
Categorical EHR Imputation with Generative
Adversarial Nets

1st Yinchong Yang
Siemens AG

Munich, Germany
yinchong.yang@siemens.com

2nd Zhiliang Wu
Siemens AG

Ludwig-Maximilians University of Munich
Munich, Germany

zhiliang.wu@siemens.com

2nd Volker Tresp
Siemens AG

Ludwig-Maximilians University of Munich
Munich, Germany

volker.tresp@siemens.com

3rd Peter A. Fasching
University Clinics Erlangen

Department of Gynecology and Obstetrics
Erlangen Germany

peter.fasching@uk-erlangen.de

Abstract—Electronic Health Records often suffer from missing
data, which poses a major problem in clinical practice and
clinical studies. A novel approach for dealing with missing
data are Generative Adversarial Nets (GANs), which have been
generating huge research interest in image generation and
transformation. Recently, researchers have attempted to apply
GANs to missing data generation and imputation for EHR
data: a major challenge here is the categorical nature of the
data. State-of-the-art solutions to the GAN-based generation of
categorical data involve either reinforcement learning, or learning
a bidirectional mapping between the categorical and the a real
latent feature space, so that the GANs only need to generate
real-valued features. However, these methods are designed to
generate complete feature vectors instead of imputing only the
subsets of missing features. In this paper we propose a simple
and yet effective approach that is based on previous work
on GANs for data imputation. We first motivate our solution
by discussing the reason why adversarial training often fails
in case of categorical features. Then we derive a novel way
to re-code the categorical features to stabilize the adversarial
training. Based on experiments on two real-world EHR data with
multiple settings, we show that our imputation approach largely
improves the prediction accuracy, compared to more traditional
data imputation approaches.

Index Terms—Data Imputation, Multiple Imputation, Gener-
ative Adversarial Nets

I. INTRODUCTION

The increasing importance of data quality in healthcare:
Electronic Health Records (EHR) present a rich data source
and are, e.g., used for intra- and inter-departmental information
exchange, for documentation purposes, and, most recently, as
the basis for many analytic studies. Typically, data involving
critical clinical decision paths are of good quality, but less
critical data are often incomplete, e.g., due the huge workload
of clinical personnel; this poses a significant problem for the
secondary use of EHR data. In particular the value of a clinical
study greatly depends on data completeness and correctness.
Although the prime solution would be to enhance the EHR
quality by improving the EHR system design and the data
collection process, the missing data problem is not likely to

completely disappear. [1] provides an overview on missing
data approaches in statistics and [2] presents solutions to the
neural network setting. When using nonlinear models, data
imputation is often used [3], [4], which is also the approach
pursued in this paper. Data imputation is often based on para-
metric or nonparametric probability density estimation. In this
paper we investigate a recently developed GAN architecture.
It imputes data without calculating a probability density first,
and might become an important method of choice in the future.

Multiple instead of single imputation: More specifically,
we discuss a novel realization of the well-known multiple
imputation approach [1], [5], [6]. By embedding certain ran-
domness into the imputation method and performing impu-
tation multiple times, one can achieve more flexibility and
reliability than with single imputation. This allows for —in
contrast to an averaged point estimate of each missing value—
estimating the statistical reliability of the imputation methods
[7]. Multiple Imputation by Chained Equations (MICE) [8] fits
one regression model for each feature that contains missing
values, conditioned on all complete features. This method can
model the dependency between features but the number of
necessary regression models increases quadratically with the
number of features. One could also simply assume a multi-
variate Gaussian distribution for the missing features and draw
multiple random samples as imputation. The covariance matrix
represents the dependency between features but the Gaussian
distribution cannot handle categorical features, which are often
present in EHR data. In this paper we investigate a novel
approach that takes into account the categorical nature of
the features while modeling inter-feature dependency in an
efficient way.

GAN as multiple imputation: In recent years, a new
class of neural networks, called Generative Adversarial Nets
(GANs), have been developed and have generated huge interest
in the research community. The original paper [9] proposes
to train a network that can learn the underlying distribution
of the data, allowing for generating unlimited amount of

data instances. When applied to images, the generated images
often appear quite real. Since their initial introduction, a large
variety of exciting improvements and modifications of the
GAN framework have been proposed to solve different and
yet related tasks, such as generating labeled data [10], image
translation [11], deriving super-resolution [12] and image
augmentation [13]. [14] proposes a new variant, the Generative
Adversarial Imputation Nets (GAINs), to perform data im-
putation and shows promising results on multiple benchmark
datasets. This method presents in fact a novel realization of
the multiple imputation concept, and it is also related to the
MICE algorithm. Instead of trying all possible orders to build
the regression chain, it exploits the expressiveness of deep
neural networks to model all features with missing values
simultaneously. However, this approach cannot immediately
be applied to EHR data, as we discuss now.

Challenge in EHR data for GAN: Most of the GAN
models have been designed for image data, where the features,
i.e., the pixel values, are real numbers. This enables error
back-propagation within the GAN framework. In EHR data,
however, a large proportion of patient features are categorical.
In order to generate categorical data, even when binary coded,
requires operations that are not differentiable, meaning that
standard adversarial training is not possible. Due to the same
reason, GANs have not seen many successful applications in
NLP data [15]. A few approaches to generate discrete data
with GANs have recently been proposed; most promising
are approaches involving reinforcement learning [16], more
specifically policy gradients [17]. Another proposed solution
is to learn a mapping function from the discrete space of words
to a latent real space as well as a reverse mapping [18]. [19]
applies this idea to handle categorical features in EHR data
and develops auto-encoders to function as the mapping. In
such cases, the GAN model only needs to generate real valued
vectors that represent the originally discrete data instances,
allowing for the gradient propagation from discriminator and
generator. In our related works section, we will review this
approach in more detail. It is to note that the mapping
functions between discrete and real spaces serve as pre- and
post-processing steps, and are crucial for the quality of the
translation between the discrete and real spaces. Such mapping
functions are often trained in an Auto-encoder fashion and
thus rely on the completeness of the input features. In a
data imputation setting, however, the input features are by
definition incomplete and the learned mappings must learn to
map incomplete data. That is to say, this proposed approach is
only applicable to generating complete feature vector instead
of subsets of features.

Our contributions: The Generative Adversarial Imputation
Nets framework [14] has been proposed to apply adversarial
training to impute missing data of real values. In this work,
we adjust this framework so that it can also perform data
imputation for categorical features. We hypothesize that the
reason that adversarial training often fails with softmax ac-
tivation in the generator is that, while the true data features
contain exclusively 0s and 1s, the softmax function can only

produce a probability value between 0 and 1. On one hand,
within a couple of epochs, the discriminator with sufficient
expressiveness can learn to discriminate the generated values
from real data exploiting this fact. On the other hand, it
typically takes more epochs of training before the generator
can produce real values close to 0 and 1. This phenomenon,
i.e., that the discriminator always makes correct decisions and
the generator always receives negative feedback from the very
beginning, results in the divergence of the adversarial training
[20]. In other words, the generator fails to learn anything
useful to improve itself.

One of our major contributions is to propose a small but very
effective modification to the data processing step. We perform
a fuzzy binary coding of categorical features, i.e., we encode
the binary values using real numbers between 0 and 1, while
retaining the category information. In this way we guarantee
that from the very beginning of the adversarial training, values
produced by the generator already resemble the real values in
their domain. To this end, the discriminator can not “cheat”
and exploit the simple fact that real data are all binary while
generated data are all real. The discriminator can only focus
on the true and informative characteristics of the real and
generated data, such as the dependency between features.
Thus, the generator can receive more useful gradient updates
from the discriminator, which improves the data generation
process.

The rest of this paper is organized as follows. In section II
we provide an overview of related works in three research
fields of GANs: generation of categorical data, application
GANs for EHR data and for data imputation. After a brief
introduction to the GAN framework in section III, we elaborate
the methods we propose in detail, including the fuzzy binary
coding and the GAN for categorical data generation in section
IV. In section V we present our experimental results on two
EHR datasets and show that imputation based on the GAN
framework with fuzzy binary coding can be quite effective in
dealing with missing categorical data in EHRs.

II. RELATED WORKS

GANs that generate categorical features: There are cur-
rently three different approaches for generating categorical
features with GANs. The first approach modifies the output
activation function in the generator so that the gradient can
flow from the discriminator to the generator while the latter
generates pseudo-discrete features. Examples are so-called
Gumbel Softmax [21], [22] or a soft argmax function [23]. The
second approach modifies the training objectives. [16], [17]
apply REINFORCE [24] algorithm for adversarial training.
The third approach, including [18], [19], learns a mapping
from the raw discrete feature space to a latent real space, as
well as the reverse mapping. These mapping functions are,
e.g., realized as an auto-encoder. With the first mapping one
transforms all training data that are originally categorical into
real representations. Then, the GANs framework only has to
operate in this real space, learning to generate real feature
vectors. As a post processing step, the generated vectors are

transformed back into the discrete space using the second
mapping function.

GANs in EHR data analysis: GANs have already found
various interesting applications in healthcare. [19] and [25]
aim at generating pseudo-synthetic EHR data for the purpose
of de-identification. The former focuses on the challenge of
generating categorical features by applying an auto-encoder
that can map between the discrete feature space and a real
latent space. It is pointed out that applying differentiable
Gumbel softmax or soft argmax functions does not completely
solve the categorical problem, because patient features could
be multinomial (i.e., multiclass) as well as multiple Bernoulli
distributed (i.e., multi-label). The latter paper develops GANs
that are based on Recurrent Neural Networks (RNN) to
generate high dimensional time series EHR data.

Missing Data Imputation using Generative Adversarial
Nets: [14] adjusted the GAN framework for the specific task
of data imputation. It can be interpreted as a special case
of conditional GAN, in the sense that both discriminator
and generator take as input a mask vector indicating the
missingness of feature values. It is shown that this novel
training framework can efficiently impute real-valued features,
especially in case where the missing rate is relatively high.
Our method is largely inspired by this work, but we focus on
the specific techniques to perform adversarial imputation of
categorical features.

III. PRELIMINARY: THE GENERATIVE ADVERSARIAL
NETS FRAMEWORK

In its simplest case, a GAN framework [9] consists of two
neural networks. The first one is often referred to as the
generator, which consumes as input some random seeds r
and generate data instances g that are supposed to resemble
real data x. The generator can be seen as a function of

g = G(r|ΘG). (1)

Each generated sample is provided to the second neural
network, the discriminator, i.e., D(g|ΘD). The discriminator
also consumes as input the real data samples as D(x|ΘD). The
training of the generator and the discriminator is adversarial,
in that, while the discriminator is trained to correctly classify
a sample to be either real or generated, the generator learns
to fool the discriminator so that it classify generated samples
to be real. More specifically, in term of the log-loss function
H(a, b) = b · log(a) + (1 − b) · log(1 − a), we can write the
discriminator loss and the generator loss as

lossD =− Ex∼PrealH(D(x|ΘD), 1)

− Er∼PseedH(D(g|ΘD), 0)

=− Ex∼Preal log(D(x|ΘD))

− Er∼Pseed log(1−D(g|ΘD))

lossG =− Er∼PseedH(D(g|ΘD), 1)

=− Er∼Pseed log(D(g|ΘD))

(2)

respectively. With sufficient training, D will not be able to
differentiate between real and generated samples by assigning

neutral values to both cases. G will learn to map random
seeds from an arbitrary distribution Pseed to the underlying
distribution of the real data Preal. Denoted as P̂real, this
estimate of the real data distribution allows for unlimited
sampling.

IV. METHOD

In this section we give a detailed introduction to our
method, which consists of two major components: the fuzzy
binary coding and a modification of the Generative Adversarial
Imputation Nets [14] for categorical feature generation.

A. Fuzzy binary coding

It is important to distinguish between multinomial and multi-
Bernoulli distributed categorical features. In the former case,
the random variable is realized by taking only one single cat-
egory, i.e., the categories are mutually exclusive. For instance,
the estrogen-receptor status of a patient could only be either
positive, negative or unknown. In machine learning, especially
if such features appear as targets, they are often referred to as
multiclass features and modelled with the softmax function.
In the multi-bernoulli case, a categorical feature can realize
more than one categories, such as the location of metastasis,
which could be multiple organs at the same time, or multiple
(serious) adverse events (AE/SAE) could be triggered by
certain treatment. For such a feature with non-mutual exclusive
categories, one often use the term multilabel. For a concise
terminology, we adopt the convention from machine learning
and refer to these two cases as multiclass and multilabel
features for the rest of the paper.

Assume that we observe p categorical features on one data
instance and the j-th feature is a multiclass one, denoted as

ξj ∈ Ωj where |Ωj | = qj (3)

As the first step, we perform regular binary coding ξj →
zj ∈ {0, 1}qj . We use the term inactive category to refer to
a category that is represented by 0; and an active category
is represented by a 1. It is easy to see that the sum of all
elements in zj is strictly 1 if ξj is of multiclass, and could be
N0 if ξj is a multilabel feature. These binary codings are also
known as one-hot and multi-hot encodings, respectively.

In the second step, we transform the binary coded variable
zj in its fuzzy representation.

a) Multiclass case: We propose a transformation denoted
as f(·) of zj as:

xj(k) = f(zj(k)) =

{
U [0, 1

qj
) ∀k : zj(k) = 0,

1−
∑
k xj(k) for k : zj(k) = 1.

(4)

Please note that we use xj(k) to denote the k-th element
in the vector xj , in order to avoid double subscripts; U [a, b)
denotes a continuous uniform distribution in the interval of
[a, b). Assuming any active category to be k∗, then each of
the qj−1 inactive categories is represented by a fraction xj(k)
which is uniformly sampled from [0, 1

qj
). With this smoothing,

we can retain exactly the same information encoded in zj . It
is easy to see that,

1−
∑
∀k 6=k∗

xj(k) >
1

qj
. (5)

In other words, the left side of the inequation (5), which
represents the active category k∗, is guaranteed to be larger
than any fraction encoding an inactive category. Operations
such as max, min, argmax and argmin applied on the fuzzy
xj are always able to decode the same information in zj .

b) Multilabel case: Since the categories are no more
mutual exclusive, we can derive a fuzzy binary coding by
simply taking 0.5 instead of 1

qj
as the upper bound of uniform

sampling:

xj(k) = f(zj(k)) =

{
U [0, 0.5) for zj(k) = 0,

U [0.5, 1] for zj(k) = 1.
(6)

It is also guaranteed that the category information in zj
remains intact, since we can always recover zj applying
I(xj ≥ 0.5), where I(·) denotes the indicator function.

Transforming the binary codes into fuzzy binary codes
prevents the discriminator from exploiting the fact that the
generated values are all fractions and the real values only
contain 0’s and 1’s. This fuzzy binary coding, especially the
samplings in Eq. (4) and (6), can be performed only once
as pre-processing step, or alternatively, prior to each training
epoch. In our experiments, we implement the first variant.

In Fig. 3 we provide some empirical results based on
our experiments, demonstrating that without the fuzzy binary
coding trick, the adversarial training tends to diverge, i.e., the
discriminator keeps improving itself by exploiting the obvious
difference between the generated and real data. The generator,
therefore, receives no gradients from the discriminator for
improvement.

Applying the fuzzy encoding, the discriminator can be
forced to focus on discovering the true difference between
the real and generated data in term of their distributions and
dependencies instead of their different domains. These discov-
eries in turn shall encourage the generator to approximate the
real data distribution.

Lastly, we concatenate the feature vectors of all categorical
features as

x̄ = [x1,x2, ...,xp] = [xj]
p
j=1 ∈ [0, 1]

∑p
j=1 qj , (7)

which form the inputs to the generative adversarial imputation
network. Note here that we do not use another subscript
denoting the data instance in x, and simply assume that they
are all i.i.d. samples.

B. Categorical Generative Adversarial Imputation Nets (Cat-
egorical GAINs)

a) Data notation: In order to represent the missingness
of data, [14] introduced a binary mask vector m indicating
which features are missing in a data instance represented by
a real vector ξ. Here m and ξ have exactly the same size

and each element m(k) is 1 if ξ(k) is not missing, and 0
otherwise.

In case of categorical features, however, we introduce two
masking mechanisms. Firstly, we use µ to denote the miss-
ingness of ξ, i.e.,

µj =

{
0 if ξj is missing,
1 otherwise

(8)

Once the features are binary and fuzzy coded, we construct
another mask vector as:

mj =

{
0 if ξj is missing,
1 otherwise

∈ [0, 1]qj , (9)

where we denote a vector of 0’s and 1’s using 0 and 1,
respectively. It can be interpreted as simply repeating µj for
qj times for the j-th feature. The rationale for these two
kinds of masking is that the discriminator’s prediction is in
fact equivalent to the missingness of the data. For real-valued
features discussed in [14], one could simply reuse the masking
vector as the target of the discriminator. But for categorical
features that are coded as binary or fuzzy binary, doing so
would imply making a prediction for each single category
instead of each feature. In the following introduction to the
generator and discriminator, we shall give a more detailed
explanation.

Analogously to the construction of x̄, we have the concate-
nation of mj’s:

m̄ = [m1,m2, ...,mp] = [mj]
p
j=1 ∈ [0, 1]

∑p
j=1 qj (10)

b) The generator: The generator takes as input i) the
fuzzy binary coded feature vector x̄ that is expected to contain
missing values, ii) the equally sized mask vector m̄ and
iii) a random vector r̄ = [rj]

p
j=1 functioning as seeds. The

generator produces as output a single vector denoted ḡ that is
supposed to contain imputed missing values in x̄:

ḡ = G(x̄, m̄, r̄). (11)

Specifically in our implementation, we build as generator a
neural network with 3 hidden layers:

hG1 = relu(WG
1 · [x̄+ (1− m̄) ◦ r̄, m̄] + bG1) (12)

hG2 = relu(WG
2 · h

G
1 + bG2) (13)

hG3 = relu(WG
3 · h

G
2 + bG3) (14)

gj = σ(WG
o (j) · hG3 + bGo (j)) ∀j ∈ [1, p] (15)

ḡ = m̄ ◦ x̄+ (1− m̄) ◦ [gj]
p
j=1 (16)

As proposed by [14], the operation carried out in Eq. (12) first
fills the missing values in x̄ with random seeds r̄, before feed-
ing it to the neural network. The hidden layers hG1 ,h

G
2 ,h

G
3

extract hierarchically the global context information from the
input. In the last layer, we define for each categorical feature j
a specific classification model. Depending on the distribution
assumption of the feature, the activation function can be either
sigmoid or softmax, both of which are denoted using σ for
the sake of simplicity. In Eq. (16), the outputs from all p

activation functions are concatenated as [gj]
p
j=1. And if a

specific feature is in fact not missing, the generated values are
replaced by the real values. Similar to the Multiple Imputation
by Chained Equations [5], this generator in fact attempts to
approximate the real distribution πj∗ of each missing variable
Xj∗ conditioned on all other observed features xj , i.e.,

π̂j∗ = gj∗ = P(mj∗ = 1 | {Xj = xj}∀j:µj=1) (17)

This architecture is illustrated in Fig. 1 with only two cate-
gorical features as examples.

0 1 0

.1 .8 .1 .7 .4 .3 .2

Fuzzy coding

Global context representation vector

Activation for
feature 1

Activation for
feature p

…

.1 .8 .1 .0 .9 .0 .1

.1 .5 .4

Seed sampler

…

…

…

0 0 0 0

1 1 1 0 0 0 0

Fig. 1. A detailed illustration of the generator in categorical GAIN archi-
tecture. As an example, we visualize two categorical features that are binary
coded as z1 and zp. The first is labeled as observed while the second as miss-
ing in m1 and mp. Therefore, the observed binary input of z1 = [0, 1, 0] is
transformed into a fuzzy representation of x1 = [0.1, 0.8, 0.1]. And the seed
sampler fills these positions with random values in rp. On the output side, the
generated values for the first feature are replaced by the original, fuzzy codes,
since the true values are observed, i.e., g1 := x1. Only the generated values
for the other feature gp are exposed to the discriminator. The concatenation
of the overall generator output is denoted as ḡ.

c) The discriminator: Like the generator, the discrimi-
nator also consumes two input vectors. The first input is the
concatenated output of the generator ḡ. The second input is a
hint vector as proposed by [14], which can be interpreted as
a masked mask vector: For each data instance, one randomly
samples a predefined portion of features and sets the corre-
sponding entries in the mask vector m̄ to be 0.5. On the output
side of the discriminator, we have again an concatenated vector
µ̂ = [µ̂]pj=1. Each µ̂j is a point estimate of µj as defined in Eq.
(8), indicating whether the j-th feature in the input, denoted
as gj is generated or real,

µ̂j∗ = P(gj∗ is real | {gj}∀j:j 6=j∗). (18)

Generally, we can describe the discriminator as

µ̂ = D(ḡ, h̄). (19)

Specifically for our experiments, we have a neural network
with two hidden layers:

hD1 = relu(WD
1 · [ḡ, h̄] + bG1) (20)

hD2 = relu(WD
2 · h

D
1 + bD2) (21)

µ̂j = σ(wD
o (j)T · hG3 + bDo (j)) ∀j ∈ [1, p] (22)

In parallel to the architecture of the generator, the first two
hidden layers represent the global context information, while
the last layer contains p logistic regression models. Each of
them attempts to predict whether the j-th feature in the input
gj is generated. In the original GANs, each input vector to the
discriminator is typically either generated or real. In GAIN,
however, one input vector to the discriminator may contain
generated and real data simultaneously, and the discriminator
performs multiple predictions correspondingly.

In the original setting in [14], where the features are of
real values, the training target of the discriminator is in fact
identical with the mask vector. In case of categorical features,
however, one should not directly utilize the mask vector m̄
as training target. Because in order to mask a (fuzzy) binary
coded vector xj completely, we have to define a same sized
vector mj . Training a discriminator that attempts to recover
every element in mj is in fact a prediction for each category
instead of feature. To this end, we propose to train the
discriminator so that each µ̂j would approximate µj as in Eq.
(8) for all real data. The generator, on the other hand, should
make the discriminator assign a µ̂j that is close to 1− µj to
all generated values.

The hint mechanism is also a crucial component in training
the discriminator. Once a subset of entries in the mask vector
is set to a neutral value of 0.5, the discriminator is enforced
to predict whether the corresponding values in ḡ are real or
generated. Such prediction is supposed to rely on other entries
in ḡ that are provided to discriminator. The proportion of fea-
tures that are neutralized in the hint vector therefore controls
the amount of information from which the discriminator is
supposed to learn the decision. In order to see that one could
consider two extreme cases: With the proportion close to 1,
the discriminator would attempt to perform prediction for a
large amount of features in ḡ, based on very few features
that are denoted as either real or generated. This could be a
challenging task for the discriminator and, more importantly,
the discriminator may not learn to build the prediction based
on the dependency between features. With a proportion that is
close to 0, the hint vector becomes almost identical to the mask
vector. In the original setting in [14], where features are of real
values and the mask vector is in fact the prediction target of
the discriminator, having two almost identical vectors as input
and output of a neural network would cause the discriminator
to simply learn an identity function, not being able to tell the
difference between real and generated data. This is slightly
less of a problem in case of categorical features, because as
stated above, our mask vector as input to the discriminator
and training target are not exactly identical, although they
contain the same information on the missingness of the data.

To this end, for experiments, we include the hint mechanism
and use a relatively small proportion of 0.1. This reveals
90% of available information of the data missingness to the
discriminator, which is encouraged to build its prediction based
on the dependency among features.

The hint vector also has to be adjusted for categorical
features. Similar to the mask vectors, we define for each cat-
egorical feature j a hint vector hj that consists of exclusively
either 0 or 1, and denote the concatenation of all hint vectors
as h̄ = [hj]

p
j=1. The proposed approach in [14] would imply

masking the missingness information for each category instead
of each feature. To this end, we propose to first sample a
subset out of the p features, and set the entire corresponding
hint vectors to be 0.5, i.e. hj = 0.5, as can be seen in the
illustration in Fig. 2

Global context representation vector

Discriminative
decision for

feature 1
…

.1 .8 .1 .0 .9 .0 .1

.6 .5

1 0…

….5 .5 .5 0 0 0 0

Discriminative
decision for

feature 1

Fig. 2. A detailed illustration of the discriminator in categorical GAIN
architecture. The input to the discriminator is the concatenated output ḡ from
the generator, as well as the hint vector h̄. The output of the discriminator
here consists of 2 scalars of µ̂1 and µ̂p. They are trained against the scalars
µ1 and µp, encoding the missingness of both features respectively.

d) Loss functions: Similar to the original GANs frame-
work as in Eq. (2), GAIN also contains two adversarial loss
functions lossD and lossG:

lossD = −Σj (µj · log(µ̂j) + (1− µj) · log(1− µ̂j)) (23)
lossG = −Σj(1− µj) · log(µ̂j) (24)

The discriminator adjusts itself to make correct classification
by minimizing the lossD in Eq. (23). This objective forces the
discriminator to produce large µ̂j if µj = 1, indicating that
xj is real. The generator learns to fool the discriminator by
minimizing lossG in Eq. (24). This loss is adversarial to the
second additive term in the discriminator loss. The generator
encourages the discriminator to assign large probability µ̂j to
features where µj = 0, implying that the generated data should
be classified as real.

As defined in Eq. (16), once a feature j is observed instead
of missing, whatever is generated by the generator gets re-
placed by the actually observed values. The weight parameters
responsible for these features will not get gradient signals for

this specific training sample. Therefore, [14] proposes a new
loss function that measures the similarity between generated
and the observed feature values. In case of real-valued features
this loss could be realized as mean-squared error. In our
case, we apply the log-loss to measure the distance between
probabilities and binary codes:

losssim = Σjm
T
j (−xj) log(gj). (25)

This loss mechanism implies that, in case a feature is
observed, the generator should learn to reproduce it based on
all other observed features; and in case a feature is missing,
the adversarial training forces the generator to produce values
that the discriminator would believe to be real.

In comparison to the original GAIN architecture in [14],
there are three adjustments that we propose for categorical
features. First, the output activation function in the generator:
in order to take into account the discrete distribution of the data
features, we apply softmax or sigmoid activation functions
instead of linear activation. Second, the target variable of the
discriminator: In case of real valued features, the discriminator
only needs to predict the mask vector m̄ which has the
same shape as the feature vector x̄. This is because each
element in the mask vector can represent the missingness of
the corresponding feature. However, in order to encode the
missingness of a feature containing multiple categories xj , it is
unnecessary for the discriminator to recover the corresponding
mask vector mj , since all values in this vector are either all
0’s or all 1’s. Instead, it is much more efficient to train the
discriminator to predict the scalar µj . Thirdly, due to the same
reason, the hint mechanism also has to be defined on the level
of feature instead of categories. In other words, for a feature
j we initialize a vector hj from mj , and set all elements to
be 0.5 if necessary.

V. EXPERIMENTS

In this section, we provide experiments conducted on two
datasets. The first dataset is publicly available and a well
known benchmark for breast cancer classification based on
categorical features. The second dataset is provided by the
PRAEGNANT study [26], a Germany-wide clinical study for
breast cancer research.

Please recall that we perform fuzzy binary coding of the
categorical features and our generator produces values that
range between 0 and 1. We recover the binary codes applying
I(xj ≥ 0.5) for multilabel and I(xj = max(xj)) for multi-
class features as a post processing step. Because, as discussed
in subsection IV-A, the encoded categorical information is
always retained after the fuzzy binary coding and can be
recovered completely.

A. Experiments on a public dataset

The breast cancer dataset is available on UCI data repository
[27]. It contains 9 multiclass features (Tab. I) observed on 286
patient cases. The prediction target is to differentiate between
201 recurrence and 85 no-recurrence cases of the cancer.

Feature #Categories
age 6
menopause 3
tumor-size 11
inv-nodes 7
node-caps 2
deg-malig 3
breast 2
breast-quad 5
irradiat 2

TABLE I
PATIENT FEATURES FROM THE UCI BREAST CANCER DATASET

We perform 5-fold cross-validation on the complete dataset,
applying logistic regressions with ridge regularization (Tab.
II) and report the prediction accuracy and AUROC scores. As
sanity check we also provide these scores produced by random
and most popular predictions, the latter of which constantly
produces the frequency of the label class in the training set.

Methods Accuracy AUROC
Random prediction 0.516 ± 0.051 0.484 ± 0.053

Most popular prediction 0.707 ± 0.051 0.500 ± 0
Prediction on complete data 0.737 ± 0.056 0.721 ± 0.051

TABLE II
SANITY CHECKS FOR THE PREDICTION TASK ON THE UCI BREAST

CANCER DATASET

For each cross-validation split, we randomly mask 10%,
20%, 30% 40% and 50% of the features. We then apply
different imputation approaches to recover the masked values.
Note that the imputation model is only trained on the training
set, and applied on both training and test sets, in order to
simulate a realistic setting. The predictive model is then trained
on imputed training set and validated on the imputed test set.

As the first baseline method we implement a low-rank
reconstruction model using SVD. Assuming Xtr and Xte as
training and test sets containing missing values, we compose
the former asXtr = UDV T , and impute the training and test
sets as X̃tr = U rDrV

T
r and X̃te = Xte(DrV

T
r)†(DrV

T
r),

respectively. Here we denote the the low rank representation
of U ,D and V T using U r,Dr and V T

r with a specific rank
r. Please note that we do not perform any argmax to the
reconstructed values.

The same ranks also apply to the second baseline model,
which is an auto-encoder with non-linear tanh activation for
the hidden layer. We summarize all prediction performances
in term of accuracy and AUROC scores in Tab. III as average
and standard deviation of the 5 cross-validation splits. For
both baseline models we conduct experiments using 4 different
ranks, i.e., the size of the hidden layer in AE, of 4, 8, 16 and
32, and report the best results. For the categorical GAIN model
we perform 100-fold multiple imputation.

In term of accuracy, SVD reconstruction turns out to be
more effective for this dataset, achieving the best accuracy in 4
out of 5 settings of masking proportions. In term of AUROC,
categorical GAIN achieves 4 out of 5 cases. It is therefore
interesting to note that for this dataset, the SVD decomposition

Methods Accuracy AUROC

10%

No imputation 0.718 ± 0.067 0.66 ± 0.11
Avg imputation 0.744 ± 0.05 0.639 ± 0.088

SVD reconstruction 0.776 ± 0.062 0.689 ± 0.114
Auto-encoder 0.751 ± 0.047 0.652 ± 0.089

Categorical GAIN 0.739 ± 0.066 0.697 ± 0.098

20%

No imputation 0.711 ± 0.039 0.634 ± 0.07
Avg imputation 0.707 ± 0.036 0.671 ± 0.065

SVD reconstruction 0.747 ± 0.046 0.664 ± 0.082
Auto-encoder 0.729 ± 0.051 0.636 ± 0.038

Categorical GAIN 0.71 ± 0.046 0.697 ± 0.087

30%

No imputation 0.726 ± 0.031 0.644 ± 0.086
Avg imputation 0.729 ± 0.04 0.665 ± 0.071

SVD reconstruction 0.726 ± 0.053 0.689 ± 0.083
Auto-encoder 0.726 ± 0.038 0.641 ± 0.053

Categorical GAIN 0.737 ± 0.032 0.704 ± 0.042

40%

No imputation 0.678 ± 0.052 0.686 ± 0.058
Avg imputation 0.708 ± 0.027 0.54 ± 0.066

SVD reconstruction 0.751 ± 0.026 0.709 ± 0.059
Auto-encoder 0.737 ± 0.033 0.638 ± 0.054

Categorical GAIN 0.7 ± 0.017 0.686 ± 0.051

50%

No imputation 0.701 ± 0.044 0.607 ± 0.091
Avg imputation 0.704 ± 0.044 0.632 ± 0.057

SVD reconstruction 0.747 ± 0.029 0.665 ± 0.063
Auto-encoder 0.74 ± 0.034 0.635 ± 0.041

Categorical GAIN 0.713 ± 0.025 0.72 ± 0.044

TABLE III
PREDICTION PERFORMANCES ON IMPUTED UCI BREAST CANCER

DATASET USING DIFFERENT APPROACHES

does not take into account the the fact that the feature values
are in fact binary And yet the SVD reconstruction achieves
comparable performances as categorical GAIN. This relatively
simple technique, as well as many approaches that it has
inspired, are widely applied in recommender systems and
knowledge graph, where the most essential task is the com-
pletion of matrices and tensors. Therefore, it could very well
present a simple and effective solution for data imputation as
well. However, one should also note that the label distribution
in this dataset is relatively unbalanced (201:85). Consequently,
the most popular prediction as in Tab. II can already reach 70%
accuracy. And even with complete data the prediction model
cannot improve beyond 73.7%. The AUROC, in contrast,
seems to be a more informative and convincing measurement,
because the prediction on complete data achieves 72% while
the most popular prediction 50%. Therefore, for this dataset,
ROC seems to be a more reliable means to measure the
prediction quality.

B. Experiments on the PRAEGNANT dataset

1) Cohort and Features: For our experiment, we extract
EHR data on 1234 patients with metastatic breast cancer who
have met the first line of treatment from the PRAEGNANT
study network [26]. We build our predictive models based on
features that are clinically relevant, as well as those that are
based on an earlier study [28] aiming at automatically inferring
the feature relevance in EHR data. The features included are
listed in Tab. IV. We have 10 multiclass features and 9 multi-
label featues, both of which are fuzzy-binary coded. The one

numeric feature is normalized between 0 and 1. Features such
as current metastasis, metastasis estrogen receptor, metastasis
progesterone receptor, AE/SAE and ECOG life status were
originally temporal features. We aggregate and normalize these
w.r.t the time dimension as in [29]. For these patients it is
especially important for the physicians to decide, whether
they should receive antihormone therapy or chemo therapy.
The recorded clinical decision serve as ground truth, i.e. the
target of our prediction. 750 of the 1234 patients have received
antihormone, and the rest chemo therapy.

Multiclass features #Categories
Staging at breast 15
Staging at axilla 8
Ever received antihormone therapy 8
Ever received chemo therapy 8
Metastasis by diagnostics 5
Tumor estrogen receptor status 4
Tumor progesterone receptor 4
Immunohistochemistry for HER2 6
Tumor grading 5
KI67 3
Multilabel features #Categories
Staging of metastasis 10
Location of earlier metastasis 14
Current metastasis 4
Metastasis estrogen receptor 3
Metastasis progesterone receptor 3
HER2 IHC 5
Metastasis grading 4
AE/SAE 20
ECOG life status 4
Numerical features #Dimension
Age 1

TABLE IV
PATIENT FEATURES FROM THE PRAEGNANT STUDY.

Here we apply almost exactly the same experimental setting
as with the public dataset, except that, considering the feature
space of higher dimension, we train the SVD and auto-encoder
imputation models with an additional rank of 64.

Methods Accuracy AUROC
Random prediction 0.516 ± 0.029 0.526 ± 0.041

Most popular prediction 0.607 ± 0.046 0.500 ± 0
Prediction on complete data 0.710 ± 0.029 0.774 ± 0.039

TABLE V
SANITY CHECKS FOR THE PREDICTION TASK ON THE PRAEGNANT

DATASET

2) Experimental Results: In Tab. V we could see there
is a large improvement from most popular prediction to the
prediction on complete data in term of both accuracy and
AUROC.

In Tab. VI we could see that, the advantage of categor-
ical GAIN only becomes visible as the masking proportion
increases. For smaller proportion like 10% and 20%, simpler
methods such as average imputation and SVD shows superior
performances. With a proportion larger than 30%, categorical
GAIN outperforms all other methods and the improvement
grows with masking proportion. In term of AUROC, for
instance, categorical GAIN can always achieve a score above

Methods Accuracy AUROC

10%

No imputation 0.674 ± 0.017 0.718 ± 0.016
Avg imputation 0.689 ± 0.008 0.727 ± 0.024

SVD reconstruction 0.7 ± 0.015 0.645 ± 0.011
Auto-encoder 0.609 ± 0.023 0.506 ± 0.022

Categorical GAIN 0.645 ± 0.012 0.725 ± 0.024

20%

No imputation 0.669 ± 0.014 0.69 ± 0.011
Avg imputation 0.684 ± 0.015 0.707 ± 0.014

SVD reconstruction 0.663 ± 0.025 0.621 ± 0.032
Auto-encoder 0.609 ± 0.021 0.496 ± 0.03

Categorical GAIN 0.649 ± 0.016 0.716 ± 0.022

30%

No imputation 0.645 ± 0.03 0.696 ± 0.018
Avg imputation 0.658 ± 0.039 0.695 ± 0.021

SVD reconstruction 0.662 ± 0.04 0.599 ± 0.018
Auto-encoder 0.609 ± 0.043 0.528 ± 0.017

Categorical GAIN 0.665 ± 0.018 0.723 ± 0.01

40%

No imputation 0.652 ± 0.008 0.663 ± 0.009
Avg imputation 0.643 ± 0.012 0.66 ± 0.014

SVD reconstruction 0.658 ± 0.01 0.6 ± 0.017
Auto-encoder 0.608 ± 0.017 0.494 ± 0.034

Categorical GAIN 0.666 ± 0.017 0.711 ± 0.015

50%

No imputation 0.635 ± 0.027 0.646 ± 0.029
Avg imputation 0.649 ± 0.041 0.643 ± 0.038

SVD reconstruction 0.644 ± 0.015 0.566 ± 0.018
Auto-encoder 0.608 ± 0.013 0.509 ± 0.038

Categorical GAIN 0.654 ± 0.05 0.705 ± 0.029

TABLE VI
PREDICTION PERFORMANCES ON IMPUTED PRAEGNANT DATASET

USING DIFFERENT APPROACHES

70%, while the other performance of other methods drop much
faster as the proportion of missing data increases. This agrees
with findings in [14], that it is especially advantageous to apply
GAIN to impute data in case of a relatively higher missing
rate.

One might also hypothesize that the GAIN framework,
consisting of relatively complex neural networks, profit from
increasing number of training samples. For a smaller dataset
such as the public breast cancer dataset, it seems more
reasonable to first experiment with simpler methods such as
SVD reconstruction. The GAIN approach, on the other hand,
turns out to be more appropriate in case of large number of
training samples and more complex feature dependencies.

We also present in Fig. 3 the development of the losses of
discriminator (top) and generator (bottom), trained on binary
(left) and fuzzy coded (right) features. In case of plain binary
coded features, it is clear that the adversarial training fails
since the generator loss increases, while the discriminator loss
decreases constantly. This implies that the discriminator can
always tell the real data from generated ones. Consequently,
the generator cannot improve itself by learning to generate
important characteristics in the feature distribution. When we
apply the fuzzy binary coding, in contrast, the generator can
improve itself by lowering its loss, i.e., it gets harder and
harder for the discriminator to make the decision. In addition,
as expected, varying proportion of missing data (masking)
has impact on the adversarial training losses. With larger
proportion of missing data, the imputation task becomes more

challenging and both discriminator loss and generator loss
are expected to increase with larger proportion. This verifies
empirically our hypothesis, that, if one applies softmax as the
final activation in the generator to generate categorical data,
the adversarial training fails as the discriminator can learn to
exploit the huge difference in the generated and real data. This
typically results in divergence of the adversarial training. By
re-coding the binary features in a fuzzy way while retaining
the information, we enforce the real data to resemble what
softmax would produce. Thus we can make both discriminator
and generator converge in training.

Fig. 3. Losses in adversarial training on the PREAGNANT dataset. X-axis:
training epochs; Y-axis: adversarial loss. Above: Discriminator losses with
binary coding (left) and fuzzy binary coding (right). Bottom: Generator losses
with binary coding (left) and fuzzy binary coding (right).

VI. SUMMARY

In this paper, we have proposed a Categorical Generative
Adversarial Nets (Categorical GAIN) for EHR data imputa-
tion, based on a framework that is originally designed for
real values. First, we have hypothesized that applying softmax
functions as output activation in the generator directly often
results in the discriminator exploiting the obvious difference
between generated and real values. And the adversarial train-
ing typically ends up in divergence. We have proposed to
perform fuzzy coding of the binary values so that they resem-
ble generated values while retaining the encoded information.
Secondly, we have performed multiple modifications in the
architectures of both generator and discriminator, in order to
handle the fuzzy binary coded features.

We have compared our methods with a variety of benchmark
methods on two EHR datasets. We have simulated different
proportions of missing data by masking out known values
and then attempting to perform prediction tasks based on

imputed data. We could show that the more complex method
of generative adversarial nets turned out to be advantageous in
case of relatively higher missing rate and larger training data
set, while the simpler methods such as SVD reconstruction
and average imputation are more reliable to impute smaller
proportion of missing data.

ACKNOWLEDGMENT

The authors acknowledge support by the German Federal
Ministry for Education and Research (BMBF), funding project
“MLWin” (grant 01IS18050).

REFERENCES

[1] R. J. Little and D. B. Rubin, Statistical analysis with missing data. John
Wiley & Sons, 2014, vol. 333.

[2] V. Tresp, R. Neuneier, and S. Ahmad, “Efficient methods for dealing
with missing data in supervised learning,” in Advances in neural
information processing systems, 1995, pp. 689–696.

[3] B. J. Wells, K. M. Chagin, A. S. Nowacki, and M. W. Kattan, “Strategies
for handling missing data in electronic health record derived data,”
eGEMs, vol. 1, no. 3, 2013.

[4] E. M. Mirkes, T. J. Coats, J. Levesley, and A. N. Gorban, “Handling
missing data in large healthcare dataset: A case study of unknown trauma
outcomes,” Computers in biology and medicine, vol. 75, pp. 203–216,
2016.

[5] E. A. Stuart, M. Azur, C. Frangakis, and P. Leaf, “Multiple imputation
with large data sets: a case study of the children’s mental health
initiative,” American journal of epidemiology, vol. 169, no. 9, pp. 1133–
1139, 2009.

[6] D. B. Rubin, Multiple imputation for nonresponse in surveys. John
Wiley & Sons, 2004, vol. 81.

[7] A. R. T. Donders, G. J. Van Der Heijden, T. Stijnen, and K. G. Moons,
“A gentle introduction to imputation of missing values,” Journal of
clinical epidemiology, vol. 59, no. 10, pp. 1087–1091, 2006.

[8] T. E. Raghunathan, J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger,
“A multivariate technique for multiply imputing missing values using a
sequence of regression models,” Survey methodology, vol. 27, no. 1, pp.
85–96, 2001.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[10] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[11] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Computer
Vision (ICCV), 2017 IEEE International Conference on, 2017.

[12] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. P. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic
single image super-resolution using a generative adversarial network.”
in CVPR, vol. 2, no. 3, 2017, p. 4.

[13] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from simulated and unsupervised images through adversarial
training.” in CVPR, vol. 2, no. 4, 2017, p. 5.

[14] J. Yoon, J. Jordon, and M. van der Schaar, “Gain: Missing data imputa-
tion using generative adversarial nets,” arXiv preprint arXiv:1806.02920,
2018.

[15] S. Rajeswar, S. Subramanian, F. Dutil, C. Pal, and A. Courville, “Adver-
sarial generation of natural language,” arXiv preprint arXiv:1705.10929,
2017.

[16] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient.” in AAAI, 2017, pp. 2852–2858.

[17] J. Li, W. Monroe, T. Shi, S. Jean, A. Ritter, and D. Jurafsky,
“Adversarial learning for neural dialogue generation,” arXiv preprint
arXiv:1701.06547, 2017.

[18] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin,
“Adversarial feature matching for text generation,” arXiv preprint
arXiv:1706.03850, 2017.

[19] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, “Gen-
erating multi-label discrete patient records using generative adversarial
networks,” arXiv preprint arXiv:1703.06490, 2017.

[20] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[21] M. J. Kusner and J. M. Hernández-Lobato, “Gans for sequences of
discrete elements with the gumbel-softmax distribution,” arXiv preprint
arXiv:1611.04051, 2016.

[22] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[23] Y. Zhang, Z. Gan, and L. Carin, “Generating text via adversarial
training,” in NIPS workshop on Adversarial Training, vol. 21, 2016.

[24] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[25] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical)
time series generation with recurrent conditional gans,” arXiv preprint
arXiv:1706.02633, 2017.

[26] P. Fasching, S. Brucker, T. Fehm, F. Overkamp, W. Janni, M. Wallwiener,
P. Hadji, E. Belleville, L. Häberle, F.-A. Taran et al., “Biomarkers in
patients with metastatic breast cancer and the praegnant study network,”
Geburtshilfe und Frauenheilkunde, vol. 75, no. 01, pp. 41–50, 2015.

[27] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

[28] Y. Yang, V. Tresp, M. Wunderle, and P. A. Fasching, “Explaining therapy
predictions with layer-wise relevance propagation in neural networks,” in
2018 IEEE International Conference on Healthcare Informatics (ICHI).
IEEE, 2018, pp. 152–162.

[29] C. Esteban, D. Schmidt, D. Krompaß, and V. Tresp, “Predicting se-
quences of clinical events by using a personalized temporal latent em-
bedding model,” in Healthcare Informatics (ICHI), 2015 International
Conference on. IEEE, 2015, pp. 130–139.

