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Abstract—In typical data analysis projects in biology and
healthcare, simpler predictive models, such as regressions and
decision trees, enjoy more popularity than more complex and
expressive ones, such as neural networks. One reason for this
is that the functioning of simpler models is easier to explain,
which greatly increases user acceptance. A neural network, on
the contrary, is often regarded as a black box model, because
its very strength in modeling complex interactions also makes its
operation almost impossible to explain. Still, neural networks
remain very interesting tools, since they have demonstrated
promising performance in a variety of predictive tasks, such
as medical image classification and segmentation, as well as
clinical event prediction, i.e., in the modeling of therapy decisions
and survival time. In this work, we attempt to improve the
explainability of neural networks applied in healthcare. We
propose to apply the Layer-wise Relevance Propagation algorithm
to explain clinical decisions proposed by deep modern neural
networks. This algorithm is able to highlight the features that
lead to the probabilistic prediction of therapy decisions for each
individual patient. We evaluate the feature-oriented explanations
generated by the algorithm with clinical experts. We show that
the features, which are identified by the algorithm to be relevant,
largely agree with clinical knowledge and guidelines. We believe
that being able to explain machine learning based decisions
greatly improves transparency and acceptance of neural network
models applied in the clinical domain.

Keywords-explainable machine learning, layer-wise relevance
propagation, healthcare, decision support

I. INTRODUCTION

The constantly increasing data volume and variety pose
novel challenges for predictive data analysis. Especially in
the task of processing data features of high dimensionality
and complexity, deep neural networks have shown excellent
performances. They outperform more traditional methods that
rely on hand-engineered representations of data on a wide range
of problems varying from image classification [1, 2, 3], machine
translation[4, 5, 6] to playing video games [7, 8, 9]. To a large
extent, the success of deep neural networks is attributable to
their capability to represent the raw data features in a new and
latent space that facilitates the predictive task [10, 11].

Also in the domain of healthcare informatics, deep neural
networks have found multiple promising applications. Con-
volution neural networks, for instance, can be applied for
the classification and segmentation of medical imaging data
[12, 13, 14]. In addition, recurrent neural networks prove to be
efficient in processing clinical event data [15, 16, 17, 18, 19].

The predictive prowess of these methods may assist the
physicians in repetitive tasks, such as annotating radiology
images and reviewing health records, and enable them to
concentrate on more intellectually challenging and creative
tasks [20, 21]. This new way of human-machine collaboration
may greatly improve clinical service and therefore patient
experience.

However, healthcare remains a problematic area where
machine learning models have to be applied with great caution
[22]. The fact that (not necessarily deep) neural networks
lack explainability is greatly limiting their application in this
domain. In May 2018, the European Union’s new General
Data Protection Regulation (GDPR) will take effect and restrict
automated decision making produced by, e.g., algorithms [23].
Article 13 Information to be provided where personal data are
collected from the data subject specifies that the data controller
(e.g. clinics) should provide the data subject (e.g. patients)
with “meaningful information about the logic involved”. In
Article 22 Automated individual decision-making, including
profiling states that “The data subject shall have the right
not to be subject to a decision based solely on automated
processing”, unless, e.g. the data subject explicitly consents
with it (paragraph 2.c). These new clauses have a large impact
on the application of machine learning methods as long as
personal data are involved. A data subject will have the right to
demand an explanation not only of the decision but also of the
algorithm that generates the decision [24]. For clinics in the
European Union, it will be a mandatory component of clinical
services to provide an explanation, as long as machine learning
or any algorithmic logic is applied to propose decisions. It is,
therefore, a pressing task to be able to explain the predictions
on the one hand, and preserve as much as possible of the
expressiveness of complex neural network architectures, on the
other hand.

The term explainability or interpretability in machine learn-
ing is in fact not well defined, and there are multiple ways to
claim a model to be explainable [25]. A first category of models
is either designed in a fashion such that it is interpretable
to a human, or directly inspired by human decision making.
Representative examples are decision tree models, which learn
to hierarchically split the data at different cutoff values in
each feature. This approach leads to intuitive and interpretable
hierarchical decision rules. Another example is the k-nearest-



neighbor approach, where the prediction is based on one or
multiple training samples that are most similar to a test sample.
The second category of explainable models includes linear and
logistic regression. One could make a distribution assumption
for the regression coefficients, and perform statistical tests to
quantify whether a coefficient is significantly different from 0.
If that is the case, the corresponding feature can be interpreted
to be relevant.

Neural networks can be seen as an extension to regression
models and a Gaussian prior of the weights may be applied.
However, one cannot easily explain a neural network as a
regression by reading the significance of an input feature,
because a multidimensional hidden layer models multiple
interactions between all input features. In other words, a single
input feature has multiple paths to influence the output, and
the number of such paths increases exponentially with the
number of layers in a network. To this end, there have been
multiple works that attempt to increase the explainability of
neural network models.

Essentially, there are three classes of approaches to explain a
neural network. i) One could simplify a trained, complex neural
network model. The mimic learning [26] paradigm suggests
training a simple, e.g., linear regression or decision tree [27],
model against the predicted value produced by a trained deep
model until the simple model converges. This approach thus
provides a simple and interpretable model with almost the same
expressiveness as a deep neural network. However, finding a
shallow regression model or decision tree for high dimensional
and complex data may turn out to be challenging, because
these works consider three-layered network as “simple”, such
as in [26]. ii) In contrast to i), one could also complicate
a neural network model further still by including attention
mechanisms. For instance, attention mechanisms in RNNs
[28, 29, 30] and CNNs [31, 32] are representatives of this class
of approaches. They include additional modules in the network
that learn to assign an attention score on each time step or pixel
groups, respectively. This approach provides interpretation of
the relevance of the input features, and can sometimes increase
prediction quality as well. One drawback is that, by introducing
additional modules, the neural networks become more complex
and this would typically require longer training time and more
labeled data. iii) In this work, we focus on a third class of
approaches for explaining neural networks. Here we start with
a trained neural network and try to explain and visualize its
functioning as a postprocessing step. Specifically, by applying
the Layer-wise Relevance Propagation (LRP) algorithm, we
analyze the weight parameters in the model and attempt to
figure out how much influence each input feature has w.r.t. the
final prediction. A closely related method is sensitivity analysis
[33], which calculates the partial derivative of each feature
overall w.r.t. the target.

When we look at the p-values of regression coefficients of a
simplified network as in paradigm i), we make statements that
a specific feature is in general relevant for the prediction. But
in case of ii) the attention modules as well as iii) the relevance
propagation and sensitivity analysis, the influence or relevance

of each feature is derived for a specific data point.
The essential idea in the LRP algorithm is to decompose the

predicted probability of a specific target into a set of relevance
scores and redistribute them onto the neurons of the previous
layer. The relevance scores are defined in terms of 1) the
strength of the connection represented by the weight, and 2)
the activation of the neuron in the previous layer. In each layer
of a neural network, the relevance score can be seen as a kind
of contribution that each input neuron gives to each output
neuron. When this approach is applied iteratively, i.e., from
the output layer down to the input layer, one would have a
relevance score for each feature neuron. Especially in image
data and language data, this approach has been demonstrating
promising explainability in combination with CNNs and RNNs,
respectively. In this work, we apply this method to real-world
healthcare data. We first train an RNN-based model to predict
therapy decisions, whose prediction quality is close to that of
a clinical expert. We further explain these decisions with LRP
and show that the derived explanations largely agree with the
actual clinical knowledge and guidelines.

The remaining part of this paper is organized as follows: In
Sec. II we give an overview of relevant works in i) explaining
machine learning in healthcare and ii) layer-wise relevance
propagation. In Sec. III we present information about our cohort
and data processing steps. In Sec. IV we introduce the layer-
wise relevance propagation in detail, including the original
algorithm for fully-connected layers, gating neurons and
relevance propagation in time. We also perform a simulation
study in Sec. V on benchmark data, in order to prove our
concept as well as to verify the implementation. We report
our experimental results on real-world clinical data in Sec. VI,
including the performance of our predictive neural network
model as well as the relevance scores calculated by the
propagation algorithm.

II. RELATED WORKS

a) Explaining Machine Learning in Healthcare: Explain-
ability of machine learning models is highly desirable and
encouraged in healthcare informatics. It remains, however,
quite a challenging task that only a few works have addressed.
Ref. [34, 35] apply knowledge distillation to predict mortality
and ventilator-free days for patients with acute hypoxemic
respiratory failure. The distillation is realized by training a
gradient boosting tree that mimics the predicting behavior of
LSTM, thus identifying relevant features that can support and
contribute to robust decision making. In another work, [36],
one attempts to simplify a classification model that serves as a
scoring system for sleep apnea screening. It implements a super-
sparse linear integer model which can provide feature selection
that is in accordance with general medical findings. The work
of [17] augments recurrent neural networks with two-way
attention modules that are claimed to mimic decision making
by the physicians. The implementation is tested on a large EHR
dataset including over 200K patients with risk of heart failure.
The additional sophisticated attention learning module turns
out to also improve prediction quality. Ref. [18] attempts to



explain a clinical decision predicted by deep neural networks
by studying latent representations. It is shown that, with the
capability of RNNs to encode sequential features of variable
lengths into a fixed-size vector, one could, in fact, compare
patients in the learned latent space, whilst such comparison
would otherwise have been impossible in the raw input space.
One can thus explain and support the predicted decision by
showing that the patients identified to be similar have received
similar, if not the same, therapies. For an overview of the topic
of interpreting or explaining machine learning in general, one
could also refer to [25, 37, 38].

b) Layer-wise Relevance Propagation: A framework
defining the layer-wise relevance propagation can be found in
[39]. The most generic idea is to Taylor-expand a prediction
made by a function f(x) with respect to the input x. The
score is related to the increase in the contribution to the
cost function for a particular data instance, when a particular
input or hidden neuron is replaced by a default value. Various
approaches to identify the root point in a Taylor setting yield
different rules to perform the decomposition, i.e., the relevance
propagation. A more detailed description of the propagation
rules can also be found in [40]. Ref. [41] further provides
multiple applications by demonstrating the pixels identified
to be relevant in an image classification task. The specific
relevance propagation rule for RNNs is discussed in [42]. It
covers a couple of new rules necessary to capture the specific
recurrent connection patterns, and conducts experiments in
sentinel prediction of natural language data. With this method,
one can derive words that contribute to a positive and negative
sentiment score, respectively.

III. COHORT AND FEATURE PROCESSING

Our data are provided by the PRAEGNANT [43] study
network and were collected on recruited patients suffering
from metastatic breast cancer. We selected 1048 patients for
training and 150 for testing, all of which had met the first
line of medication therapy and had positive hormone receptor
and negative HER2. Physicians are often not in agreement on
the prescription of antihormone therapy and chemotherapy and
thus our study is of significant clinical relevance.

Similar to [18], we retrieve on each patient 199 static features
that encode, 1) demographic information, 2) the primary tumor
and 3) metastasis before being recruited in the study. These
features form for each patient i a feature vector mi ∈ {0, 1}199.
We further include the patients’ time-stamped clinical event
data as sequential features, such as 4) local recurrences, 5)
radiotherapy, 6) medication therapy, 7) diagnosed metastasis
during the study, 8) surgery and 9) clinic visits. For the i-th
patient, we encode these sequential features using an ordered
set {x[t]

i }
Ti
t=1 where each x

[t]
i {0, 1}189. Ti denotes the number

of clinical events observed on the patient i, i.e., the length of
the sequence. In our cohort, Ti from 0 to 15, and is on average
3.03.

Among the static features, there are originally four numerical
values, including the age, the number of positive cells of
estrogen receptor, the number of positive cells of progesterone

receptor and the Ki-67 IHC1. This poses a novel challenge
to the application of LRP algorithm: According to [39], the
consistency of the relevance propagation is only guaranteed, if
all input features are in the same space. In our experiments, we
can confirm that the outcome of the LRP algorithm is much
less explainable if the input feature consists of a mixture of
numerical and binary coded categorical features, even if the
numerical ones are normalized. To this end, we apply two
kinds of stratification to transform the numerical features. For
the feature of age, we stratify all patients into three groups
of almost identical size, using the 33.3% and 66.7% quantiles.
The other three features are represented following clinical
practice. The number of positive cells of estrogen receptor, for
instance, is stratified in two groups using one threshold of 20%.
Because a percent smaller than this threshold can be a hint
for chemotherapy if a number of other criteria are fulfilled as
well. The same also applies to the Ki-67 IHC with a threshold
of 30%, often suggesting a fast growth of the tumor cell.

IV. METHOD: LAYER-WISE RELEVANCE PROPAGATION

First, we denote a fully connected layer prior to activation
as

z = Wx+ b

with x ∈ Rm, z, b ∈ Rn,W ∈ Rn×m.
(1)

If it is the first layer in a neural network, the input vector x
denotes the data features, otherwise x consists of the activated
output neurons, i.e., ξ(z) from the previous layer. Here we use
ξ(·) to denote a generic activation function. And for the sake
of notation convenience, we omit the index of the layer, by
agreeing that all terms in Eq. 1 are defined within one layer.

Now, we assume that for each of the output neuron zk, there
exists a known relevance score, denoted as Rk, which is to be
decomposed as

Rk =
∑
j

Rk→j , (2)

where j indexes an input neuron xj . This step of decomposition
is illustrated in Fig. 1. Thus, Rk→j describes how much of Rk
should be propagated onto xj . This ratio is denoted as pk,j :

Rk→j = pk,j ·Rk, with P ∈ Rn×m. (3)

Once Rk→j , ∀k are known, one collects all the relevance
scores bound to be assigned to input neuron j:

Rj =
∑
k

Rk→j , (4)

which is illustrated in Fig. 2. Calculating Eq. 3 iteratively for
all input neurons ∀j ∈ [1,m], as illustrated in Fig. 3, one
redistributes the relevance scores from the output down to the
input layer. Now the only term that remains to be defined is
P ∈ Rn×m, the matrix which contains the ratio of relevance
of each output neuron k ∈ [1, n] to be assigned to input neuron
j ∈ [1,m].

1KI-67 immunohistochemistry, a marker of proliferating cells.



x = (xj)
m
j=1

zk

Rk =
∑
j Rk→j

Rk→j ∀j ∈ [1,m]

wk

Figure 1. The decomposition of a relevance score in the output layer,
corresponding to Eq. 2.

Rk→j ∀k ∈ [1, n]

xj

z = (zk)
n
k=1

Rj =
∑
k Rk→j

w•,j

Figure 2. The collection of all relevance scores in the output, which are to
be assigned to a input neuron j, corresponding to Eq. 3

Ref. [39] gives a systematic overview of various ways to
define pk,j , depending on the domain shared by all neurons
in x. One of the most intuitive, and empirically efficient way,
according to [44], is

pk,j =
xj · wk,j
zk

=
xj · wk,j
xTwk

. (5)

The most relevant term in Eq. 5 is the numerator xj · wk,j ,
which quantifies the contribution each input neuron xj makes
to the pre-activated output neuron zk. A highly active input
neuron xj , and a strong connection wk,j imply that a large
contribution has been made by xj , which in return deserves
more relevance to be propagated upon [44]. The denominator,
on the other hand, is exactly the pre-activated neuron zk. It
serves the normalizing purpose since zk remains the same for
all input xj and that

zk =
∑
j

xj · wk,j ,i.e.,
∑
j

xj · wk,j
zk

= 1, (6)

so that Eq. 2 always holds. Furthermore, it guarantees the
relevance scores are propagated without loss through the entire
network, in contrast to the propagation of gradients [45, 46].
The reason is that at each layer, the LRP algorithm merely
decomposes and redistributes the relevance from the upper
layer onto the lower layer while preserving the total sum of the
relevance scores constant. In order to stabilize the numerical

Rk→j ∀k ∈ [1, n]

Rj =
∑
k Rk→j ∀j ∈ [1,m]

Figure 3. The redistribution of all decomposed relevance scores from the
output to the input layer. It is easy to see that the redistribution is to perform
both calculations illustrated in Fig. 1 and Fig. 2 for all j’s and k’s.

computation, [42, 44] include further stabilizers as:

pk,j =
xj · wk,j + ε · sign(zk)/m

xTwk + ε · sign(zk)
, (7)

where ε is set to .0001 in our experiments.
We made the assumption that for each layer, the relevance

score Rk is known for each output neuron zk. If this is the
topmost layer in a network that produces a probability for
each class P(Yk = 1), then Rk is by definition equivalent to
the predicted probability. Applying the LRP algorithm to the
topmost layer yields the relevance scores for the neurons in
the last hidden layer, from which we can derive the relevance
scores for the lower layer. Therefore, one applies iteratively
the LRP algorithm from the topmost layer down to the input
layer, propagating and redistributing the relevance scores from
the predicted probability to input features.

LSTM (and also GRU) recurrent neural networks, which is
used in our experiments, consists of multiple gating operations
in the general form of

z = zs ◦ σ(zg) (8)
with zs = W sx+ bs, zg = W gx+ bg, (9)

where we denote the source neurons with zs, the gating neurons
with zg , and the sigmoid function with σ(·). We further refer
to z in this context as gated neurons. The weights W g are
trained to assign a percentage, i.e. the gating neuron, σ(zgk),
to every source neuron zsk. In the forward pass, the gating
neurons σ(zg) determine with the Hadamard product ◦ how
much each input neuron should contribute to the output neurons.
The gating neurons serve in fact as a special mapping layer of
Rn → Rn, in that zk = zsk · σ(z

g
k). That is to say, each output

neuron zk is only connected to the input zsk via the weight
σ(zgk). Therefore, applying Eq. 5 one gets

pk,k =
zsk · σ(z

g
k)

zsk · σ(z
g
k)

= 1, (10)

pk,k′ = 0 ∀k′ 6= k, (11)
i.e., P = In. (12)

Exploiting the fact in Eq. 3 we can get Rk→ks = Rk. That is
to say, a source neuron zsk receives the full relevance score,



Algorithm 1 Layer-wise Relevance Propagation

Input: a data point as x ∈ Rm(0)

,
a L-layered neural network with weights {W (l)}Ll=1,
the relevance score of last layer (Rk)n

(L)

k=1 ;

Output: {R(0)
j ∈ R}m(0)

j=0 ;

for l = L to 1 of each layer do
if Eq. 8 is satisfied: then
W (l) := W s,(l), z(l) := zs,(l)

end if
for k = 1 to n in each output vector do

for j = 1 to m in each input vector do
p
(l)
k,j =

x
(l)
j ·w

(l)
k,j+ε·sign(z

(l)
k )/m(l)

(x(l))Tw
(l)
k +ε·sign(z(l)k )

;

R
(l)
k→j = p

(l)
k,j ·R

(l)
k ;

end for
end for
for j = 1 to m in each input vector do
R

(l−1)
j =

∑
k R

(l)
k→j

end for
end for

Rk, from the gated neuron zk. Ref. [42], stating that the gating
neurons have already determined the percentage of source
neurons that are propagated in the forward pass, arrives at
the same conclusion to copy the relevance scores from gated
neurons to the source neurons.

We summarize the layer-wise relevance propagation approach
in the algorithm 1. In this algorithm description, we specify
the index of each layer with l. The data feature, specifically, is
indexed with 0, and the output prediction with L. Each layer
is a mapping function defined in Rm(l) → Rn(l)

. Essentially,
for each l = [L,L − 1, ..., 1, 0], the algorithm takes as input
the relevance score (Rk)

n(l)

k=1 of the output layer z(l). Each Rk
is then decomposed and redistributed, to form the relevance
scores of the input layer x(l). These scores are therefore the
outcome of each current l-th step and the input to the next
(l − 1)-th step.

In Algorithm 2, we extend the propagation to the time
axis. At each time step t ∈ [T, T − 1, ..., 2, 1], we apply the
Algorithm 1 twice: First, we calculate the relevance scores
R[t]

x w.r.t. the input, by using the input-to-hidden network. In
case of simple RNN, it is a fully-connected layer, but includes
multiple gatings in LSTM and GRU. Second, we calculate
the relevance scores R

[t−1]
h w.r.t. the previous hidden state.

The responsible module is the hidden-to-hidden network in a
recurrent architecture. As in simple RNN, LSTM and GRU,
it is a fully-connected layer mapping from h[t−1] to h[t]. The
output of this step is the relevance score of the hidden state
of time step [t− 1], which forms the input of the next step in
the time loop.

Algorithm 2 Layer-wise Relevance Propagation in Time

Input: a sequence of input {x[t] ∈ Rm}Tt=1,
a recurrent neural network λ(·),
the relevance score of the last hidden state R

[T ]
h ;

Output: a sequence of relevance scores (R[t]
x )Tt=1;

for t = Ti to 1 of each time step t do
R[t]

x := Algorithm 1(
current input x[t],
the input-to-hidden network,
relevance scores of the hidden state R

[t]
h ),

if t > 1 then
R

[t−1]
h := Algorithm 1(

last hidden state h[t−1],
the hidden-to-hidden network,
relevance scores of the hidden state R

[t]
h ),

end if
end for

V. SIMULATION STUDY

In our simulation study, we validate, both qualitatively and
quantitatively, that the implemented LRP algorithm is able
to identify temporal patterns that indeed contribute to the
prediction.

We sample random MNIST [47] digits of size 28× 28 to
form a sequence. The length of the sequence is a uniformly
distributed number between 1 and 32. The sequence is labeled
1 if it contains one or more 0’s, and is labeled 0 if it does not.
We train an LSTM model for this binary classification task with
10,000 of such random sequences and test its performance on
another mutually exclusive set of 1,000 sequences. We expect
the LSTM to be able to learn the classification task and, more
importantly, the LRP algorithm should assign a high relevance
score to the 0’s in the sequence. A qualitative visualization
of our results can be found in Fig. 4, depicting four random
sequences from the test sets.

We repeat the experiment 5 times with different seeds for
sampling and model initialization and report the average of the
classification accuracy. In order to evaluate the performance
of the LRP algorithm quantitatively, we report the AUROC
and AUPRC calculated between the ground truth locations of
the zeros and the calculated relevance scores in the test sets.
We denote the ground truth using binary vectors. For instance,
we use a vector [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] to represent the
ground truth of the second exemplary sequence in Fig. 4, i.e.,
that the 1st and 10th digits in the sequence are 0’s. We measure
the AUROC and AUPRC w.r.t. the ground truth vector and
relevance scores generated by LRP algorithm for each test
sequence 2.

2We publish the source codes for this simulation study at https:
//github.com/Tuyki/TT_RNN/blob/master/MNISTSeq.py, and
use the same implementation for the experiments in Sec. VI.

https://github.com/Tuyki/TT_RNN/blob/master/MNISTSeq.py
https://github.com/Tuyki/TT_RNN/blob/master/MNISTSeq.py


Table I
RESULTS OF THE SIMULATION STUDY. CLASSIFICATION ACC IS THE

BINARY PREDICTION ACCURACY OF THE LSTM MODEL. THE RELEVANCE
SCORES ARE MEASURED IN BOTH AUROC AND AUPRC.

Classification accuracy Relevance AUROC Relevance AUPRC
0.972± 0.001 0.987± 0.003 0.935± 0.019
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Figure 4. Visualization of the relevance scores of four random test sequences
in our simulation study.

This experiment simulates the real-world patient data situa-
tion to a large extent, where we expect certain clinical events
to have a relevant impact on the decision made at the end of
the sequence of events, just as the 0 in the sequence decides
the label. Note that for this sequence classification task, it is
unimportant to study the relevance of a single pixel feature.
Instead, we are more interested in the sum of relevance scores
of all pixels of a digit at each time step. In the clinical data,
however, we shall later cover both aspects, studying both the
sequential features as well as the event type.

We can see in Fig. 4 that the 0’s receive significantly higher
relevance scores than the other digits do. Furthermore, it is
interesting to note that, in the second sequence, the LRP assigns
a high relevance score to the 3rd digit, which turns out to be a
6. The reason for this mistake is simply that this 6 is written
in a fashion that strongly resembles a 0. This is, however, the

hi =
[
λ({s[t]

i }
Ti
t ), η(mi)

]

x
[t]
i

s
[t]
i

t = 1 t = 2 t = 3 t = 4

mi

P(Yi = AHT ) P(Yi = Chemo)

Figure 5. An illustration of the model architecture, defined in Eq. 13 14 15
and 16.

empirical proof that our LSTM can indeed capture the pattern
of the input in a sequence and remember it over a long period
of time.

VI. EXPERIMENTS

A. The Model

The model we apply to predict the therapy decision consists
of a LSTM with embedding layer and a feed-forward network:

P(Yi = ‘AHT’) = σ(wT
AHThi + bAHT ) (13)

P(Yi = ‘Chemo’) = σ(wT
Chemohi + bChemo) (14)

with hi =
[
λ({s[t]i }

Ti
t ), η(mi)

]
(15)

s
[t]
i = γ(x

[t]
i ) ∀t ∈ [1, Ti]. (16)

Recall that we use x
[t]
i to denote the sequential features

observed on patient i at time step t, and mi to denote the
patient’s static features. In Eq. 16, due to the sparsity and
dimensionality of x

[t]
i , we first deploy an embedding layer,

denoted with function γ(·), which is expected to learn a
latent representation s

[t]
i from x

[t]
i [15, 16]. An LSTM λ(·)

then consumes these sequential latent representations as input.
It generates at the last time step Ti another representation
vector, which is expected to encode all relevant information
from the entire sequence. Please note that recurrent neural
networks, such as LSTMs, are able to learn a fixed-size vector
from sequences of variable sizes [11, 18]. From the static
features mi, which are also sparse and high dimensional, we
learn a representation with a feed-forward network η(·). We
concatenate both representations and form a vector hi as in
Eq. 15, which represents all relevant information on patient i
up to time step Ti [15]. Finally, in Eq. 13 and 14, the vector
hi serves as input to a logistic regression with softmax output
that predicts the probability that the patient should receive
either antihormone (‘AHT’) or chemotherapy (‘Chemo’). We
illustrate the complete model architecture in Fig. 5.

B. Prediction Evaluation:

We first split the training set into 5 mutual exclusive sets.
In turn, we tune the hyper parameters and train a model
on the union of 4 sets, while evaluate the model on the



Table II
THE WEAK BASELINES: RANDOM AND MOST-POPULAR PREDICTIONS

Log Loss Accuracy AUROC
Random 1.00 0.477 0.471

Most-popular 0.702 0.500 0.500

Table III
THE STRONG BASELINE: AN MLP WITH AGGREGATED SEQUENTIAL

FEATURES

Log Loss Accuracy AUROC
5-fold Validation sets 0.602± 0.012 0.724 ±0.015 0.798±0.011

Test set 0.589 0.715 0.806

remaining validation set. We apply the model with the best
validation performance in terms of accuracy on the test set. The
performances are reported in Tab. IV. With the same schema,
we also report a strong baseline model, which is a two-layered
feed-forward network consuming the concatenation of mi, and
the aggregated sequential features 1

Ti

∑Ti

t=1 x
[t]
i . We report the

results in Tab. III. We also include weak baselines such as
random prediction and the most-popular prediction in Tab. II.
The latter one constantly predicts the more popular decision
in the training set for all test cases.

Furthermore, a clinician re-evaluated 69 of the 150 test
cases. 75.4% of the re-evaluations turned out to agree with the
ground truth, while our model achieves 81.2% accuracy for
this subset of test patients. This clinical validation is based on
a relatively small patient set. However, it reveals that there is
often disagreement between medical experts. More importantly,
we realize that, while it is extremely expensive and demanding
for physicians to (re-)evaluate so many patient cases at once, a
computer program can be required to perform the task anytime
necessary, and could yield comparable performances to a human
expert.

C. Explaining the Prediction with Relevance Scores:

Following the schema proposed in [42], we calculate the
relevance score w.r.t. the correctly predicted class. Please note
that we calculate the relevance scores for the test patient cases,
which makes our experiments more challenging and realistic.
Tab. V and VI summarize the static features that are most
frequently identified to have contributed to the prediction of
antihormone and chemotherapy, respectively.

Recall that the patients are known to have positive hormone
receptors, and thus antihormone therapy seems to be the default
decision. This fact is supported, for instance, by the 2nd
feature “positive estrogen receptor status” and the 5th feature
“positive cells of estrogen receptor ≥ 20%” in Tab. V. The 8th
feature, the age group, suggests that the old patients should
receive antihormone therapy. This also agrees with the clinical
knowledge that chemotherapy often results in severe side-effects
and should be prescribed with caution to elder patients.

However, it is much more interesting to study which features
lead to a deviation from the default antihormone therapy and

Table IV
PREDICTION QUALITY OF OUR LSTM-BASED MODEL.

Log Loss Accuracy AUROC
5-fold Validation sets 0.536 ± 0.026 0.749 ±0.035 0.834 ± 0.021

Test set 0.545 0.762 0.828

Table V
RELEVANCE RANKING OF STATIC FEATURES FOR ANTIHORMONE THERAPY

Features Frequencies
1 neoadjuvant therapy as first treatment: no 41
2 positive estrogen receptor status 39
3 no anti-HER2 therapy as part of first treatment 37
4 positive progesterone receptor status 31
5 positive cells of estrogen receptor ≥ 20% 28
6 Ki-67 IHC not identified 22
7 no chemotherapy as part of first treatment 21
8 age group: old 20
9 overall evaluation: cT2 17

10 estrogen receptor status positive cells unknown 6

choose the chemotherapy. In Tab. VI, we find features such
as the 1st one of “primary tumor malignant invasive”, the 8th
feature of “Ki-67 IHC ≥ 30%”, which describe an invasive
primary tumor that suggests chemotherapy. Features like the
6th “G3 grading” and the metastasis in lungs, liver and lymph
nodes (3rd, 4th, and 5th) depict a late stage of the metastasis.
The 2nd feature of “age group: young” is also identified to have
contributed to the prediction. All these factors agree with the
clinical knowledge, as well as guidelines, in handling metastatic
breast cancer with chemotherapy.

Tab. VII and VIII list the sequential features are frequently
marked as relevant for the respective prediction. In the
tables, we include the event type to which an event feature
belongs using a colon. For instance, “medication therapy:
antihormone therapy” means a medication therapy that has a
feature of antihormone type. In Tab. VII the features “curative
radiotherapy” (1st) and surgeries (2nd, 4th, and 5th) indicate an
early stage of the cancer, because the patients have undergone
therapies that aim at curing the primary tumor. The features
of “no metastasis in liver” (7th) and “first lesion metastasis in
lungs” (8th) also suggest an early phase in the development
of the metastasis, which again indicates an optimistic therapy
situation.

In Tab. VIII, however, we observe sequential features that
support a decision for chemotherapy. Specifically, “a complete
remission of metastasis” (2nd) and “local recurrence in the
breast” (3rd) are hints of progressing cancer which, considering
other patient features in Tab. VI, would lead to a decision for
chemotherapy, from a clinical point of view.

In Tab. IX, we summarize for each event type, such as
local recurrence, radiotherapy, etc., all relevance scores for
antihormone and chemotherapy, respectively. This is similar to
[42] and our simulation study, in that we calculate one relevance
score for each time step by aggregating the relevance scores of
all features observed at the time step. Because one observes only
one event type at a time step, the sum of relevance scores of all



Table VI
RELEVANCE RANKING OF STATIC FEATURES FOR CHEMO THERAPY

Features Frequencies
1 primary tumor malignant invasive 37
2 age group: young 23
3 metastasis in lungs 23
4 metastasis in liver 23
5 metastasis in lymph nodes 18
6 G3 grading 17
7 neoadjuvant chemotherapy as part of first treatment 15
8 Ki-67 IHC ≥ 30% 12
9 no surgery for primary tumor 11

10 positive cells of progesterone receptor > 20% 8

Table VII
RELEVANCE RANKING OF SEQUENTIAL FEATURES FOR ANTIHORMONE

THERAPY

Features Frequencies
1 radiotherapy: curative 25
2 surgery: Excision 25
3 visit: ECOG status: alive 13
4 surgery: Mastectomy 11
5 surgery: breast preservation 9
6 radiotherapy: percutaneous 6
7 metastasis: none in liver 3
8 metastasis: first lesions of unclear dignity in lungs 2
9 medication therapy: ended due to toxic effects 2

10 medication therapy: regularly ended 2

features is in fact equivalent to the sum of relevance scores of
the observed event type. The first row in the table, for instance,
can be interpreted that if the patients have experienced a local
recurrence, she/he should receive a chemotherapy instead of an
antihormone therapy (0.772 v.s. -0.193). Another dominating
decision criterion is given by the metastasis (4th row): according
to the LRP algorithm, the fact that metastasis is observed in
the past also strongly suggests a chemotherapy instead of an
antihormone therapy (3.657 v.s. -1.192), which again agrees
with clinical guidelines.

D. Patient Case Studies

So far we have studied the features that are relevant in
general for the therapy decisions in our cohort. We further
analyze the features that are relevant for specific patients.
We demonstrate two representative patient cases: one with
antihormone and the other with chemotherapy as ground truth.

The patient case A received an antihormone therapy, which
our model correctly predicts with a probability of 0.754. One
observes 4 events before this decision was due. The top ranking
features based on relevance scores are summarized in Tab. X.
The LRP algorithm assigns high relevance scores to the fact
that she had a bone metastasis before being recruited in the
study. Bone metastasis is seen as an optimistic metastasis
because there exists a variety of bone-specific medications
that effectively treat this kind of metastasis. Also, the event of
curative radiotherapy, which is assigned with a high relevance
score, hints at a good outcome of the therapy. Considering that
the patient is in the age group of being old as well, antihormone
therapy would often be recommended. In conclusion, for this

Table VIII
RELEVANCE RANKING OF SEQUENTIAL FEATURES FOR CHEMO THERAPY

Features Frequencies
1 medication therapy: type of following a surgery 15
2 metastasis: type of complete remission 12
3 local recurrence: in the breast 11
4 medication therapy: no surgery before or after 7
5 medication therapy: antihormone therapy 5
6 tumor board: first line met 4
7 medication therapy: for cM0/local recurrence 4
8 local recurrence: recurrence in axilla 2
9 local recurrence: invasive recurrence 2

10 medication therapy: bone specific therapy 2

Table IX
RELEVANCE SCORES SUMMARIZED W.R.T. CLINICAL EVENTS

Event type Antihormone therapy Chemotherapy
local recurrence -0,193 0,772
radiotherapy 1,064 -0,398
medication therapy 2,023 -1,137
metastasis -1,192 3,657
surgery 0,697 -0,883
visit -0,058 0,676

specific patient, the LRP algorithm turns out to have identified
relevant features that accord with clinical guidelines.

Patient B was prescribed chemotherapy, which our model
predicted with probability: 0.916. 7 events have been observed
before this therapy decision was due. The top ranking features
based on relevance scores are summarized in Tab. XI. The
static features that have been identified as relevant for the
chemotherapy show a strong pattern of metastasis, including
the brain, lung, and other locations. The identified sequential
features include invasive local recurrences in the breast and
axilla. Based on general clinical knowledge and guideline,
for such a young patient with quite a malignant tumor, a
chemotherapy seems indeed appropriate.

Furthermore, it is also interesting to see that the feature of
being postmenopausal has a negative relevance for the decision
antihormone therapy in case A, while a positive one for the
chemotherapy in case B. In other words, being postmenopausal
always supports the decision of chemotherapy, which agrees
with clinical knowledge and guidelines.

VII. SUMMARY

It is commonly accepted that there exists a trade-off between
model expressiveness and model explainability [24, 25, 38].
Especially deep and/or recurrent neural networks, though
demonstrating convincing modeling capacity in a variety of
machine learning tasks, suffer from lack of explainability. In
healthcare, providing explanations for decisions generated by
algorithms is not only a desirable characteristic but will soon
become legally required. The layer-wise relevance propagation
provides a solution to increase model explainability, while fully
preserving model expressiveness. For each data instance, the
algorithm can assign a relevance score to each feature, and
thus is able to explain which feature has contributed to what
degree to the final decision. To verify our implementation



Table X
THE FEATURES OF PATIENT CASE A THAT ARE IDENTIFIED BY LRP AS

RELEVANT FOR A PREDICTION OF ANTIHORMONE THERAPY.

Features Relevance score
Static
bone metastasis 0.728
age group: old 0.160
two pregnancies -0.030
postmenopausal -0.057
ever hormone replacement therapy -0.131
Sequential
radiotherapy: curative 0.061
surgery: excision 0.061
radiotherapy: adjuvant 0.050
radiotherapy: percutaneous 0.036
medication: regularly ended 0.033
medication: first treatment 0.018
medication: antihormone therapy 0.011
surgery: breast preservation 0.010

Table XI
THE FEATURES OF PATIENT CASE B THAT ARE IDENTIFIED BY LRP AS

RELEVANT FOR A PREDICTION OF CHEMOTHERAPY.

Features Relevance score
Static
metastasis in lungs 0.286
metastasis in brain 0.276
1st age group 0.184
other metastasis 0.139
postmenopausal 0.024
Sequential
local recurrence: in the breast 0.048
local recurrence: invasive 0.046
local recurrence: in axilla 0.017
medication: treatment of local recurrence 0.008
medication: not related to a surgery 0.006
radiotherapy: palliative 0.005
medication: antihormone 0.005

of the LRP algorithm, we performed a simulation study
on a high dimensional sequence classification task. In our
experiments, we compared the generated relevance scores with
general clinical knowledge and treatment guidelines, which
demonstrated a large degree of agreement.
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[4] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[5] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-
aware neural language models.” in AAAI, 2016, pp. 2741–
2749.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” arXiv
preprint arXiv:1409.0473, 2014.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[8] T. Salimans, J. Ho, X. Chen, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement
learning,” arXiv preprint arXiv:1703.03864, 2017.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[10] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: A review and new perspectives,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 35,
no. 8, pp. 1798–1828, 2013.

[11] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep
learning,” Nature, vol. 521, pp. 436–444, 2015.

[12] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues,
J. Yao, D. Mollura, and R. M. Summers, “Deep convolu-
tional neural networks for computer-aided detection: Cnn
architectures, dataset characteristics and transfer learning,”
IEEE transactions on medical imaging, vol. 35, no. 5, pp.
1285–1298, 2016.

[13] P. Kisilev, E. Sason, E. Barkan, and S. Hashoul, “Medical
image captioning: learning to describe medical image
findings using multi-task-loss cnn,” 2011.

[14] B. Kayalibay, G. Jensen, and P. van der Smagt, “Cnn-
based segmentation of medical imaging data,” arXiv
preprint arXiv:1701.03056, 2017.

[15] C. Esteban, O. Staeck, S. Baier, Y. Yang, and V. Tresp,
“Predicting clinical events by combining static and dy-
namic information using recurrent neural networks,” in
Healthcare Informatics (ICHI), 2016 IEEE International
Conference on. IEEE, 2016, pp. 93–101.

[16] E. Choi, M. T. Bahadori, and J. Sun, “Doctor ai: Predicting
clinical events via recurrent neural networks,” arXiv
preprint arXiv:1511.05942, 2015.

[17] E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and
W. Stewart, “Retain: An interpretable predictive model
for healthcare using reverse time attention mechanism,”
in Advances in Neural Information Processing Systems,
2016, pp. 3504–3512.

[18] Y. Yang, P. A. Fasching, and V. Tresp, “Predictive
modeling of therapy decisions in metastatic breast cancer



with recurrent neural network encoder and multinomial
hierarchical regression decoder,” in Proceedings of the
IEEE International Conference on Healthcare Informatics
(ICHI). Park City, Utah, USA: IEEE, 23–26 Aug 2017.

[19] ——, “Modeling progression free survival in breast cancer
with tensorized recurrent neural networks and accelerated
failure time model,” in Machine Learning for Healthcare
2017, ser. Proceedings of Machine Learning Research,
vol. 68. Northeastern University, Boston, USA: JMLR,
18–19 Aug 2017.

[20] V. Tresp, S. Zillner, M. J. Costa, Y. Huang, A. Cavallaro,
P. A. Fasching, A. Reis, M. Sedlmayr, T. Ganslandt,
K. Budde et al., “Towards a new science of a clinical
data intelligence,” arXiv preprint arXiv:1311.4180, 2013.

[21] V. Tresp, M. Overhage, M. Bundschus, S. Rabizadeh,
P. Fasching, and S. Yu, “Going digital: A survey on
digitalization and large scale data analytics in healthcare,”
arXiv preprint arXiv:1606.08075, 2016.

[22] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and
N. Elhadad, “Intelligible models for healthcare: Predicting
pneumonia risk and hospital 30-day readmission,” in
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.
ACM, 2015, pp. 1721–1730.

[23] Parliament and C. of the European Union, “General data
protection regulation,” 2016.

[24] B. Goodman and S. Flaxman, “European union regu-
lations on algorithmic decision-making and a” right to
explanation”,” arXiv preprint arXiv:1606.08813, 2016.

[25] Z. C. Lipton, “The mythos of model interpretability,”
arXiv preprint arXiv:1606.03490, 2016.

[26] G. Hinton, O. Vinyals, and J. Dean, “Distilling
the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[27] N. Frosst and G. Hinton, “Distilling a neural network into
a soft decision tree,” arXiv preprint arXiv:1711.09784,
2017.

[28] V. Mnih, N. Heess, A. Graves et al., “Recurrent models
of visual attention,” in Advances in neural information
processing systems, 2014, pp. 2204–2212.

[29] K. Cho, A. Courville, and Y. Bengio, “Describing mul-
timedia content using attention-based encoder-decoder
networks,” IEEE Transactions on Multimedia, vol. 17,
no. 11, pp. 1875–1886, 2015.

[30] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and
Y. Bengio, “Attention-based models for speech recog-
nition,” in Advances in Neural Information Processing
Systems, 2015, pp. 577–585.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is
all you need,” arXiv preprint arXiv:1706.03762, 2017.

[32] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudi-
nov, R. Zemel, and Y. Bengio, “Show, attend and tell:
Neural image caption generation with visual attention,”
in International Conference on Machine Learning, 2015,
pp. 2048–2057.

[33] Y. Dimopoulos, P. Bourret, and S. Lek, “Use of some
sensitivity criteria for choosing networks with good
generalization ability,” Neural Processing Letters, vol. 2,
no. 6, pp. 1–4, 1995.

[34] Z. Che, S. Purushotham, R. Khemani, and Y. Liu, “Dis-
tilling knowledge from deep networks with applications
to healthcare domain,” arXiv preprint arXiv:1512.03542,
2015.

[35] ——, “Interpretable deep models for icu outcome pre-
diction,” in AMIA Annual Symposium Proceedings, vol.
2016. American Medical Informatics Association, 2016,
p. 371.

[36] B. Ustun and C. Rudin, “Supersparse linear integer
models for optimized medical scoring systems,” Machine
Learning, vol. 102, no. 3, pp. 349–391, 2016.

[37] F. Doshi-Velez and B. Kim, “Towards a rigorous science
of interpretable machine learning,” 2017.

[38] Y. Lou, R. Caruana, and J. Gehrke, “Intelligible models for
classification and regression,” in Proceedings of the 18th
ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2012, pp. 150–158.

[39] G. Montavon, S. Bach, A. Binder, W. Samek, and K.-R.
Müller, “Explaining nonlinear classification decisions
with deep taylor decomposition,” Pattern Recognition,
vol. 65, pp. 211–222, 2017. [Online]. Available:
http://dx.doi.org/10.1016/j.patcog.2016.11.008

[40] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R.
Müller, and W. Samek, “On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance
propagation,” PLoS ONE, vol. 10, no. 7, p. e0130140,
07 2015. [Online]. Available: http://dx.doi.org/10.1371%
2Fjournal.pone.0130140

[41] A. Binder, S. Bach, G. Montavon, K.-R. Müller,
and W. Samek, “Layer-wise relevance propagation
for deep neural network architectures,” in Information
Science and Applications (ICISA) 2016, ser. Lecture
Notes in Electrical Engineering, K. J. Kim and
N. Joukov, Eds. Singapore: Springer Singapore,
2016, vol. 376, pp. 913–922. [Online]. Available:
http://dx.doi.org/10.1007/978-981-10-0557-2 87

[42] L. Arras, G. Montavon, K.-R. Müller, and
W. Samek, “Explaining recurrent neural network
predictions in sentiment analysis,” in Proceedings
of the EMNLP’17 Workshop on Computational
Approaches to Subjectivity, Sentiment & Social Media
Analysis (WASSA). Association for Computational
Linguistics, 2017, pp. 159–168. [Online]. Available:
http://www.aclweb.org/anthology/W17-5221

[43] P. Fasching, S. Brucker, T. Fehm, F. Overkamp, W. Janni,
M. Wallwiener, P. Hadji, E. Belleville, L. Häberle,
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