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Prelude

My background is in Machine Learning and I got involved in Semantic 
Web projects maybe 6 years ago
Learning about the Semantic Web clarified my thinking about many 
things dramatically

Immediate love affaire with RDF
Nothing is ever wrong
No contradictions

DDR English
Thal, Austria
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Overview

Why Machine Learning needs Knowledge Graphs
Statistical Relational Learning
Learning with the YAGO Knowledge Graph
Towards Relevant Use Cases
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What is Machine Learning?

Machine Learning versus Statistics versus Data Mining

Statistics focuses on interpretable parameters

Data mining focuses on the discovery of meaningful patterns

Machine Learning focuses on prediction accuracy
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Classification

Classification is the work horse of 
machine learning
Predict class memberships for many 
objects

Very powerful
Surprisingly general
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Typical Classifiers

Predicting class k for input
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Fixed basis functions

Kernels

Neural Networks

lz

Really the same 
things; deep 
learners would 
call the shallow

10 layers with 1000 neurons per layer
Currently the hottest thing!
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Deep Learning Neural Networks

Google, Microsoft, Facebook, 
Baidu are all investing heaviliy 
in deep learning
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Detecting Cats in Images

Best performing in detecting cats in images and videos (Andrew Ng)
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Where from here?

A deep learning network sees more cats than any child but is not as good at 
this task
Deep Learning community: we need better unsupervised learning to pre-
structure the network

Maybe we would say: we need background knowledge
Also: we do not just want to detect cats!

<Image of cats>
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Challenges

Predict all classes: „This is a cat!“ „This is a dog!“ 
„This is a house!“ …

Recognize specific entities: „This my cat Max!“
[In our experiments 107] 

Predict all attributes:  „Max is evil!“

Predict all relationships: „Max likes Mary!“
[In our experiments 1014] [ #of synapses]

<Image of cats>

<Image of cats>

<Image of cats>

<Image of cats>
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Vision

„You must be president Obama!“
„How is your wife Michelle?“
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Requirement: Understanding of the World

We need to know about the entities, attributes and classes in the world, and  
the various relationships that do or might exist between those

We need ontologies!
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Biomedical Ontologies

International Statistical Classification of Diseases and Related Health Problems (ICD)
Used extensively in billing

SNOMED Clinical Terms (SNOMED CT)
A systematically organized computer processable collection of medical terms providing codes, terms, 
synonyms and definitions used in clinical documentation and reporting.
Application: EHR

RadLex
Unified language of radiology terms for standardized indexing and retrieval of radiology information 
resources

Open Biomedical Ontologies (OBO)
Controlled vocabularies for shared use across different biological and medical domains
Gene Ontology (GO) is a part (genes and gene products)
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For the First Time there Exist Sizable General 
Ontologies: DBpedia, YAGO, Freebase, Knowledge 
Graph

Suchanek, Kasneci, Weikum:  2007

Bollacker, Evans, Paritosh, Sturge, Taylor, 2008

Auer, Bizer, Kobilarov, Lehmann, Cyganiak,  Ives:  2007
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Linked Open Data (Semantic Web)
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Triple  Graphs

Max Mary
likes
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Knowledge Bases are Triple Graphs

Linked Open Data (LOD) and large ontologies like DBpedia, Yago, Knowledge Graph are graph-
based knowledge representations  using light-weight ontologies,  and are accessible to machine 
learners

They are all triple oriented and more or less follow the RDF standard 
RDF: Resource Description Framework
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Canonical Relational Machine Learning Task

j
k

i ere ,, true or false?

)(1,, l
k

j
k

i zfereP

• So, very simple, we build one classifier for each relation type k
and we are done

• But what is the input                 ?lz
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I. Relational Learning with Known Features
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Semantic Web
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II. Relational Learning with Latent Features
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With Latent Features We Get Collective Learning
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Model with Polynomial Basis Functions

tjsilts

r

s
lts

k
ts

r

t
l

k

aazb

zbwzf

,,,

1
,,

1

)(

)()(

But what are good basis functions?
We need to represent the interactions between all feature components
Binary interactions
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Mapping to a Tensor Factorization Problem

Here,            is a r x r matrix

We can take the matrices  for the different relations                                                           
on to of each other and obtain the core tensor R

In tensor notation: We factorize the tensor X
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RESCAL Factorization
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Cost  Functions

Probabilistic View

Gaussian

Bernoulli

Frobenius norm
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Iterative Update

Most efficient: Alternating Least Squares (ALS)
Can exploit data sparsity

(stochastic gradient descent, …)
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RESCAL for Different  -arities
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RESCAL for Binary Relations

1
, jix

1,ia ria , 1,ja rja ,

1

R

K
jix ,

ie je

K-relations



Page 32 May 2014 Machine Learning with Knowledge Graphs, ESWC 2014

Scalabilty

Attributes in coupled matrix
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Leading Performance in Link prediction on 
benchmark data sets

Kinship: multiple kinship relations between members of the Alyawarra tribe in central Australia (10,790 
kinship relationships (facts) between 104 persons over 26 relations)
UMLS: The UMLS data set consists of a small semantic network which is part of the Unified Medical 
Language System (UMLS) ontology. 6,752 relationships (facts)  between 135 concepts over 49 relations
Nations: The Nations data set describes political interactions of countries between 1950 and 1965 . It 
contains information such as military alliances, trade relationships or whether a country maintains an 
embassy in a particular country. 2,024 relationships between 14 countries over 56 dyadic relations

BCTF: Bayesian clustered tensor factorization; MRC: Multi-View Relational Classification

Predicting relationships: 
„Max likes Mary“
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Cora Data: Entity Resolution

1295 publication records, where each publication is the subject of a relationship to its first author, a 
relationship to its title, and a relationship to its publication venue
Task: identify which authors, entities and venues refer to identical entities

(basic rules) (complex rules)

Recognizing specific entities: 
„This my cat Max!“



Page 35 May 2014 Machine Learning with Knowledge Graphs, ESWC 2014

Overview

Why Machine Learning needs Knowledge Graphs
Statistical Relational Learning
Learning with the YAGO Knowledge Graph
Towards Relevant Use Cases



Page 36 May 2014 Machine Learning with Knowledge Graphs, ESWC 2014

Yago2 Core Ontology

The tensor has 1014 entries!

Siemens – MPII cooperation
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Classification: Type Prediction

(text attributes)

Predicting concepts: 
„This is a cat“



Page 38 May 2014 Machine Learning with Knowledge Graphs, ESWC 2014

Writer‘s Nationality: 
Demonstrating Collective Learning

Predicting concepts/attributes: 
„Max is evil“
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Learning a Taxonomy (-> Ontology)

IIMB 2010 benchmark provided by the Ontology Alignment Evaluation
Around 1400 entities of a movie domain
5 distinct top-level concepts
On the top level: every concept is represented by a sufficient number of entities, while e.g. some level 
2 movie concepts only include two or three entities and therefore are hard to recognize.

Organizing concepts
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Extensions: Nonnegative RESCAL

Nonnegatve RESCAL  (Krompass, Nickel, Tresp)
sparse solutions with clustering properties
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Extensions: Proofs and Bounds

Analysis of generalization bounds when order of the tensor match or do 
not match
Matricization results in a loss of generalization performance

Maximilian Nickel and Volker Tresp. An Analysis of Tensor Models for 
Learning on Structured Data. Proceedings of the ECML/PKDD, 2013
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Machine Learning with Structured Data and 
Ontologies

Within the domain: 
Prediction of triples
Classification (defining type)
Clustering
Taxonomy Learning
Entity Resolution
Visualization
Querying
Who wants to be Trelenas friends
Can be generalized towards more 
complex probabilistic queries 
(Krompass, Nickel, Tresp, ISWC 2014)  

Outside of the domain (new entities): 
Calculate the latent factors for the new 
entity
Can do all of the tasks above
Object recognition becomes entity 
resolution
Formulate the new object as a query
Object recognition as a query
Queries can become complex
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Clinical Data Intelligence

Goals
Personalized medicine:  modeling the patient in her/his full 
complexity -> patient specific recommendations 
Global modeling of the clinical data / clinical decision 
processes: clinical ontology (concepts and instances)

Use Cases
All data from all patients
Breast cancer
Nephrology
Data from clinical studies

Challenges
Ontologies
Complex relational data (patient in a clinic)
Representing time; sequential data
Decision modeling: decision optimization (confounders, 
causality)
Including unstructured data (reports, images)
Including OMICS data
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Predicting Diagnoses and Procedures



Page 46 May 2014 Machine Learning with Knowledge Graphs, ESWC 2014

Machine Learning with Images and Ontologies

Linking textual descriptions in radiology reports to 
medical images
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Conclusions

Knowledge Graphs
First time: large general ontologies available
Useful for solving machine learning tasks

Relational Machine Learning with RESCAL
Scalable relational learning with very competitive performance
Collective Learning
We are working on many improvements/extensions

RESCAL Learning with the YAGO Knowledge Graph
Experimental results in a number of relational learning tasks

Towards Relevant Use Cases
Text understanding
Image understanding
Clinical data


