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Abstract. Three common approaches for deriving or predicting instan-
tiated relations are information extraction, deductive reasoning and ma-
chine learning. Information extraction uses subsymbolic unstructured
sensory information, e.g. in form of texts or images, and extracts state-
ments using various methods ranging from simple classifiers to the most
sophisticated NLP approaches. Deductive reasoning is based on a sym-
bolic representation and derives new statements from logical axioms.
Finally, machine learning can both support information extraction by
deriving symbolic representations from sensory data, e.g., via classifi-
cation, and can support deductive reasoning by exploiting regularities
in structured data. In this paper we combine all three methods to ex-
ploit the available information in a modular way, by which we mean that
each approach, i.e., information extraction, deductive reasoning, machine
learning, can be optimized independently to be combined in an overall
system. We validate our model using data from the YAGO2 ontology,
and from Linked Life Data and Bio2RDF, all of which are part of the
Linked Open Data (LOD) cloud.

1 Introduction

The prediction of the truth value of a (instantiated) relation or statement (i.e.,
a link in an RDF graph) is a common theme in such diverse areas as information
extraction (IE), deductive reasoning and machine learning. In the course of this
paper we consider statements in form of (s, p, o) RDF-triples where s and o are
entities and where p is a predicate. In IE, one expects that the relation of inter-
est can be derived from subsymbolic unstructured sensory data such as texts or
images and the goal is to derive a mapping from sensory input to statements.
In deductive reasoning, one typically has available a set of facts and axioms and
deductive reasoning is used to derive additional true statements. Relational ma-
chine learning also uses a set of true statements but estimates the truth values of
novel statements by exploiting regularities in the data. Powerful methods have
been developed for all three approaches and all have their respective strengths
and shortcomings. IE can only be employed if sensory information is available
that is relevant to a relation, deductive reasoning can only derive a small subset
of all statements that are true in a domain and relational machine learning is
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only applicable if the data contains relevant statistical structure. The goal of this
paper is to combine the strengths of all three approaches modularly, in the sense
that each step can be optimized independently. In a first step, we extract triples
using IE, where we assume that the extracted triples have associated certainty
values. In this paper we will only consider IE from textual data. Second, we
perform deductive reasoning to derive the set of provably true triples. Finally,
in the third step, we employ machine learning to exploit the dependencies be-
tween statements. The predicted triples are then typically ranked for decision
support. The complete system can be interpreted as a form of scalable hierar-
chical Bayesian modeling. We validate our model using data from the YAGO2
ontology, and from Linked Life Data and Bio2RDF, all of which are part of the
Linked Open Data (LOD) cloud.

The paper is organized as follows. The next section discusses related work.
Section 3 describes and combines IE and deductive reasoning. Section 4 describes
the relational learning approach. Section 5 presents various extensions and in
Section 6 we discuss scalability. Section 7 contains our experimental results and
Section 8 presents our conclusions.

2 Related Work

Multivariate prediction generalizes supervised learning to predict several vari-
ables jointly, conditioned on some inputs. The improved predictive performance
in multivariate prediction, if compared to simple supervised learning, has been
attributed to the sharing of statistical strength between the multiple tasks, i.e.,
data is used more efficiently (see [32] and citations therein for a review). Due
to the large degree of sparsity of the relationship data in typical semantic graph
domains, we expect that multivariate prediction can aid the learning process in
such domains.

Our approach is also related to conditional random fields [20]. The main
differences are the modularity of our approach and that our data does not exhibit
the linear structure in conditional random fields.

Recently, there has been quite some work on the relationship between kernels
and graphs [7] [33] [11]. Kernels for semi-supervised learning have, for example,
been derived from the spectrum of the Graph-Laplacian. Kernels for semantically
rich domains have been developed by [8]. In [36] [35] approaches for Gaussian
process based link prediction have been presented. Link prediction is covered
and surveyed in [27] [13]. Inclusion of ontological prior knowledge to relational
learning has been discussed in [28].

From early on there has been considerable work on supporting ontologies us-
ing machine learning [24] [9] [21], while data mining perspectives for the Semantic
Web have been described by [1] [25]. A recent overview of the state of the art has
been presented in [29]. The transformation of text into the RDF structure of the
semantic web via IE is a highly active area of research [23] [30] [5] [6] [2] [4] [34] [3]
[26] [14]. [22] describes a perspective of ILP for the Semantic Web. We consider
machine learning approaches that have been applied to relation prediction in
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the context with the Semantic Web. In [19] the authors describe SPARQL-ML,
a framework for adding data mining support to SPARQL. SPARQL-ML was
inspired by Microsoft’s Data Mining Extension (DMX). A particular ontology
for specifying the machine learning experiment is developed. The approach uses
Relational Bayes Classifiers (RBC) and Relational Probabilistic Trees (RPT).

3 Combining Sensory Information and Knowledge Base

3.1 Relation Prediction from Sensory Inputs

The derivation of relations from subsymbolic unstructured sensory information
such as texts and images is a well-studied area in IE. Let X stand for a random
variable that has state one if the (s, p, o) statement of interest is true and is
zero otherwise. We assume that the IE component can estimate

P (X = 1|S)

which is the probability that the statement represented by X is true given the
sensory information S. Otherwise no restrictions apply to the IE part in our
approach, e.g., it could be based on rules or on statistical classifiers. Note that
IE is limited to predict statements for which textual or other sensory information
is available.

In the applications we have textual information texts describing the subject
and textual information texto describing the object and we can write3

P (X = 1|texts, texto). (1)

In other applications we might also exploit text that describes the predicate
textp or text that describes the relationship texts,p,o (e.g, a document where
a user (s) evaluates a movie (o) and the predicate is p=“likes”) [16]. A recent
overview on state of the art IE methods for textual data can be found in [29].

3.2 Relations from the Knowledge Base

In addition to sensory information, we assume that we have available a knowledge
base in form of a triple store of known facts forming an RDF graph. Conceptually
we add all triples that can be derived via deductive reasoning.4 State of the art
scalable deductive reasoning algorithms have been developed, e.g., in [10]. Note
that deductive reasoning typically can only derive a small number of nontrivial
statements of all actually true statements in a domain.

We will also consider the possibility that the knowledge base contains some
uncertainty, e.g., due to errors in the data base. So for triples derived from the
knowledge base KB we specify

P (X = 1|KB)

3 For example, these texts might come from the corresponding Wikipedia pages.
4 Here, those tripes can either be inferred explicitly by calculating the deductive clo-

sure or on demand.
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to be a number close to one.
For all triples that cannot be proven to be true, we assume that P (X =

1|KB) is a small nonnegative number. This number reflects our belief that triples
not known to be true might still be true.

3.3 Combining Sensory Information and Knowledge Base

Now we combine sensor information and information from the knowledge base.
Let P (X = 1|S,KB) be the probability that the statement presented by X is
true given the knowledge base and sensory information. The heuristic rule that
we apply is very simple:

P (X = 1|S,KB) = P (X = 1|S) if P (X = 1|S) > P (X = 1|KB)

P (X = 1|S,KB) = P (X = 1|KB) otherwise.

Thus the probability of a statement derived from sensory information overwrites
the default knowledge base values, if the former one is larger. Therefore, we rely
on the knowledge base unless IE provides substantial evidence that a relation is
likely.

4 Adding Relational Machine Learning

In many applications there is information available that is neither captured by
sensory information nor by the knowledge base. A typical example is collabo-
rative preference modeling which exploits correlations between preferences for
items. Such probabilistic dependencies cannot easily be captured in logical ex-
pressions and typically are also not documented in textual or other sensory form.
Relational machine learning attempts to capture exactly these statistical depen-
dencies between statements and in the following we will present an approach that
is suitable to also integrate sensory information and a knowledge base. Although
there are probably a number of heuristic ways to combine sensory information
and the knowledge base with machine learning, it is not straightforward to come
up with consistent probabilistic models. Probabilistic generative models would
require P (S,KB|{X}) where {X} is the set of all random variables of all state-
ments. Unfortunately, it is not clear how such a term could be derived. In the next
subsections we develop an approach that works with the simpler P (X|S,KB)
and can be justified from a Bayesian modeling point of view.

4.1 Notation

Consider (s, p, o) triple statements where s and o are entities and p is a predicate.
Note that a triple typically describes an attribute of a subject, e.g., (Jack, height,
Tall), or a relationship (Jack, likes, Jane). Consider, that {ei} is the set of known
entities in the domain. We assume that each entity is assigned to exactly one
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class c(i). This assumption will be further discussed in Section 5. Let Nc be the
number of entities in class c.

We also assume that the set of all triples in which an entity ei can occur as a
subject is known and is a finite, possibly large, ordered set (more details later)
and contains Mc(i) elements. For each potential triple (s, p, o) we introduce
a random variable X which is in state one when the triple is true and is in
state zero otherwise. More precisely, Xi,k = 1 if the k-th triple involving ei as a

subject is true and Xi,k = 0 otherwise. Thus, {Xi,k}
Mc(i)

k=1 is the set of all random
variables assigned to the subject entity ei.

We now assume that there are dependencies between all statements with the
same subject entity.

4.2 A Generative Model

Following the independence assumptions we train a separate model for each
class. So in this section we only consider the subset of statements which all have
entities from the same entity class c.

The generative model is defined as follows. We assume that for each entity
ei which is a subject in class c there is a d-dimensional latent variable vector hi
which is generated as

hi ∼ N(0, I) (2)

from a Gaussian distribution with independent components and unit-variance.
Then for each entity ei a vector αi = (αi,1, . . . , αi,Mc)T is generated, following

αi = Ahi (3)

where A is a MC × d matrix with orthonormal columns.
From αi we derive

P (Xi,k = 1|S,KB) = sig(αi,k) (4)

where sig(in) = 1/(1 + exp(−in)) is the logistic function. In other words, αi,k
is the true but unknown activation that specifies the probability of observing
Xi,k = 1. Note that αi,k is continuous with −∞ < αi,k < ∞ such that a
Gaussian distribution assumption is sensible, whereas discrete probabilities are
bounded by zero and one.

We assume that αi,k is not known directly, but that we have a noisy version
available for each αi,k in the form of

fi,k = αi,k + εi,k (5)

where εi,k is independent Gaussian noise with variance σ2. fi,k is now calcu-
lated in the following way from sensory information and the knowledge base. We
simply write

P̂ (Xi,k = 1|S,KB) = sig(fi,k)
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and sensory and the knowledge base is transferred into

fi,k = inv-sig(P̂ (Xi,k = 1|S,KB)) (6)

where inv-sig is the inverse of the logistic function. Thus probabilities close to one
are mapped to large positive f -values and probabilities close to zero are mapped
to large negative f -values. The resulting F -matrix contains the observed data
in the probabilistic model (see Figure 1).

Fig. 1. Graphical plate model for the data generating process.

4.3 Calculating the Solution

Note that our generative model corresponds to the probabilistic PCA (pPCA)
described in [31] and thus we can use the learning equations from that paper.

Let F be the Nc ×Mc matrix of f -values for class c and let

C = FTF

be the empirical correlation matrix. The likelihood is maximized when

Â = Ud(Λd − σ2I)1/2R (7)

where the d column vectors in the Nc×d matrix Ud are the principal eigenvectors
of C, with corresponding eigenvalues λ1, ..., λd in the d × d diagonal matrix Λd
and R is an arbitrary d×Nc orthogonal rotation matrix.5 We also get

σ̂2 =
1

Mc − d

Mc∑
j=d+1

λj .

5 A practical choice is the identity matrix R = I. Also note that we assume that the
mean is equal to zero, which can be justified in sparse domains.
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Finally, we obtain
α̂i = ÂM−1ÂT fi. (8)

Here, fi = (fi,1, . . . , fi,Mc
)T is the vector of f -values assigned to ei and M =

ÂT Â+ σ̂2I. Note that M is diagonal such that the inverse is easily calculated as

α̂i = Ud diag

(
λj − σ̂2

λj

)
UTd fi. (9)

α̂i is now used in Equation 4 to determine the probability that Xi,k = 1,
which is then, e.g., the basis for ranking. Also

diag

(
λj − σ̂2

λj

)
is a diagonal matrix where the j-th diagonal term is equal to

λj−σ̂2

λj
.6

5 Comments and Extensions

5.1 A Joint Probabilistic Model

There are many ways of looking at this approach, maybe the most interesting
one is a hierarchical Bayesian perspective. Consider each αi,k to be predicted as a
function of S and KB. In hierarchical Bayesian multitask learning one makes the

assumption that, for a given entity ei, the {αi,k}
Mc(i)

k=1 are not independent but
are mutually coupled and share statistical strength [12]. This is achieved exactly
by making the assumption that they are generated from a common multivariate
Gaussian distribution. Thus our approach can be interpreted as hierarchical
Bayesian multitask learning which can scale up to more than a million of tasks,
i.e., potential statements per item.

Note that we suggest to train an independent model for each class and we
obtain a joint probabilistic model over a complete domain with

P ({X}, {h}|{F}, Θ) =
∏
c

∏
i:c(i)=c

P (Xi|αi(hi)) P (fi|αi(hi)) P (hi).

P (hi) is given by Equation 2, where the dimension d might be dependent on
the class c(i) and αi(hi) is given by Equation 3. P (Xi|αi(hi)) is given by Equa-

tion 4 (with Xi = {Xi,k}
Mc(i)

k=1 ) and P (fi|αi(hi), σ2
c ) is given by Equation 5.

Furthermore, {F} is the set of F matrices for all classes and Θ is the set of all
parameters, i.e., the A matrices and the σ2 for all classes.

6 Note the great similarity of Equation 9 to the reduced rank penalized regression
equation in the SUNS approach described in [15] which, in the notation of this
paper, would assume the form Ud diag (λj/(λj + γ))UT

d fi where γ ≥ 0 is a regu-
larization parameter. In some experiments we used this equation which exhibited
greater numerical stability.
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Note that each class is modeled separately, such that, if the number of entities
per class and potential triples per entity are constant, machine learning scales
linearly with the size of the knowledge base.

Finally we want to comment on how we define the set of all possible triples un-
der consideration. In most applications there is prior knowledge available about
what triples should be considered. Also, typed relations constrain the number
of possible triples. In some applications it makes sense to restrict triples based
on observed triples: We define the set of all possible statements in a class c to
be all statements (s, p, o) where s is in class c and where the triple (s, p, o) has
been observed in the data for at least one element of s ∈ c.

5.2 Generalization to New Entities

The most interesting case is when a new entity en that was not considered in
training becomes known. If the class of the new entity is known, one can simply
use Equation 8 to calculate a new αn for a new fn, which corresponds to the
projection of a new data vector in pPCA. In case the class of the new entity is
unknown, we can calculate αn for the different classes under consideration and
use Equation 5 to calculate the class specific probability.

5.3 Aggregation

After training, the learning model only considers dependencies between triples
with the same subject entity. Here we discuss how additional information can
be made useful for prediction.

Supplementing the Knowledge Base The first approach is simply to add
a logical construct into deductive reasoning that explicitly adds aggregated in-
formation. Let’s assume that the triple (?Person, livesIn, Germany) can be pre-
dicted with some certainty from (?Person, bornIn, Germany). If the triple store
does not contain the latter information explicitly but contains information about
the birth city of a person, one can use a rule such as

(?Person, bornIn, Germany)

← (?Person, bornIn, ?City) ∧ (?City, locatedIn, Germany)

and the derived information can be used in machine learning to predict the triple
(?Person, livesIn, Germany).

Enhancing IE Some aggregation happens at the IE level. As an example,
consider a text that describes a person (subject) and reveals that this person is
a male teenager and consider another text that reveals that a movie (object) is
an action movie. Then an IE system can learn that (Person, likes, Movie) is more
likely when the keywords “male”, “young” are present in the text describing the
person and the keyword “action” is present in the test describing the movie.
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We can also enhance the textual description using information from the
knowledge base. If the knowledge base contains the statement (Person, gender,
Male) and (Person, age, Young), we add the terms “male” and “young” to the
keywords describing the person. Similarly, if the knowledge base contains the
statement (Movie, isGenre, Action), we add the term “action” to the keywords
describing the movie.

5.4 Multiple Class Memberships

So far we have assumed that each entity can uniquely be assigned to a class.
In many ontologies, an entity is assigned to more than one class. The most
straightforward approach is to define for each entity a most prominent class.
For example we might decide that from the class assignments (Jack, rdf:type,
Student), (Jack, rdf:type, Person), (Jack, rdf:type, LivingBeing) that the second
one is the prominent class which is used in the probabilistic model. The other
two class assignments (i.e., type-of relations) are simply interpreted as additional
statements (Jack, rdf:type, Student), (Jack, rdf:type, LivingBeing) assigned to
the entity. As part of future work we will develop mixture approaches for dealing
with multiple class assignments, but this is beyond the scope of this paper.

6 Scalability

We consider the scalability of the three steps: deductive reasoning, IE, and ma-
chine learning. Deductive reasoning with less expressive ontologies scales up to
billions of statements [10]. Additional scalability can be achieved by giving up
completeness. As already mentioned, each class is modeled separately, such that,
if the number of entities per class and potential triples per entity are constant,
machine learning scales linearly with the size of the knowledge base. The ex-
pensive part of the machine learning part is the eigen decomposition required in
Equation 7. By employing sparse matrix algebra, this computation scales linearly
with the number of nonzero elements in F . To obtain a sparse F , we exploit the
sensory information only for the test entities and train the machine learning com-
ponent only on the knowledge base information, i.e., replace P̂ (Xi,k = 1|S,KB)

with P̂ (Xi,k = 1|KB) in Equation 6. Then we assume that P (X = 1|KB) = ε
is a small positive constant ε for all triples that are not and cannot be proven
true. We then subtract inv-sig(ε) from F prior to the decomposition and add
inv-sig(ε) to all α. The sparse setting can handle settings with millions of entities
in each class and millions of potential triples for each entity.

7 Experiments

7.1 Associating Diseases with Genes

As the costs for gene sequencing are dropping, it is expected to become part of
clinical practice. Unfortunately, for many years to come the relationships between
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genes and diseases will remain only partially known. The task here is to predict
diseases that are likely associated with a gene based on knowledge about gene
and disease attributes and about known gene-disease patterns.

Disease genes are those genes involved in the causation of, or associated
with a particular disease. At this stage, more than 2500 disease genes have been
discovered. Unfortunately, the relationship between genes and diseases is far from
simple since most diseases are polygenic and exhibit different clinical phenotypes.
High-throughput genome-wide studies like linkage analysis and gene expression
profiling typically result in hundreds of potential candidate genes and it is still a
challenge to identify the disease genes among them. One reason is that genes can
often perform several functions and a mutational analysis of a particular gene
reveal dozens of mutation cites that lead to different phenotype associations to
diseases like cancer [18]. An analysis is further complicated since environmental
and physiological factors come into play as well as exogenous agents like viruses
and bacteria.

Despite this complexity, it is quite important to be able to rank genes in terms
of their predicted relevance for a given disease as a valuable tool for researchers
and with applications in medical diagnosis, prognosis, and a personalized treat-
ment of diseases.

In our experiments we extracted information on known relationships between
genes and diseases from the LOD cloud, in particular from Linked Life Data and
Bio2RDF, forming the triples (Gene, related to, Disease). In total, we considered
2462 genes and 331 diseases. We retrieved textual information describing genes
and diseases from corresponding text fields in Linked Life Data and Bio2RDF.
For IE, we constructed one global classifier that predicts the likelihood of a
gene-disease relationship based on the textual information describing the gene
and the disease. The system also considered relevant interaction terms between
keywords and between keywords and identifiers and we selected in total the 500
most relevant keywords and interaction terms. We did the following experiments

– ML: We trained a model using only the gene disease relationship, essentially a
collaborative filtering system. Technically, Equation 6 uses P̂ (Xi,k = 1|KB),
i.e., no sensory information.

– IE: This is the predictive performance based only on IE, using Equation 1.
– ML + IE: Here we combine ML with IE, as discussed in the paper. We

combine the knowledge base with IE as described in Section 3.3 and then
apply Equation 6 and Equation 8.

Figure 2 shows the results. As can be seen, the performance of the IE part is
rather weak and ML gives much better performance. It can nicely be seen that
the combination of ML and IE is effective and provides the best results.

7.2 Predicting Writer’s Nationality in YAGO2

The second set of experiments was done on the YAGO2 semantic knowledge base.
YAGO2 is derived from Wikipedia and also incorporates WordNet and GeoN-
ames. There are two available versions of YAGO2: core and full. We used the
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Fig. 2. Results on the Gene-Disease Data as a function of the rank d of the approxima-
tion. For each gene in the data set, we randomly selected one related to statement to be
treated as unknown (test statement). In the test phase we then predicted all unknown
related to entries, including the entry for the test statement. The test statement should
obtain a high likelihood value, if compared to the other unknown related to entries.
The normalized discounted cumulative gain (nDCG@all) [17] is a measure to evaluate
a predicted ranking.
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first one, which currently contains 2.6 million entities, and describes 33 million
facts about these entities. Our experiment was designed to predict the nation-
alities of writers. We choose four different types of writers: American, French,
German and Japanese. E.g., the triples for American writers are obtained with
the SPARQL query:

SELECT ?writer ?birthPlace ?location WHERE {
?writer rdf:type ?nationality .
?writer yago:wasBornIn ?birthPlace .
?birthPlace yago:isLocatedIn ?location .
FILTER regex(str( ?nationality ), ”American writers”, ”i”)

}

We obtained 440 entities representing the selected writers. We selected 354
entities with valid yago:hasWikipediaUrl statements. We built the following five
models:

– ML: Here we considered the variables describing the writers’ nationality (in
total 4) and added information on the city where a writer was born. In total,
we obtained 233 variables. Technically, Equation 6 uses P̂ (Xi,k = 1|KB),
i.e., no sensory information.

– IE: As textual source, we used the Wikipage of the writers. We removed
the terms ’German, French, American, Japanese’ and ended up with 36943
keywords.

– ML+IE: We combined the knowledge base with IE as described in Section 3.3
and then applied Equation 6 and Equation 8.

– ML+AGG: We performed geo-reasoning to derive the country where a writer
is born from the city that a writer was born. This aggregate information was
added as a statement to the writer. Naturally, we expect a high correlation
between country of birth and the writer’s nationality (but there is no 100%
agreement!).

– ML+AGG+IE: As ML+AGG but we added IE information using Equa-
tion 1.

We performed 10-fold cross validation for each model, and evaluated them
with the area under precision and recall curve. Figure 3 shows the results. We
see that the ML contribution was weak but could be improved significantly by
adding information on the country of birth (ML+AGG). The IE component
gives excellent performance but ML improves the results by approximately 3
percentage points. Finally, by including geo-reasoning, the performance can be
improved by another percentage point. This is a good example where all three
components, geo-reasoning, IE and machine learning fruitfully work together.

8 Conclusions

In this paper we have combined information extraction, deductive reasoning and
relational machine learning to integrate all sources of available information in a
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Fig. 3. The area under curve for the YAGO2 Core experiment as a function of the
rank d of the approximation.

modular way. IE supplies evidence for the statements under consideration and
machine learning models the dependencies between statements. Thus even if it
is not evident that a patient has diabetes just from IE from text, our approach
has the ability to provide additional evidence by exploiting correlations with
other statements, such as the patient’s weight, age, regular exercise and insulin
intake. We discussed the case that an entity belongs to more than one ontological
class and addressed aggregation. The approach was validated using data from
the YAGO2 ontology, and the Linked Life Data ontology and Bio2RDF. In the
experiments associating diseases with genes we could show that our approach
to combine IE with machine learning is effective in applications where a large
number of relationships need to be predicted. In the experiments on predict-
ing writer’s nationality we could show that IE could be combined with machine
learning and geo-reasoning for the overall best predictions. In general, the ap-
proach is most effective when the information supplied via IE is complementary
to the information supplied by statistical patterns in the structured data and if
reasoning can add relevant covariate information.
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