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Abstract. Knowledge graphs store up to billions of facts and are used
in an increasing number of applications including search and question
answering. Besides the freely available knowledge graphs of the Linked
Open Data Cloud, there are a number of commercial knowledge graphs as
the Google Knowledge Graph and Microsoft’s Satori. Incompleteness is
still a major issue in this graphs and has been the topic of a multitude of
research efforts in the recent years; latent variable models were shown to
be very effective by complementing knowledge graphs via link-prediction.
Prior works on link-prediction with latent variable models mostly focused
on proposing new variants or extensions, but disregarded the potential of
combining various approaches to drive prediction quality. In this work we
study the potential of combining existing state of the art latent variable
models for link-prediction. We show on various datasets extracted from
DBpedia, YAGO and Freebase that these models indeed complement
each other, leading to large improvements of the best single predictor of
up to 11%.

1 Introduction

In the recent years, it was shown that domains such as natural language process-
ing, search or question answering all benefit to a large extend from information
provided by knowledge graphs. IBM’s Watson system or Google’s web-search are
two of the most prominent examples where the integration of knowledge-graphs
has been proven to be of great success.

Today’s knowledge-graphs depend on a large community of voluntary con-
tributors that directly add or edit facts in the knowledge-graph or its sources.
Freebase [2] for example allows users to directly add and edit facts in Free-
base, but it also automatically extracts facts from other hand-curated sources
like Wikipedia Infoboxes or MusicBrainz. Thanks to the great efforts of these
contributors, some knowledge graphs have already reached an impressive size
containing billions of facts that express thousands of different relations between
millions of entities. Nevertheless, the included knowledge in these databases suf-
fers from incompleteness and can be outdated or faulty, especially in the cases of
less popular entities. As an example, a vast amount of person entities in Freebase
(71% [20]) or DBpedia (66% [8]) are missing a place of birth.
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Latent variable models (LVM) are a class of machine-learning algorithms
which have been successfully exploited in knowledge-graphs. These models show
an especially high potential for link-prediction, which can be exploited for clean-
ing and completion of these databases; another application is the support for
an automatic knowledge graph construction system from unstructured text data
[20]. In [10] it was shown that these models can be used for querying probabilistic
knowledge graphs.

From our perspective, the current state of the art for link-prediction in web-
scale knowledge-graphs with LVMs is represented by RESCAL [14], TransE [3]
and the multiway neural network proposed in [20]. In this paper we argue that
these models learn different patterns in the data that complement each other.
We study these complementary effects for link-prediction by constructing and
analyzing simple ensembles of these different methods. In addition we exploit
domain and range constraints in these models in form of type-constraints ex-
tracted from the knowledge graph’s schema or approximated through a local
closed-world assumption. It was shown in [8] that prior knowledge about these
constraints significantly drives the prediction quality of LVMs. We evaluate the
ensembles on various datasets extracted from popular knowledge-bases including
Freebase [2], DBpedia [1] and YAGO [7].

The paper is structured as follows: In the next section we will provide related
work. In Section 2 we will briefly review RESCAL, Translational Embeddings
and the multiway neural network approach exploited in the Knowledge Vault
project and motivate and describe the ensemble of these methods in Section
3. Subsequent to that we will provide and discuss our experimental results in
Section 4. We conclude in Section 5.

1.1 RelatedWork

There is a large body of work on link prediction in knowledge-bases (we refer to
[13] for a review). A neural tensor network for link prediction in knowledge bases
was proposed by [18]. The performance of this model could be reproduced by a
simpler neural network model by [20] in the Google Knowledge Vault project.
Very recently, [21] proposed a framework for relationship modeling that combines
aspects of the link-prediction models introduced in [3] and [18]. [19, 12] proposed
TransH and TransR which improves TransE’s capability to model reflexive one-
to-many, many-to-one and many-to-many relation-types. In [5] a combination
of a trigram and bigram model for link-prediction is proposed (TATEC), where
both models are trained independently in a pre-training phase before they are
jointly optimized. [6] used a bagging approach to combine various classifica-
tion algorithms (e.g. Support-Vector-Machines, K-Nearest-Neighbor) for link-
prediction, but could not observe any significant improvements over the best
single predictors. The integration of prior knowledge about relation-types into
RESCAL [4, 9] and generally in latent variable models [8] was recently shown to
significantly improve link-prediction quality of these models. General methods
for link-prediction also include Markov-Logic-Networks [17] which have a limited
scalability and random walk algorithms like the path ranking algorithm [11].
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2 Latent Variable Models for Link Prediction

In the following we very briefly review the latent variable models targeted in this
work. We refer to [8, 13, 3, 20, 14] for more details on these models.

2.1 RESCAL

RESCAL [14] is a three-way-tensor factorization model that has been shown to
lead to very good results in various canonical relational learning tasks like link
prediction, entity resolution and collective classification [15]. One main feature
of RESCAL is that it can exploit a collective learning effect when used on re-
lational data, since an entity has a unique representation over occurrences as a
subject or as an object in a relationship and also over all relation types (prop-
erties) in the data. For RESCAL, triples are stored in an third-order adjacency
tensor. RESCAL computes a d-rank factorization of this adjacency tensor by
minimizing a regularized least-squares loss function through Alternating Least-
Squares (ALS). For minimization, RESCAL uses closed world assumptions and
therefore treats any unobserved triple as negative evidence. The confidence θs,p,o
of RESCAL into a triple (s, p, o) is then given by

θs,p,o = aTsRpao, (1)

where as and ao are the learned latent embedding vectors for the subject and
object entities s and o, respectively, and Rp is a d × d matrix representing the
latent embedding for the predicate relation-type p

2.2 Translational Embeddings Model

In [3] an energy-based model was proposed for learning low-dimensional em-
beddings of entities, where relationships are represented as translations in the
embedding space (TransE ). The approach assumes for a true fact that a prop-
erty specific translation function exists that is able to map (or translate) the
latent vector representation of the subject entity to the latent representation of
the object entity. The confidence into a fact is expressed by the similarity of
the translation of the subject embedding to the object embedding. In case of
TransE, the translation function is defined by a simple addition of the latent
vector representations of the subject entity as and predicate property rp. The
similarity of the translation and the object embedding is measured by the L1 or
L2 norm. TransE’s confidence θs,p,o in a triple (s, p, o) is derived as

θs,p,o = −δ(as + rp,ao), (2)

where δ is the L1 or the L2 norm and ao the latent embedding for the object
entity. The embeddings are learned by minimizing a margin-based ranking cost
function on a set of observed training triples T with stochastic gradient descent.
Through the ranking cost function, unobserved triples are all treated as missing.
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2.3 Knowledge Vault Multiway Neural Network

The Google Knowledge Vault project [20] pursues an automatic construction of
a high quality knowledge graph. In this regard a neural network based model
(denoted as multiway neural network mwNN in this work) for predicting prior
probabilities for triples from existing knowledge graph data was proposed to sup-
port triple extraction from unstructured web documents. The confidence value
θs,p,o for a target triple (s, p, o) is given by

θs,p,o = σ(βTφ (W [as, rp,ao])), (3)

where φ() is the tanh function, as describes the latent embedding vector for the
subject entity (ao for the object entity) and rp is the latent embedding for the
predicate property p, which are stacked into a long column vector (denoted by
[as, rp,ao]). W and β are neural network weights and σ() denotes the logistic
function. The model is trained by minimizing a logistic cost-function through
stochastic gradient descent. In difference to TransE, only object entities are
corrupted and the corrupted triples are treated as negative evidence.

3 A Simple Ensemble for Link-Prediction

In this section we motivate an ensemble consisting of the three latent variable
methods discussed in this work, RESCAL, TransE and mwNN. The main charac-
teristic of a good ensemble is its composition out of very diverse single predictors
that learn and recognize different patterns in the data. Through the diversity of
the different predictors, complementary effects can be observed that drive overall
prediction quality. In general, we also see a large diversity between RESCAL,
TransE and mwNN. RESCAL assumes normally distributed variables minimiz-
ing a least-squares loss function, where mwNN assumes Bernoulli distributed
variables minimizing a logistic loss function. TransE on the other hand minimizes
a max-margin based ranking loss function. Further, RESCAL is a third-order
tensor factorization method that is optimized through alternating least-squares
with closed form solutions, where TransE is a distance based model and mwNN a
neural network that are both optimized through stochastic gradient-descent. In
addition, mwNN and TransE differ in the way they sample corrupted triples. In
TransE, two corrupted triples are sampled for each true triple, where in each cor-
rupted triple the subject or object entity is corrupted. mwNN generates negative
triples by only corrupting the object entities through a randomly sampled entity.
These methods also exploit different kinds of regularization; TransE projects the
latent embeddings of entities on the L2 unit ball after each iteration during op-
timization and RESCAL and mwNN are typically minimized using L1 or L2
regularization on all parameters of the model.

For our study, we build simple ensembles in which we combine the link-
predictions of RESCAL, TransE and mwNN. The final probability of a triple is
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then derived from the ensemble of these predictions by

P (xs,p,o = 1|Θ) =
1

n

n∑
θm∈Θ

P (xs,p,o|θms,p,o) (4)

where Θ ⊆ {θRESCAL, θTransE , θmwNN}

and P (xs,p,o = 1|θms,p,o) =
1

1 + exp{−(ωm1 θ
m
s,p,o + ωm0 )}

(5)

with θRESCALs,p,o = aTsRpao (Equation 1),

θTransEs,p,o = −δ(as + rp,ao) (Equation 2),

θmwNNs,p,o = σ(βTφ (W [as, rp,ao])) (Equation 3),

where xs,p,o is the target variable that indicates if a triple (s, p, o), consisting of
the subject and object entities s and o and the predicate relation-type p, is true.

Θ holds the pool of model parameters the ensemble combines for the pre-
diction. We are evaluating all possible combinations of models, therefore Θ
can be just a subset of the three, RESCAL, TransE and mwNN. For the en-
semble, we fit and find the best hyper-parameters for the parameters of each
model θRESCAL, θTransE and θmwNN independently, but the predicted confi-
dence scores for triples generally differ between all model; mwNN predicts values
between 0 and 1, where RESCAL can return any value in R and TransE returns
negative distances. We could have applied a simple meta-learner, e.g. a simple
logistic regression or a feed-forward neural network with one hidden layer to
auto-balance the outputs of the tree methods, but we expected that such a meta
learner could blur the individual contribution of each single-predictor in the link-
prediction tasks. We used a Platt-Scaler [16] for each model based on a small
subsample of the training data to get properly scaled probabilities (Equation
5). A Platt-Scaler is basically a logistic regression model that takes exactly one
input (the output θms,p,o of the model m) and maps into the interval [0, 1]. The
scalars ωm1 and ωm0 in Equation 5 denote the learned weight and bias of the
logistic regression (Platt-Scaler) for the model m.

In difference to the other two methods, mwNN already predicts probabilities
for triples. Nevertheless, we also learned a Platt-Scaler for this model in order
to calibrate the probabilities of all models on the same dataset. For the final
probability of a triple (s, p, o) we apply the scalers to the confidence score θms,p,o
of each model m to get the probability P (xs,p,o|θms,p,o), that is the probability
of the triple (s, p, o) given the model m. Subsequent to that, we simply combine
each of these probabilities by computing the arithmetic mean (Equation 4).

4 Experiments

In our experiments we study empirically if TransE, RESCAL and mwNN are
good targets for combination to drive link-prediction quality. We further study
the value of each model for the ensemble by systematically discarding models
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Table 1. Datasets used in the experiments.

Dataset Entities Properties Triples

DBpedia-Music 321,950 15 981,383
Freebase-150k 151,146 285 1,047,844
YAGOc-195k 195,639 32 1,343,684

from the ensemble. Since it was shown by [8] that latent variable models benefit
to a large extend from prior knowledge on domain and range constraints of
relation-types, the ensembles are evaluated in two settings. In the first setting,
the models exploit type-constraints extracted from the knowledge-base schema
and in the second setting they use the local closed-world assumption (LCWA) [9,
8]. As discussed in [8], the LCWA has the advantage that it can be exploited
without the need of prior knowledge about neither the types of the entities nor
the typing of the properties. Therefore it can be applied to single properties or
whole knowledge-graphs where information about type-constraints is absent or
fuzzy.

4.1 Experimental Setup

In our experiments we used datasets extracted from Freebase [2], DBpedia [1]
and YAGO [7] (Table 1). We refer to [8] for details on the extraction. Basically,
the Freebase-150k datasets contains various different relation-types and entities
and simulates a general purpose knowledge graph, where for DBpedia-Music only
relation-types and entities that are related to music were extracted. The YAGOc-
195k dataset contains triples from the high quality core dataset of YAGO.

We evaluate the different ensembles on link-prediction tasks using the same
evaluation procedure as described in [8]; We split the triples into a holdout,
validation and training set, where the first contains 20%, the second 10% and
the latter 70% of the triples3 and performed hyper-parameter using the train
and validation set. After hyper-parameter tuning, we retrained all models using
the best hyper-parameters on the combined datasets of validation and training
set, thereby using 5% of triples (with additional negative sampling) for learning
the Platt-Scalers for each model (RESCAL, TransE and mwNN). We report the
Area Under Precision Recall Curve (AUPRC) score for each ensemble on the
holdout set. In addition we report the AUPRC for the best single predictor as
comparison.

4.2 Explanation of the Results Table Structure

In Table 2 the AUPRC results on the extracted datasets from Freebase, YAGO
and DBpedia for the first setting are shown, where all models exploit the type-
constraints given by the schema of the knowledge graph. Table 3 shows the same

3 We additionally sampled 10 times as many negative triples for each set, where these
sets of negative triples are not overlapping.
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Table 2. AUPRC results on datasets, exploiting Type-Constraints in the models.
Model←d indicates the dimensionality of the latent embeddings used by the models.

Dataset
Model←d=10 Freebase-150k DBpedia-Music YAGOc-195k

ALL 0.846 0.815 0.883
mwNN + TransE 0.820 0.817 0.881
mwNN + RESCAL 0.795 0.519 0.821
TransE + RESCAL 0.757 0.748 0.859

Best Single Predictor (mwNN) 0.775 (TransE) 0.734 (TransE) 0.843

Model←d=50 Freebase-150k DBpedia-Music YAGOc-195k

ALL 0.892 0.827 0.902
mwNN + TransE 0.876 0.825 0.900
mwNN + RESCAL 0.835 0.756 0.845
TransE + RESCAL 0.819 0.783 0.891

Best Single Predictor (mwNN) 0.815 (TransE) 0.783 (TransE) 0.896

Model←d=100 Freebase-150k DBpedia-Music YAGOc-195k

ALL 0.904 0.843 0.911
mwNN + TransE 0.893 0.842 0.909
mwNN + RESCAL 0.852 0.762 0.862
TransE + RESCAL 0.826 0.825 0.901

Best Single Predictor (mwNN) 0.837 (TransE) 0.826 (TransE) 0.896

for the second setting, where the models solely exploited the Local Closed-World
Assumption. ALL represents the ensemble consisting of TransE, RESCAL and
mwNN and the beneath three models represent the ensembles that combine all
possible pairs of models, e.g. mwNN + TransE represents the ensemble consist-
ing of mwNN and TransE. Best Single Predictor represents the best model out
of TransE, RESCAL or mwNN on the same link-prediction task. Which of the
three models had the best AUPRC score is shown in the brackets next to the
corresponding score in that row. d is the chosen dimension of the embedding vec-
tor or the rank of the factorization in case of RESCAL (e.g. Model← d = 100)
indicates that all models were trained with a fixed embedding dimension of 100).

4.3 Type-Constrained Ensembles Improve Prediction Quality
Especially with Low-Dimensional Embeddings

From Table 2 it can be observed that the ensemble consisting of all three models
(with type-constraints) is clearly outperforming the best single predictor on all
datasets and with all different embedding dimensions (10,50,100). We observed
the largest improvements on the Freebase-150k dataset, where the ensemble
increases the AUPRC score from 0.775 to 0.846 with an embedding dimension
of 10 and from 0.837 to 0.904 with an embedding dimension of 100. In the other
two datasets large improvements for lower dimensional latent embedding vectors
(d = 10, 11% on DBpedia-Music and 5% on YAGOc-195k) can be observed, but
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for higher dimensional embeddings (d = 50 and d = 100) the improvements are
decreasing or vanishing (YAGOc-195k).

The improvements observed on the really low embedding dimension of 10 are
of special interest. In a Web-Scale application of these algorithms it is of high
interest to have meaningful embeddings in a very low dimensional latent space,
because higher dimensional representation can lead to long or even intractable
runtimes for model training and tuning of the different algorithms. It can be
observed that the ensemble consisting of TransE, RESCAL and mwNN with a
embedding dimension of 10 reaches comparable link prediction results than the
best single predictor with an embedding vector dimension of 100. On Freebase-
150k dataset the ensemble reaches with d = 10 an AUPRC score of 0.846, on
DBpedia-Music 0.815 and YAGOc-195k 0.883, where the best single predictor
reaches at d = 100 0.837, 0.826 and 0.896, respectively.

When it comes to the contribution of each single predictor in the ensem-
ble, we observe that in case of the Freebase dataset all models are contribut-
ing to the superior performance of the ensemble, but TransE and mwNN are
responsible for the biggest increase in AUPRC. For example with d = 10,
TransE+mwNN achieves an AUPRC of 0.820 where mwNN+RESCAL reaches
0.795 and TransE+RESCAL 0.757. On the DBpedia-Music and YAGOc-195k
dataset, RESCAL does not add any significant value to the ensemble, e.g. for
d = 50 mwNN+TransE has the highest AUPRC score of the pairwise ensembles
reaching already 0.825 on DBpedia-Music and 0.900 on YAGOc-195k, where the
maximum performance of the complete ensemble (ALL) lies at 0.827 and 0.902.

As a final remark, we could observe from the results shown in Table 2 that
RESCAL or mwNN best complement with TransE. The combination of mwNN
and RESCAL generally shows less improvements in AUPRC compared to the
best single predictor performance of those two (compare with results in [8]),
indicating that these two models learn more similar patterns.

4.4 Link-Prediction Quality also Improves by Combining the Single
Predictors under a Local Closed-World Assumption

The results for the LCWA ensemble are shown in Table 3. The ensemble improves
the AUPRC score compared to the best single predictor from 15% (d = 10) to
9% (d = 100) for the Freebase-150k dataset. Also, all predictors (RESCAL,
TransE, mwNN) contribute to the performance of the ensemble, since the best
pairwise ensemble achieves a significantly lower AUPRC score in this case.
TransE+RESCAL achieves 0.763 (d = 10), 0.876 (d = 50) and 0.899 (d = 100),
where the full ensemble achieves 0.775, 0.886, 0.909. On the DBpedia-Music
dataset the ensemble only improves the best single predictor for very low dimen-
sional embeddings (d = 10) from 0.719 to 0.787. The ensemble does not improve
the best single predictor for a vector dimension of 50 and 100 in this dataset.
The ensemble constantly improves the best single-predictor on the YAGOc-195k
dataset of about 0.03 to 0.04 in AUPRC for all embedding vector dimensions. We
also see small improvements of the full ensemble opposed to the best ensemble
consisting of TransE and mwNN. As in case of the type-constrained ensembles,
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Table 3. AUPRC results on datasets, exploiting the Local Closed-World Assump-
tion in the models. Model←d indicates the dimensionality of the latent embeddings
used by the models.

Dataset
Model←d=10 Freebase-150k DBpedia-Music YAGOc-195k

ALL 0.775 0.787 0.825
mwNN + TransE 0.729 0.780 0.820
mwNN + RESCAL 0.649 0.661 0.679
TransE + RESCAL 0.763 0.746 0.806

Best Single Predictor (TransE) 0.671 (TransE) 0.719 (TransE) 0.790

Model←d=50 Freebase-150k DBpedia-Music YAGOc-195k

ALL 0.886 0.841 0.899
mwNN + TransE 0.854 0.841 0.890
mwNN + RESCAL 0.820 0.661 0.828
TransE + RESCAL 0.876 0.746 0.878

Best Single Predictor (TransE) 0.806 (TransE) 0.839 (TransE) 0.861

Model←d=100 Freebase-150k DBpedia-Music YAGOc-195k

ALL 0.909 0.844 0.900
mwNN + TransE 0.884 0.844 0.890
mwNN + RESCAL 0.852 0.734 0.847
TransE + RESCAL 0.899 0.845 0.886

Best Single Predictor (TransE) 0.831 (TransE) 0.848 (TransE) 0.872

we can also observe from Table 2, that mwNN and RESCAL best complement
with TransE.

5 Conclusion

In this work we showed that the predictions of three leading latent variable
models for link-prediction in knowledge-graphs are indeed complementary to
each other, which can be exploited in an ensemble solution. In our experiments
we observed that especially TransE learns substantially different aspects of the
data than RESCAL and mwNN. RESCAL and mwNN on the other hand are
more similar to each other, even though these two models differ in various as-
pects. We further showed that an ensemble consisting of all three methods brings
substantially higher prediction quality on all used datasets and all settings when
the models need to exploit a very low dimensional embedding space (d = 10).
The LCWA can also be exploited in the ensemble when the type-constraints for
properties are absent or fuzzy. On the DBpedia-Music and YAGOc-195 dataset
we observed that with a higher dimensional latent embedding space the improve-
ments become less significant.
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