internet users is still somewhat far in the future,
an application with millions of patients is within reach.

References

[1] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing.
Mixed membership stochastic blockmodels. Journal of Machine Learning
Research, 9:1981–2014, 2008.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary G. Ives. Dbpedia: A nucleus for a web of open
data. In ISWC/ASWC, pages 722–735, 2007.

[3] Pedro Domingos and Matthew Richardson. Markov logic: A unifying
framework for statistical relational learning. In Lise Getoor and Benjamin
Taskar, editors, Introduction to Statistical Relational Learning, pages 339–
369. MIT Press, 2007.

[4] Saso Dzeroski. Inductive logic programming in a nutshell. In Lise Getoor
and Benjamin Taskar, editors, Introduction to Statistical Relational Learn-
ing, pages 57–92. MIT Press, 2007.

[5] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning prob-
abilistic relational models. In IJCAI, pages 1300–1309, 1999.

[6] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pferrer, and Benjamin
Taskar. Probabilistic relational models. In Lise Getoor and Benjamin
Taskar, editors, Introduction to Statistical Relational Learning, pages 129–
174. MIT Press, 2007.

[7] David Heckerman, David Maxwell Chickering, Christopher Meek, Robert
Rounthwaite, and Carl Myers Kadie. Dependency networks for inference,
collaborative filtering, and data visualization. Journal of Machine Learning
Research, 1:49–75, 2000.

[8] David Heckerman, Christopher Meek, and Daphne Koller. Probabilistic
entity-relationship models, prms, and plate models. In Lise Getoor and
Benjamin Taskar, editors, Introduction to Statistical Relational Learning,
pages 201–238. MIT Press, 2007.

[9] Reimar Hofmann and Volker Tresp. Nonlinear markov networks for con-
tinuous variables. In NIPS, 1997.

17

[10] Manfred Jaeger. Relational bayesian networks. In UAI, pages 266–273,
1997.

[11] Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffiths, Takeshi Ya-
mada, and Naonori Ueda. Learning systems of concepts with an infinite
relational model. In AAAI, pages 381–388, 2006.

[12] Kristian Kersting and Luc De Raedt. Bayesian logic programs. CoRR,
cs.AI/0111058, 2001.

[13] Daphne Koller and Avi Pfeffer. Probabilistic frame-based systems. In
AAAI/IAAI, pages 580–587, 1998.

[14] Uta Lösch, Stephan Bloehdorn, and Achim Rettinger. Graph kernels for
rdf data. In ESWC, pages 134–148, 2012.

[15] Stephen Muggleton. Inductive logic programming. New Generation Com-
put., 8(4):295–318, 1991.

[16] Jennifer Neville and David Jensen. Dependency networks for relational
data. In ICDM, pages 170–177, 2004.

[17] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way
model for collective learning on multi-relational data. In ICML, pages 809–
816, 2011.

[18] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago:
scalable machine learning for linked data. In WWW, pages 271–280, 2012.

[19] J. Ross Quinlan. Learning logical definitions from relations. Machine Learn-
ing, 5:239–266, 1990.

[20] Luc De Raedt and Luc Dehaspe. Clausal discovery. Machine Learning,
26(2-3):99–146, 1997.

[21] Achim Rettinger, Matthias Nickles, and Volker Tresp. A statistical rela-
tional model for trust learning. In AAMAS (2), pages 763–770, 2008.

[22] Matthew Richardson and Pedro Domingos. Markov logic networks. Ma-
chine Learning, 62(1-2):107–136, 2006.

[23] Amit Singhal. Introducing the knowledge graph: things, not
strings. Technical report, Ofcial Google Blog, May 2012.
http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-
things-not.html, 2012.

[24] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core
of semantic knowledge. In WWW, pages 697–706, 2007.

[25] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Proba-
bilistic Databases. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2011.

18

[26] Benjamin Taskar, Pieter Abbeel, and Daphne Koller. Discriminative prob-
abilistic models for relational data. In UAI, pages 485–492, 2002.

[27] Volker Tresp, Yi Huang, Markus Bundschus, and Achim Rettinger. Ma-
terializing and querying learned knowledge. In First ESWC Workshop on
Inductive Reasoning and Machine Learning on the Semantic Web (IRMLeS
2009), 2009.

[28] Zhao Xu, Kristian Kersting, and Volker Tresp. Multi-relational learning
with gaussian processes. In IJCAI, pages 1309–1314, 2009.

[29] Zhao Xu, Volker Tresp, Kai Yu, and Hans-Peter Kriegel. Infinite hidden
relational models. In UAI, 2006.

[30] Kai Yu, Wei Chu, Shipeng Yu, Volker Tresp, and Zhao Xu. Stochastic
relational models for discriminative link prediction. In NIPS, pages 1553–
1560, 2006.

19

