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Abstract

Convolutional neural networks (CNNs) achieve transla-

tional invariance by using pooling operations. However, the

operations do not preserve the spatial relationships in the

learned representations. Hence, CNNs cannot extrapolate

to various geometric transformations of inputs. Recently,

Capsule Networks (CapsNets) have been proposed to tackle

this problem. In CapsNets, each entity is represented by

a vector and routed to high-level entity representations by

a dynamic routing algorithm. CapsNets have been shown

to be more robust than CNNs to affine transformations

of inputs. However, there is still a huge gap between

their performance on transformed inputs compared to un-

transformed versions. In this work, we first revisit the

routing procedure by (un)rolling its forward and backward

passes. Our investigation reveals that the routing procedure

contributes neither to the generalization ability nor to the

affine robustness of the CapsNets. Furthermore, we explore

the limitations of capsule transformations and propose

affine CapsNets (Aff-CapsNets), which are more robust to

affine transformations. On our benchmark task, where

models are trained on the MNIST dataset and tested on the

AffNIST dataset, our Aff-CapsNets improve the benchmark

performance by a large margin (from 79% to 93.21%),

without using any routing mechanism.

1. Introduction

Human visual recognition is quite insensitive to affine

transformations. For example, entities in an image, and

a rotated version of the entities in the image, can both

be recognized by the human visual system, as long as the

rotation is not too large. Convolutional Neural Networks

(CNNs), the currently leading approach to image analysis,

achieve affine robustness by training on a large amount of

data that contain different transformations of target objects.

Given limited training data, a common issue in many

real-world tasks, the robustness of CNNs to novel affine

transformations is limited [23].

With the goal of learning image features that are more

aligned with human perception, Capsule Networks (Cap-

sNets) have recently been proposed [23]. The proposed

CapsNets differ from CNNs mainly in two aspects: first,

they represent each entity by an activation vector, the

magnitude of which represents the probability of its ex-

istence in the image; second, they assign low-level entity

representations to high-level ones using an iterative routing

mechanism (a dynamic routing procedure). Hereby, Cap-

sNets aim to keep two important features: equivariance of

output-pose vectors and invariance of output activations.

The general assumption is that the disentanglement of

variation factors makes CapsNets more robust than CNNs

to affine transformations.

The currently used benchmark task to evaluate the affine

robustness of a model is to train the model on the stan-

dard MNIST dataset and test it on the AffNIST1 dataset.

CapsNets achieve 79% accuracy on AffNIST, while CNNs

with similar network size only achieve 66% [23]. Although

CapsNets have demonstrated their superiority on this task,

there is still a huge performance gap since CapsNets achieve

more than 99% on the untransformed MNIST test dataset.

In our paper, we first investigate the effectiveness of

components that make CapsNets robust to input affine trans-

formations, with a focus on the routing algorithm. Many

heuristic routing algorithms have been proposed [10, 25, 16]

since [23] was published. However, recent work [19] shows

that all routing algorithms proposed so far perform even

worse than a uniform/random routing procedure.

From both numerical analysis and empirical experi-

ments, our investigation reveals that the dynamic routing

procedure contributes neither to the generalization ability

nor to the affine robustness of CapsNets. Therefore, it is

infeasible to improve the affine robustness by modifying the

routing procedure. Instead, we investigate the limitations of

the CapsNet architectures and propose a simple solution.

Namely, we propose to apply an identical transformation

function for all primary capsules and replace the routing by

a simple averaging procedure (noted as No Routing).

1Each example is an MNIST digit with a small affine transformation.
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Our contributions of this work can be summarized as

follows: 1) We revisit the dynamic routing procedure of

CapsNets; 2) We investigate the limitations of the current

CapsNet architecture and propose a more robust affine

Capsule Networks (Aff-CapsNet); 3) Based on extensive

experiments, we investigate the properties of CapsNets

trained without routing. Besides, we demonstrate the

superiority of Aff-CapsNet.

The rest of this paper is organized as follows: Section

2 first reviews CapsNets and related work. Section 3

investigates the effectiveness of the routing procedure by

(un)rolling the forward and backward passes of the iterative

routing iterations. Section 4 shows the limitations of current

CapsNets on the affine transformations and proposes a

robust affine CapsNet (Aff-CapsNet). Section 4 conducts

extensive experiments to verify our findings and proposed

modifications. The last two sections discuss and conclude

our work.

2. Background and Related Work

In this section, we first describe the CapsNets with

dynamic routing and then review related work.

2.1. Fundamentals of Capsule Networks

CapsNets [23] encode entities with capsules. Each cap-

sule is represented by an activity vector (e.g., the activation

of a group of neurons), and elements of each vector encode

the properties of the corresponding entity. The length of

the activation vector indicates the confidence of the entity’s

existence. The output classes are represented as high-level

capsules.

A CapsNet first maps the raw input features to low-level

capsules and then routes the low-level capsules to high-level

ones. For instance, in image classification tasks, a CapsNet

starts with one (or more) convolutional layer(s) that convert

the pixel intensities into low-level visual entities. A fol-

lowing capsule layer of the CapsNet routs low-level visual

entities to high-level visual entities. A CapsNet can have

one or more capsule layers with routing procedures.

Given a low-level capsule uuui of the L-th layer with N

capsules, a high-level capsule sssj of the (L+1)-th layer with

M capsules, and a transformation matrix WWW ij , the routing

process is

û̂ûuj|i =WWW ijuuui, sssj =

N∑

i

cijû̂ûuj|i (1)

where cij is a coupling coefficient that models the degree

with which û̂ûuj|i is able to predict sssj . The capsule sssj
is shrunk to a length in (0, 1) by a non-linear squashing

function g(·), which is defined as

vvvj = g(sssj) =
‖sssj‖

2

1 + ‖sssj‖
2

sssj

‖sssj‖
(2)

The coupling coefficients {cij} are computed by an

iterative routing procedure. They are updated so that high

agreement (aij = vvvTj û̂ûuj|i) corresponds to a high value of

cij .

cij =
exp(bij)∑
k exp(bik)

(3)

where initial logits bik are the log prior probabilities and

updated with bik = bik + aij in each routing iteration.

The coupling coefficients between a i-th capsule of the L-

th layer and all capsules of the (L + 1)-th layer sum to 1,

i.e.,
∑M

j=1 cij = 1. The steps in Equations 1, 2, and 3 are

repeated K times in the routing process, where sssj and cij
depend on each other.

2.2. Related Work

Routing Algorithms: Many papers have improved the

routing-by-agreement algorithm. [27] generalizes existing

routing methods within the framework of weighted kernel

density estimation and proposes two fast routing methods

with different optimization strategies. [6] proposes an

attention-based routing procedure with an attention module,

which only requires a fast forward-pass. The agreement

aij can also be calculated based on a Gaussian distribution

assumption [10, 2] or distance measures [16] instead of the

simple inner product.

Since the routing procedure is computationally expen-

sive, several works propose solutions reducing the com-

plexity of the iterative routing process. [25] formulates the

routing strategy as an optimization problem that minimizes

a combination of clustering-like loss and a KL distance

between the current coupling distribution and its last states.

[17] approximates the expensive routing process with two

branches: a master branch that collects primary information

from its direct contact in the lower layer and an aide branch

that replenishes the master branch based on pattern variants

encoded in other lower capsules.

Understanding the Routing Procedure: [4] incorpo-

rates the routing procedure into the training process by

making coupling coefficients trainable, which are supposed

to be determined by an iterative routing process. The

coupling coefficients are independent of examples, which

stay unchanged in the testing phase. What they proposed is

simply to reduce the iterative updates to a single forward

pass with prior coupling coefficients. [5] removes the

routing procedure completely and modifies the CapsNet

architectures. Their pure CapsNets achieve competitive

performance. However, it has not been investigated how

the properties of their CapsNets, e.g., the robustness to

affine transformation, will be affected by the removal of

the routing procedure. Furthermore, [19] shows that many

routing procedures [23, 10, 25, 16] are heuristic, and

perform even worse than a random routing assignment.
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Figure 1: The gradients of the loss w.r.t. randomly choosen

û̂ûum|i are visualized. The blue lines correspond to the

unrolled routing iterations in Gradient Backpropagation,

while the yellow lines to rolled routing iterations.

3. Revisiting the Dynamic Routing of CapsNets

In this section, we analyze dynamic routing, both theo-

retically and empirically. By unrolling the backpropagation

of the routing procedure and rolling the forward propa-

gation of the routing procedure, we show which role the

routing procedure plays in CapsNets.

3.1. Backpropagation through Routing Iterations

The forward pass of an iterative routing process can be

written as the following iterative steps

sss
(t)
j =

N∑

i

c
(t)
ij û̂ûuj|i

vvv
(t)
j = g(sss

(t)
j )

c
(t+1)
ij =

exp(bij +
∑t

r=1 vvv
(r)
j û̂ûuj|i)

∑
k
exp(bik +

∑t

r=1 vvv
(r)
k û̂ûuk|i)

(4)

where the superscript t ∈ {1, 2, ...} is the index of an

iteration. The c
(1)
ij and bij are initialized as in Equation 3.

Assuming that there are K iterations and the classifica-

tion loss is L(yyy, ttt), where yyy = (‖vvv
(K)
1 ‖, · · · , ‖vvv

(K)
M ‖) is the

prediction and ttt the target, the gradients through the routing

procedure are

∂L

∂û̂ûum|i

=
∂L

∂vvv
(K)
m

∂vvv
(K)
m

∂sss
(K)
m

c
(K)
im +

M∑

j=1

∂L

∂vvv
(K)
j

∂vvv
(K)
j

∂sss
(K)
j

û̂ûuj|i

∂c
(K)
ij

∂û̂ûum|i

(5)

The gradients are propagated through the unrolled routing

iteration via the second item of Equation 5, which is also

the main computational burden of the expensive routing

procedure in CapsNets. By unrolling this term, we prove

that
∂L

∂û̂ûum|i

≈ C ·
∂L

∂vvv
(K)
m

∂vvv
(K)
m

∂sss
(K)
m

c
(K)
im (6)

where C is a constant, which can be integrated into the

learning rate in the optimization process (see the proof in

Appendix A). The approximation means that the gradients

flowing through c
(K)
ij in Equation 5 can be ignored. The

c
(K)
ij can be treated as a constant in Gradient Backpropaga-

tion, and the routing procedure can be detached from the

computational graph of CapsNets.

To confirm Equation 6 empirically, we visualize ∂L
∂û̂ûum|i

.

Following [23], we train a CapsNet on the MNIST dataset.

The architecture and the hyper-parameter values can be

found in Appendix B. We first select capsule predictions

û̂ûuj|i randomly prior to the routing process and then visualize

their received gradients in two cases: 1) unrolling the

routing iterations as in [23]; 2) rolling the routing iterations

by taking all cij as constants in Gradient Backpropagation

(i.e., ignoring the second item in Equation 5). As shown in

each plot of Figure 1, the gradients of the two cases (blue

lines and yellow lines) are similar to each other.

In this section, we aim to show that the intrinsic contri-

bution of the routing procedure is to identify specified con-

stants as coupling coefficients c
(K)
ij . Without a doubt, both

computational cost and memory footprint can be saved by

rolling the routing iterations in Gradient Backpropagation.

The computational graphs of the two cases can be found in

Appendix C.

3.2. Forward Pass through Routing Iterations

The forward iterative routing procedure can be for-

mulated as a function, mapping capsule predictions û̂ûu to

coupling coefficients, i.e., û̂ûu → CCC(K) = {c
(K)
ij } where the

indexes of low-level capsules i vary from 1 to N and the

indexes of high-level capsules j vary from 1 to M . Given an

instance, without loss of generality, we assume the ground-

truth class is the M -th (i.e., vvvM ). With the idea behind the

CapsNet, the optimal coupling coefficients CCC∗ = {c∗ij} of

the instance can be described as

CCC
∗ = max

{cij}
f(û̂ûu) = max

{cij}
(

N∑

i

ciM û̂ûuM|ig(
∑

i

ciM û̂ûuM|i)

−

M−1∑

j

N∑

i

cijû̂ûuj|ig(
∑

i

cijû̂ûuj|i))

(7)

where the first term describes the agreement on the target

class, and the second term corresponds to the agreement on

non-ground-truth classes. The optimal coupling coefficient

CCC∗ corresponds to the case where the agreement on the

target class is maximized, and the agreement on the non-

ground-truth classes is minimized.
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Figure 2: The green lines correspond to the model with

dynamic routing, while the magenta ones to the model

without routing procedure. For both models, the agreement

on the target class increases with training time, and the

agreement on the non-ground-truth classes decreases. The

values are averaged over the whole training or test dataset.

Many routing algorithms differ only in how they approx-

imateCCC∗. For instance, the original work [23] approximates

CCC∗ with an iterative routing procedure. Without requiring

iterative routing steps, [4] makes {bij} trainable to approx-

imate {c∗ij}. Their proposal can be understood as only one-

step routing with learned prior coupling coefficients. By

further reformulation, we show that the optimal sss∗j can be

learned, without a need for coupling coefficients, as

sss
∗
j =

N∑

i

c
∗
ijû̂ûuj|i =

N∑

i

c
∗
ijWWW

∗
ijuuui =

N∑

i

WWW
′
ijuuui. (8)

In the training process, the transformation matrix WWW ij

is updated via Gradient Decent Method. The coupling

coefficients cij are determined by the agreement between

low-level capsules and the corresponding high-level cap-

sules. The training process ends up with parameter values

sss∗j ,WWW
∗
ij , c

∗
ij . As shown in Equation 8, the CapsNet can

achieve the same results by simply learning a transforma-

tion matrixWWW ′
ij without c∗ij . In other words, the connection

strengths c∗ij between low-level capsules and high-level

capsules can be learned implicitly in the transformation

matrixWWW ′
ij . Therefore, we can conclude that different ways

to approximate CCC∗ do not make a significant difference

since the coupling coefficients will be learned implicitly.

We visualize the implicit learning process of the cou-

pling coefficients. In our experiments, we introduce the

no-routing approach, where we remove the iterative rout-

ing procedure by setting all coupling coefficient cij as a

constant 1
M

. In each training epoch, the agreement on

the target class and on the non-ground-truth classes is

visualized in Figure 2. As a comparison, we also visualize

the corresponding agreement values of CapNets with the

dynamic routing process. We can observe that, during the

training process, the agreement on the target class increases

(in the left plot) for both cases, and the agreement on the

non-ground-truth classes decreases (in the right plot). In

other words, f(û̂ûu) increases in both CapNets with/without

routing procedure, meaning that the coupling coefficients

can be learned implicitly.

In summary, the affine robustness of CapsNet can not be

contributed to the routing procedure. We conclude that it

is not infeasible to improve the robustness of CapsNet by

modifying the current routing-by-agreement algorithm.

4. Affine Robustness of Capsule Networks

Besides the dynamic routing process, the other dif-

ference between CapsNets and traditional CNNs is the

CapsNet architecture. CapsNets represent each entity with

a capsule and transform it to high-level entities employing

transformation matrices. In this section, we investigate the

limitation of the transformation process in terms of affine

robustness and propose robust affine capsule networks.

4.1. The Limitation of CapsNets

The CapsNet starts with two convolutional layers, which

converts the pixel intensities to form primary (low-level)

capsules (e.g., the red cuboid in Figure 3 is a capsule uuui).

Each primary capsule has a certain receptive field (e.g., the

image patch xxxi marked with the yellow rectangle). For all

inputs, the coordinates of the receptive field of uuui are the

same. In other words, a primary capsule can only see a

specific area in input images. We denote the corresponding

converting process by uuui = pi(xxxi).
Each primary capsule is transformed to high-level cap-

sules with the corresponding transformation matrix. Each

transformation matrix WWW ij learns how to transform the i-

th low-level capsule to the j-th high-level one, i.e., û̂ûuj|i =
tj|i(uuui). The transformation process corresponding to the

input patch xxxi can be described as

û̂ûuj|i =WWW ijuuui = tj|i(uuui) = tj|i(pi(xxxi)). (9)

The transformation matrix WWW ij can only make meaningful

transformations for the entities that have, at some point,

appeared in the position of xxxi. The input domain of the

transformation function tj|i(·) is Ui.

In the testing phase, if novel affine transformations are

conducted on the input, the corresponding transformation

process tj|i(pi(xxx
′
i)) are not meaningful since pi(xxx

′
i) is not

in the input domain Ui. In other words, the transformation

matrix WWW ij does not describe a meaningful transformation

since the entities ofxxx′
i have never appeared in the position of

the patch xxxi during training. Hence, the CapsNet is limited

in its generalization ability to novel affine transformations

of inputs.
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Figure 3: Illustration of the limitations of CapsNets: The transformation matrix WWW ij can only transform uuui to high-level

capsules, while WWW kj can only make meaningful transformations on uuuk. When an input is transformed (e.g., rotated), the

receptive field corresponding to uuui is not xxxi any more. For the novel uuui, the transformation process using WWW ij can fail.

4.2. Robust Affine Capsule Networks

To overcome the limitation above, we propose a very

simple but efficient solution. Concretely, we propose

to use the same transformation function for all primary

capsules (i.e., ensuring tj|i(·) ≡ tj|k(·)). We implement

a robust affine capsule network (Aff-CapsNet) by sharing

a transformation matrix. Formally, for Aff-CapsNets, we

have
WWW ij =WWW kj , ∀ i, k ∈ {1, 2, · · · , N} (10)

where N is the number of primary capsules. In Aff-

CapsNets, the transformation matrix can make a meaningful

transformation for all primary capsules since it learns how

to transform all low-level capsules to high-level capsules

during training. The transformation matrix sharing has also

been explored in a previous publication [21]. The difference

is that they aim to save parameters, while our goal is to make

CapsNets more robust to affine transformations.

From another perspective, primary capsules and high-

level capsules correspond to local coordinate systems and

global ones, respectively. A transformation matrix is

supposed to map a local coordinate system to the global

one. One might be wondering that the transformation from

each local coordinate system to a global one requires a

specific transformation matrix. In existing architectures,

the coordinate system is high-dimensional. Hence, a single

shared transformation matrix is able to make successful

transformations for all local coordinate systems.

5. Experiments and Analysis

The experiments include two parts: 1) We train CapsNets

with different routing mechanisms (including no routing) on

popular standard datasets and compare their properties from

many perspectives; 2) We show that Aff-CapsNets out-

perform CapsNets on the benchmark dataset and achieves

state-of-the-art performance. For all the experiments of this

section, we train models with 5 random seeds and report

their averages and variances.

5.1. Effectiveness of the Dynamic Routing

In Section 3, we show that the routing mechanism can be

learned implicitly in CapsNets without routing procedure.

Our experiments in this section aim to investigate if the

advantages of CapsNets disappear when trained with no

routing. We consider the following routing procedures in

our training routines:

1. Dynamic-R: with standard dynamic routing in [23];

2. Rolled-R: with a rolled routing procedure by treating

coupling coefficients as constants during Gradient

Backpropagation, as analyzed in Section 3.1;

3. Trainable-R: one-step routing with trainable coupling

coefficients, as in [4];

4. No-R: without routing procedure, which is equivalent

to the uniform routing in [19, 5].

We train CapsNets with different routing procedures de-

scribed above on four standard datasets, namely, MNIST

[15], FMNIST [26], SVHN [18] and CIFAR10 [13]. The

performance is reported in Table 1.

Given the performance variance for each model, the

performance between different models is relatively small.

The reason behind this is that coupling coefficients can

be learned in transformation matrices implicitly, and all

the models possess a similar transformation process. The

models trained with No-R do not prevent the learning

of coupling coefficients. We can also observe that the

models with Trainable-R or No-R show a slightly better

performance than the other two. To our understanding, the

reason is that they do not suffer the polarization problem of

coupling coefficients [17].
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Datasets MNIST FMNIST SVHN CIFAR10

Dynamic-R 99.41(± 0.08) 92.12(± 0.29) 91.32(± 0.19) 74.64(± 1.02)

Rolled-R 99.29(± 0.09) 91.53(± 0.22) 90.75(± 0.52) 74.26(± 0.94)

Trainable-R 99.55(± 0.04) 92.58(± 0.10) 92.37(± 0.29) 76.43(± 1.11)

No-R 99.54(± 0.04) 92.53(± 0.26) 92.15(± 0.29) 76.28(± 0.39)

Table 1: The performance of CapsNets with different routing procedures on different standard datasets is shown, where the

standard (untransformed) test datasets are used. We can observe that the routing procedures do not improve performance.

From this experiment, we can only conclude that the

routing procedure does not contribute to the generalization

ability of CapsNets. In work [23], CapsNets show many

superior properties over CNNs, besides the classification

performance. In the following, we analyze the properties

of CapsNets with No-R and compare them with CapsNets

with Dynamic-R.

5.1.1 On learned Representations of Capsules

When training CapsNets, the original input is reconstructed

from the activity vector (i.e., instantiation parameters) of

a high-level capsule. The reconstruction is treated as a

regularization technique. In CapsNets with Dynamic-R

[23], the dimensions of the activity vector learn how to

span the space containing large variations. To check such

property of CapsNets with No-R, following [23], we feed

a perturbed activity vector of the ground-truth class to

decoder network.

Figure 4: Disentangled Individual Dimensions of Capsules:

By perturbing one dimension of an activity vector, the

variations of an input image are reconstructed.

The perturbation of the dimensions can also cause vari-

ations of the reconstructed input. We show some examples

in Figure 4. The variations include stroke thickness, width,

translation, rotation, and various combinations. In Figure

5, we also visualize the reconstruction loss of the models

with Dynamic-R and the ones with No-R. The CapsNets

with No-R show even less reconstruction error and can

reconstruct inputs better.

Figure 5: The average reconstruction loss of CapsNets with

Dynamic-R and No-R on the test dataset is shown in each

epoch of the training process.

5.1.2 Parallel Attention Mechanism between Capsules

Dynamic routing can be viewed as a parallel attention

mechanism, in which each high-level capsule attends to

some active low-level capsules and ignores others. The

parallel attention mechanism allows the model to recognize

multiple objects in the image even if objects overlap [23].

The superiority of the parallel attention mechanism can be

shown on the classification task on MultiMNIST dataset

[9, 23]. Each image in this dataset contains two highly over-

lapping digits. CapsNet with dynamic routing procedure

shows high performance on this task.

In this experiment, we show that the parallel attention

mechanism between capsules can be learned implicitly,

even without the routing mechanism. Following the experi-

mental setting in [23], we train a CapsNet with No-R on the

same classification task of classifying highly overlapping

digits. The model No-R achieves 95,49% accuracy on

the test set, while the one with Dynamic-R achieves 95%

accuracy. The removal of the routing procedure does

not make the parallel attention mechanism of CapsNets

disappear.

5.1.3 Robustness to Affine Transformation

CapsNets are also known for their robustness to affine

transformation. It is important to check whether the re-

moval of the routing procedure affects the affine robustness.

We conduct experiments on a standard benchmark task.

Following [23], we train CapsNets with or without routing

procedure on the MNIST training dataset and test them on
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(a) Without a routing procedure: the test accuracy of CapsNets and

Aff-Capsnets on on the expanded MNIST test set and the AffNIST

test set.

(b) With the dynamic routing: the test accuracy of CapsNets and

Aff-Capsnets on the expanded MNIST test set and the AffNIST

test set.

Figure 6: For both cases (with or without routing procedure), Aff-CapsNets clearly outperform CapsNets on the AffNIST

test dataset.

the affNIST dataset. The images in the MNIST training

dataset are placed randomly on a black ground of 40 × 40
pixels to match the size of images in affNIST dataset. The

CNN baseline is set the same as in [23].

It is hard to decide if one model is better at generalizing

to novel affine transformations than another one when they

achieved different accuracy on untransformed examples. To

eliminate this confounding factor, we stopped training the

models when they achieve similar performance, following

[23]. The performance is shown in Table 2. Without routing

procedure, the CapsNets show even better affine robustness.

In summary, our experiments show that the dynamic

routing procedure contributes neither to the generalization

ability nor to the affine robustness. Due to the high affine

robustness of CapsNet cannot be attributed to the routing

procedure: Instead, it is the inductive bias (architecture) of

CapsNets that contributes to the affine robustness.

5.2. Affine Robustness of Aff­CapsNets

In Section 4, we proposed Aff-CapsNets that are more

robust to the novel affine transformations of inputs. In

this experiment, we train Aff-CapsNets with Dynamic-R

and No-R respectively. As a comparison, we also train

CapsNets with or without dynamic routing correspondingly.

We visualize the test accuracy on the expanded MNIST

test set and the AffNIST test set. The performance is shown

in Figure 6. The lines show the averaged values, while the

colored areas around the lines describe the variances caused

by different seeds. Figure 6a shows the accuracy of models

trained without a routing procedure. We can observe that

Models Test on MNIST Test on AffNIST

CNN [23] 99.22% 66%

Dynamic-R [23] 99.23% 79%

No-R 99.22% 81.81%

Table 2: The performance on the expanded MNIST test set

and the AffNIST test set.

the Aff-CapsNets constantly shows better accuracy than

CapsNets on AffNIST. To a great extent, our Aff-CapsNets

covers the performance gap between the test accuracy on

untransformed examples and that on transformed ones.

In addition, the Aff-CapsNet architecture is still effec-

tive, even when the dynamic routing is applied in training

(see Figure 6b). We can also observe that the CapsNets with

dynamic routing overfit to the current viewpoints. With

the training process going on, the coupling coefficients are

polarized (become close to 0 or 1) [17]. The polarization of

the coupling coefficient causes the overfitting. Furthermore,

the training with dynamic routing is more unstable than

without routing. The variance of model test performance

in Figure 6b is much bigger than the ones in Figure 6a.

We now compare our model with previous work. In

Table 3, we list the performance of CNN variants and

CapsNet variants on this task. Without training on AffNIST

dataset, our Aff-CapsNets achieve state-of-the-art perfor-

mance on AffNIST test dataset. This experiment shows that

the proposed model is robust to input affine transformation.
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Models Trained on

AffNIST?

MNIST AffNIST

Marginal. CNN [28] Yes 97.82% 86.79%

TransRA CNN[1] Yes 99.25 % 87.57%

BCN [3] Mix* 97.5% 91.60%

CNN [23] No 99.22% 66%

Dynamic-R [23] No 99.23% 79%

GE-CAPS [16] No - 89.10%

SPARSECAPS [22] No 99% 90.12%

Aff-CapsNet + No-R No 99.23% 93.21(±0.65)%

Table 3: Comparison to state-of-the-art performance on the

benchmark task.

6. Discussion

The difference between the regular CNNs, Aff-

Capsnet and CapsNets: Each neuron in the convolutional

layer is connected only to a local spatial region in the input.

However, each element in a capsule layer (with or without

dynamic routing) is connected to all elements of all input

capsules. By considering global information, the features

extracted by the capsule layer might be more useful for

some tasks, e.g., affine-transformed image classification or

semantic image segmentation.

What is the difference between a fully connected (FC)

layer and the capsule layer without dynamic routing? In an

FC layer, each neuron is also connected to all neurons of the

preceding layer. Compared with FC layers, convolutional

layers show inductive biases, which are Local Connection

and Parameter Sharing. Similarly, capsule layers might

show a new inductive bias, namely, a new way to combine

activations of the preceding layer.

The relationship between CapsNet architectures and

CNN architectures is illustrated in Figure 7. CapsNets

might be considered as new architectures parallel to CNNs.

In the past years, our community has focused on exploring

CNN architectures manually or automatically. The figure il-

lustrates that there is ”space” outside of the CNN paradigm:

CapsNets, or even other unexplored options.

Going Deeper with CapsNets: One way to make Cap-

sNets deep is to integrate advanced techniques of training

CNNs into CapsNets. The integration of skip connections

[8, 21] and dense connections [11, 20] have been proven to

be successful. Instead of blindly integrating more advanced

techniques from CNN into CapsNets, it might be more

promising to investigate more into the effective components

in CapsNets. Our investigation reveals that the dynamic

routing procedure contributes neither to the generalization

ability nor to the affine robustness of CapsNets. Such

conclusion is helpful for training CapsNets on large scale

datasets, e.g., the ImageNet 1K dataset [7].

Figure 7: The relationship between different CNN architec-

tures and Capsule Network architectures.

Application of CapsNets to Computer Vision Tasks

Besides the object recognition task, CapsNets are also

applied to many other computer vision tasks, for exam-

ples, object segmentation [14], image generation models

[12, 24], and adversarial defense [10]. It is not clear

whether routing procedures are necessary for these tasks.

If routing is not required here as well, the architectures of

CapsuleNets can be integrated into these vision tasks with

much less effort.

The Necessity of the Routing Procedure in CapsNets

[23] demonstrated many advantages of CapsNets with

dynamic routing over CNNs. However, our investigation

shows that all the advantages do not disappear when the

routing procedure is removed. Our paper does not claim

that routing does not have any benefits but rather poses the

question to the community: What is the routing procedure

really good for? If the routing procedure is not necessary

for a given task, CapsNets have the chance of becoming an

easier-to-use building block.

7. Conclusion

We revisit the dynamic routing procedure of CapsNets.

Our numerical analysis and extensive experiments show

that neither the generalization ability nor the affine ro-

bustness of CapsNets is reduced by removing the dynamic

routing procedure. This insight guided us to focus on the

CapsNet architecture, instead of various routing procedures,

to improve the affine robustness. After exploring the

limitation of the CapsNet architecture, we propose Aff-

CapsNets, which improves affine robustness significantly

using fewer parameters.

Since this work mainly focused on the robustness to

affine transformation, we investigate the standard CapsNets

with dynamic routings. Other beneficial properties have

also been shown in improved CapsNets, like adversarial

robustness and viewpoint invariance. Further analysis of

these properties will be addressed in future work.
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