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Abstract An important task in network modeling is
the prediction of relationships between classes of ob-

jects, such as friendship between persons, preferences

of users for items, or the influence of genes on dis-

eases. Factorizing approaches have proven effective in

the modeling of these types of relations. If only a sin-
gle binary relation is of interest, matrix factorization

is typically applied. For ternary relations tensor fac-

torization has become popular. A typical application of

tensor factorization would concerns the temporal devel-
opment of the relationships between objects. There are

applications, where models with n-ary relations with

n > 3 need to be considered, which is the topic of

this paper. These models permit the inclusion of con-

text information that is relevant for relation predic-
tion. Unfortunately, the straightforward application of

higher-order tensor models becomes problematic, due

to the sparsity of the data and due to the complexity

of the computations. In this paper, we discuss two dif-
ferent approaches that both simplify the higher-order

tensors using coupled low-order factorization models.

While the first approach, the Context-Aware Recom-

mendation Tensor Decomposition (CARTD), proposes

an efficient optimization criterion and decomposition
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method, the second approach, the Context-Aware Reg-
ularized Singular Value Decomposition (CRSVD), in-

troduces a generative probabilistic model and aims at

reducing the dimensionality using independence assump-

tions in graphical models. In this article, we discuss

both approaches and compare their ability to model
contextual information. We test both models on a so-

cial network setting, where the task is to predict pref-

erences based on existing preference patterns, based on

the last item selected and based on attributes describ-
ing items and users. The experiments are performed

using data from the GetGlue social network and the

approach is evaluated on the ranking quality of pre-

dicted relations. The results indicate that the CARTD

is superior in predicting overall rankings for relations,
whereas the CRSVD is superior when one is only inter-

ested in predicting the top-ranked relations.

Keywords Relation prediction · Tensor matrix
decomposition · Graphical model · Recommendation ·
Social media analysis

1 Introduction

In this paper we discuss methods for predicting the exis-

tence of a relation between two or more entities. Exam-

ples would be relations describing the interest of a user

for items, e.g., watches(User, Movie) and friendship re-
lations in a social network, e.g., isFriendsWith(PersonA,

PersonB). Relation prediction has been used in various

settings to improve user experience on the Web, rec-

ommending for example products, tags or news to the
user. Initially, the problem was formulated as collec-

tively labeled collaborative filtering. Here, recommen-

dations were generated by comparing users’ preference
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patterns and in this way identifying users with com-

parable preferences [Linden et al (2003)]. Currently,

the best performing techniques for collaborative filter-

ing are based on matrix factorizations, ranging from

standard singular value decomposition (SVD) to a mul-
titude of related approaches, including ones that cap-

ture temporal dynamics [Koren (2009)]. One prominent

commercial example is the movie-rental platform Net-

flix1 which uses an approach based on matrix factor-
ization. The particular solution was the the winner of

an open competition for the best collaborative filter-

ing algorithm to predict user ratings for films, based on

previous ratings.

Current methods utilize little additional context in-
formation that is available during recommendation, al-

though context information has great potential to im-

prove prediction accuracy. As an example, let’s consider

the relation watches(User, Movie, LastMovieWatched-
ByUser, Month) which says that a user watches a movie

in a given month and where we also have information

about the last movie that the user has watched. Such a

relation can be modeled by a n = 4-way tensor which

would give us, after reconstruction and normalization,
P̂ (User, Movie, LastMovieWatchedByUser, Month). In-

formation regarded as context may include, e.g., loca-

tion information, time information and access device

information. For example, in a social network setting
advertisements that are relevant to a user on a mobile

device (such as a smartphone) may be of less relevance

to that same user when at home on the stationary com-

puter. Also, a user may be more interested in recom-

mendations of friends from a certain area when she ac-
tually is in this area. These types of context sensitivity

are typical for recommendation settings as diverse as

movie recommendation, music recommendation, news

recommendation, tag recommendation, friend recom-
mendation, and follower recommendation.

Matrix factorizations are most suitable for model-

ing binary relationships and previous work has shown

that the power of factorization approaches can be trans-

ported to ternary relationships by employing tensor fac-
torization. The task investigated in this paper is to ex-

tend factorization approaches to include contextual in-

formation which leads to tensors with more than three

modes. Unfortunately, a straightforward application of
tensor factorization to more than three modes is not

feasible, due to data sparsity and to computational is-

sues.

The two models presented in this paper simplify the

tensor models by coupling simpler matrix models. The
first approach is an extension to the work of Rendle

et al (2010) towards higher-order models. The second

1 http://www.netflix.com

approach is based on the idea that by properly nor-

malizing the empirical tensor, it provides an empirical

estimate of observing a relation, thus a normalized ten-

sor model P (a1, . . . , an). By having a probabilistic in-

terpretation, we can now exploit independencies in the
model to achieve efficient models. In particular, we re-

duce the model so that only probability distributions

involving two variables need to be modeled.

The paper is organized as follows: In the next sec-

tion, we discuss related work. Section 3 and Section 4
introduce the two models, respectively. Section 5 intro-

duces the application used for evaluation and Section 6

discusses the experimental results. Section 7 presents

our conclusions.

2 Related Work

Some of the leading approaches for predicting a sin-

gle binary relationship are based on matrix completion

that is calculated via matrix factorization. The latter

can readily exploit structure in relational patterns. In
particular, the winning entry to the Netflix competi-

tion used matrix completion approaches [Takacs et al

(2007); Bell et al (2010); Cands and Recht (2008)].

In Yu et al (2006); Salakhutdinov and Mnih (2007)

contextual information was included in matrix comple-
tion where a Gaussian noise model was employed which

is more suitable for modeling continuous and ordinal

quantities, such as a user score for a movie, than for

the likelihood of the existence of a relation, as we are
dealing with here. Also, those approaches often have

difficulties in situations where only positive examples

for a relation are available; they need to distinguish be-

tween true negatives (e.g., it is known that a user does

not like a movie) and missing information (e.g., it is
unknown if a user likes a particular movie). Bernoulli

and Gaussian sampling approaches have been pursued

in Chu et al (2006); Chu and Ghahramani (2009).

Tensors have recently found a lot of attention in

modeling evolving networks. A recent overview on ten-
sor models has been provided in Kolda and Bader (2009).

Tensor models have been introduced to model ternary

relations in Rendle et al (2010). The CARTD approach

discussed in Section 3 is an extension of this work. In
most cases, matrix and tensor factorization have been

implemented in a deterministic interpretation, e.g., sim-

ply to complete a matrix or a tensor based on a low-rank

approximation.

Our second approach is based on a decomposition of
a probabilistic graphical model. Graphical models have

a long history in expert systems and statistical mod-

eling [Lauritzen (1996)]. Graphical models have also
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been applied to relational domains. Prominent exam-

ples are Probabilistic Relational Models [Koller and Pf-

effer (1998); Getoor et al (2007)], Markov Logic Net-

works [Domingos and Richardson (2007)], and Infinite

Hidden Relational Models [Kemp et al (2006); Xu et al
(2006)]. Although being very general, the application

of these models to a given relational domain might still

be tricky: Probabilistic Relational Models require in-

volved structural optimization, Markov Logic Networks
depend on the availability of rule sets and logical ex-

pressions (approximately) valid in the domain and In-

finite Hidden Relational Models require complex infer-

ence processes.

3 Modeling N-ary Relations using CARTD

In computer science, a tensor simply is a generaliza-
tion of a matrix to more than two modes. Thus, an

element in an n-ary tensor is addressed by N indices.

Consider an n-ary relation (a1, . . . , an), where ai are

finite discrete variables. For the model, we form a ten-

sor with n modes. Now we simply start with a ten-
sor with entries being zero and increment the corre-

sponding entry by one, whenever the corresponding re-

lation is observed. Typically the tensor is very sparse

and in order to predict plausible new relations from
the empirical tensor we generalize from observed en-

tries to unobserved entries using tensor factorization.

Kolda and Bader (2009) provides a recent overview of

the leading tensor factorization approaches. The draw-

back is that with n > 3, the empirical tensor becomes
increasingly sparse and the computational requirements

become infeasible. Rendle et al (2010) showed how a

ternary tensor can be described by a coupling of ma-

trices leading to models with much better efficiency
and better computational scalability. First, we describe

the Context-Aware Recommendation Tensor Decompo-

sition (CARTD), which is a direct generalization of this

idea and was first presented in [Wermser et al (2011)].

3.1 Modeling N-Ary Tensors

To achieve meaningful recommendations via the CARTD
method, we assume binary rating data is given together

with context information that is dependent on the rec-

ommendation relation. This means the context infor-

mation considered by CARTD is not determined by the

entity to be recommended or by other context informa-
tion that is already being used (see Fig. 1).

Formally, the task of item recommendation in our

scenario is to provide the user with a ranked list of

entities from a set Entity, where the goal is to rank

Fig. 1 ER-diagram showing an example of a context-aware
recommendation scenario. The dashed rectangle contains the
not deterministically dependent context and the elements
outside the rectangle illustrate deterministically dependent
context.

the most interesting item in the current situation at the
top of the list. Additionally n sets of contexts are given,

each belonging to a specific context type, i.e. Contexti,

where i ∈ 1, . . . , n. In the case of standard collaborative

filtering (CF) movie recommendation Entity would be

Movies and there would only be one context, namely

Context1 := User

But one could imagine that also

Context2 := MonthOfWatching

which describes the month in which the recommen-

dation is supposed to be given could be a correlated

factor which might improve recommendations. Clearly,
MonthOfWatching conforms to our definition of not

deterministically dependent context information since

it neither depends on the movie nor on the user but

only on the recommendation relation (again, see Fig.

1).

For example,

(StarWars, Alice, Jan, Munich, E.T.) ∈ T

may be the binary information, stating that Alice has

given positive feedback to the movie ’Star Wars’ in Jan-

uary 2010, while being in Munich and after having given

positive feedback to the movie E.T. before. We assume a

user has given feedback to an entity either exactly once
or never in one specific context. This however means

that a user can rate the same movie in a different con-

text again. This information can be represented by a

binary 5-mode tensor T, which usually exhibits extreme
sparsity, as in most recommendation settings only very

few of all the possible combinations of contexts actually

appear in observed data.
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StarWars Jan Feb March
Alice 1 0 0
Bob 1 1 0

Charlie 1 1 0

E.T. Jan Feb March
Alice 0 0 0
Bob 1 0 0

Charlie 1 1 1

(StarWars, E.T., Alice, Jan) ∈ D

(StarWars, E.T., Bob, Feb) ∈ D

(E.T., StarWars, Charlie, March) ∈ D

Fig. 2 Illustration of the original data, encoded in a ranking-
suitable fashion in the set D. The tables correspond to feed-
back given on the movies ’StarWars’ and ’E.T.’ respectively.
The resulting set D encodes a ranking over these two movies.
The grey cells represent the context settings for which the
respective movie is ranked above the other one. To simplify
the illustration, we did not include information on location
and on the previously rated movie.

3.2 Modeling Rankings

We encode the binary feedback information in a set

D = {(i, j, c1, c2, ...)|(i, c1, c2, ...) ∈ T∧(j, c1, c2, ...) /∈ T }

which is a representation suitable to the task of rec-

ommending a ranked list of entities to each user. The

set D retains information about differences in ratings

in the set T , but in contrast to T it encodes the in-

formation as a ranking, stating which item i is ranked
higher than item j. i is ranked higher than j in a certain

combination of contexts c exactly if i was given positive

feedback in this particular context and j did not receive

positive feedback. This is illustrated in Fig. 2.

To overcome the problem of extreme sparsity we can

now define the set

DA = {(i, j, c1, c2, ...)|∀ck : #ck
(i) > #ck

(j)}, (1)

where #ck
(i) is defined as the number of occurrences

of item i in a given context ck, not taking into account

the other contexts. Formally,

#ck
(i) :=

∣

∣

∣

∣

∣

{

(i, ck)
∃c1, . . . ,∃ck−1, ∃ck+1, . . . ,∃cn :

(i, c1, . . . , ck−1, ck, ck+1, . . . , cn) ∈ T

}∣

∣

∣

∣

∣

.

The set DA then encodes a ranking where an item i is
ranked higher than an item j in a certain combination

of contexts if i appears more often in all these contexts.

This is illustrated in Fig.3.

StarWars Jan Feb March
Alice 1 0 0
Bob 1 1 0

Charlie 1 1 0

E.T. Jan Feb March
Alice 0 0 0
Bob 1 0 0

Charlie 1 1 1

(StarWars, E.T., Alice, Jan) ∈ DA

(StarWars, E.T., Alice, Feb) ∈ DA

(StarWars, E.T., Bob, Jan) ∈ DA

(StarWars, E.T., Bob, Feb) ∈ DA

(E.T., StarWars, Charlie, March) ∈ DA

Fig. 3 Illustration of the augmented data set DA. In order
to overcome the problem of extreme sparsity in the original
data the conditions on the set D are relaxed. It is sufficient
if an entity appears more often than another entity in every
context compared to appearing in that exact combination
of contexts. Again, the grey cells correspond to the context
setting in which the respective movie is ranked higher than
the other movie in the set DA.

3.3 Predicting Rankings

Next, we apply a method similar to Rendle et al (2010)

which can predict unknown rankings over entities in
the currently observed context combination from the

given feedback data (and thus reconstructs the set DA

with the help of the chosen model parameters). The

model of choice is pairwise interaction tensor decompo-
sition, which is a special case of parallel factor analy-

sis (PARAFAC). Here, the entire tensor is decomposed

into additive factorized matrices, one pair of factoriza-

tion matrices for each context:

x̂i,{c} :=

n
∑

k=1

〈

vI,Ck

i , vCk,I
ck

〉

,

where then x̂i,{c} > x̂j,{c} signifies that entity i is con-

sidered to be ranked higher than entity j given the

combination of context information ({c} abbreviates
{c1, c2, c3, . . .}) in the trained model. vI,Ck

i denotes the

ith column in the factorization matrix V I,Ck , which

models the interaction of the kth context with the re-

spective entity. Obviously, each pair of factorization
matrices V I,Ck , V Ck,I has to have corresponding in-

ner dimensionality. This inner dimensionality guides the

number of available parameters per context in the model.

Note that the respective context information may

be of very diverse nature. For example, there may be

time, sequence and location information available for

the given feedback, like in the example in section 3.1.

Finally we optimize the available model parameters

according to the ranking criterion BPR, introduced in
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Rendle et al (2009), which is differentiable and simi-

lar to the area under the curve for ranking tasks (see

Yan et al (2003), Ling et al (2003)). This optimization

is performed via bootstrapped gradient descent as this

has been shown to be much more efficient than cycling
through the model parameters in a linear fashion [Ren-

dle et al (2010)]. Since the optimization is done in a

Bayesian setting, we can choose priors for all the model

parameters. We chose a Gaussian prior v ∼ N (0, σ) for
every matrix entry in V I,Ck and V Ck,I for all contexts

Ck respectively and sampled the initial parameters from

this prior at the beginning of the optimization. The op-

timization has proven to be rather insensitive to the

choice of σ and a value of σ = 0.2 has been set for our
experiments.

4 Modeling N-ary Relations using CRSVD

A set of instantiated relations {r(a1, . . . , an)} corre-

sponds to a set of statements. The task investigated

in this paper is to predict new relations based on this

data. We argue that a statistical framework for relation
prediction, as pursued in this second approach, has ad-

vantages in that the assumptions behind the statisti-

cal model are made explicit and generalization to new

instantiated relations is well understood. In essence,

to derive a probabilistic model from a set of instan-
tiated relations, we need to make assumptions about

the way that the instances were generated. In object-

oriented sampling one attribute identifies an object and

the other attributes correspond to object properties.
Here, one might assume that the objects were randomly

selected out of a population. In this case, we can use sta-

tistical inference to generalize from the available data to

the properties of objects in the population. Graphical

probabilistic models using this object-oriented sampling
assumption are discussed in the following subsection.

Object-oriented sampling is not the only one possible

and, indeed, might not be well suited for relational do-

mains with multiple objects. Another reasonable sam-
pling assumption, and the one used in our approach,

is to assume that instantiated relations are a random

sample out of a population of instantiated relations. We

can now use statistical inference to generalize from the

available data to likely new instantiated relations. We
will discuss this model in Section 4.2.

4.1 Standard Object-Oriented Sampling Assumption

Traditionally, statistical units, i.e. data points, are asso-

ciated with objects and statistical models are concerned

with the statistical dependencies between attributes of

……………

1001U2

1011U1

I4I3I2I1

………

I4U2ID3

I2U1ID2

I1U1ID1

IU

Fig. 4 Left: In a more traditional view, each row is defined
by a user and the columns represent the different items. A one
indicates that a user has purchased an item. Right: Each row
is defined by an event user-buys-item, which is the sampling
assumption used in this paper.

those objects. A typical example is a medical applica-

tion where one analyzes the dependencies between the

attributes of a population of patients, for example in

form of a Bayesian network. In a data matrix the pa-
tients would define the rows and would act as unique

identifiers and the attributes would define the columns.

A fundamental task is then to predict if a novel object

belongs to the same population (density estimation), or
what values a variable has to assume such that the like-

lihood that the object belongs to the same population

is maximized (predictive modeling).

This approach is also quite common in modeling re-

lational domains. For example, one might analyze the
preferences of a population of U users based on user

attributes and based on known preferences for I items,

e.g., buy(User, Item), where the preferences are essen-

tially also treated as attributes of the users (Figure 4,
Left). In Breese et al (1998) a Bayesian network is de-

scribed where a binary node xj represents an item and

the state of the node indicates if a user has bought an

item (xj = 1) or not (xj = 0). The Bayesian network

then models

P̂ (x1, . . . , xI). (2)

A problem one encounters in these models is that

one needs to distinguish between relationships known

not to exist and relations that are unknown. For exam-

ple, in the Bayesian networks in Breese et al (1998) and
in the Dependency Networks [Heckerman et al (2000)],

missing relations are treated as not-to-exist whereas

in Koller and Pfeffer (1998); Xu et al (2006); Domingos

and Richardson (2007); Getoor et al (2007) Gibbs sam-

pling and loopy belief propagation are used for dealing
with unknown relationships.

4.2 Relation-Oriented Sampling Assumption

In our relation-oriented view, an instance is defined by

an observed relation, i.e., a tuple, typically describing
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the relationship between two or more objects (Figure 4,

Right). The population then consists of all true tuples

and a sample is a random subset of those true tuples.

Thus, whereas in the previous subsection we assumed

that either users or items define the rows in the data
matrix, here we assume that each observed instantiated

relation (tuple) defines a row.

Considering again the relation buy(User, Item), the

data matrix would contain two columns encoding the
user and the item, respectively, and a model would es-

timate

P̂ (User = u, Item = i). (3)

Note that whereas Equation 2 describes a probability

distribution over I binary variables, this equation de-
scribes a multinomial model with two variables where

the two variables have U and I states, respectively.

Considering now that we generalize from two to A

attributes that describe a relation, i.e., are informative

for determining the existence of a relation, the basic
problem is to evaluate P (x1, . . . , xA), i.e., the probabil-

ity that a novel relationship with attributes x1, . . . , xA

exists. Alternatively, it might be interesting to predict

the most likely value of one of the attributes given other

attributes, such as P (x1|x2, . . . , xA), e.g., the probabil-
ity of an item x1 given a user x2 and given contextual

information x3, . . . , xA.

In object-to-object relationships, variables typically

contain many states and a contingency table involving
all variables can be very sparse. In high-dimensional

domains graphical models have been quite effective in

the past [Lauritzen (1996)] and so in this paper we will

apply them as well. As discussed earlier, the novelty of

the proposed approach is that we apply graphical mod-
els in domains where the relations form the instances

and where we model just a single relation instead of a

whole network of entities and their relationships.

For our purpose, Bayesian networks and decompos-
able models are most suitable. For a Bayesian network

model, the probability distribution factors as

P (x1, . . . , xA) =

A
∏

i=1

P (xi|par(xi))

=

A
∏

i=1

P (xi,par(xi))

P (par(xi))

Typically a Bayesian network is depicted as a directed

graphical model without directed loops. In this model,

par(xi) denotes the direct parents of xi.

Given a Bayesian network structure, the task is then

to model P (xi|par(xi)), or equivalently, P (xi,par(xi)).

If the involved variables have many states, matrix and

tensor completion methods have been successful in the

past and we also apply those in our approach, as de-

scribed in Section 5.2.

4.3 Context-Aware Regularized Singular Value

Decomposition (CRSVD)

As a next step, we consider the modeling of the proba-

bilistic tables used in the Bayesian network. Let’s con-

sider that in the Bayesian network a node only has one
parent. Since the attributes in the relation are typically

high dimensional but sparse, the empirical contingency

table of counts is a many state sparse matrix. Conse-

quently, a maximum likelihood estimate would hope-

lessly over-fit the data and assign zero probability to
most states. This situation is common to text models

where the standard approach is to apply some form

of smoothing. For example in Laplace smoothing one

adds a couple of ones to each table entry. Certainly this
would not be helpful in our application, where we are

interested in the precise order of probabilities. Thus,

we use matrix factorization as a means of smoothing

the contingency tables, which, after proper normaliza-

tion, can be interpreted as probabilities. This idea is
discussed in more detail in context of the application

in Section 5. Since we apply matrix factorization in

form of a regularized singular value decomposition, we

named our approach Context-Aware Regularized Sin-
gular Value Decomposition (CRSVD). In case that a

node has more than one parent, we would get a con-

tingency tensor to which smoothing via factorization

might be applied as well. Naturally, we run into the

problem of sparsity and computations complexity, as
discussed before.

5 Application of Context-aware Relation

Prediction to Social Networks

The two context-aware relation prediction methods are
evaluated using a real-world data-set from the social

network GetGlue2. GetGlue allows users to share the

experience of navigating the Web and has a number of

features enabling social information exchange. GetGlue
uses semantic recognition technologies to automatically

identify books, music, movies, wines, stocks, movie stars

and many other similar entities, and thus a user gen-

erates a continuous data stream of object annotations.

Users can observe the data stream and can receive rec-
ommendations from GetGlue about interesting discov-

eries by their friends. Both, the social network data and

2 http://getglue.com
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the real-time streams are accessible via a REST API3.

For the purpose of our experiments we used a set of

wrappers [Barbieri et al (2009)] that export GetGlue

data in the form of Linked Data (LD).

We continuously sampled data sets through the Get-

Glue’s network API. To ensure a focused analysis we
gathered movie ratings only. We sampled from 50 to

400 items per user to experiment with different levels

of data sparsity. Also, we restricted samples to positive

feedback on items by users (leaving out the possible ex-
plicit negative feedback) in order to deal with a pure

binary ratings matrix - a scenario that is very common

in real world applications (for example the ”like but-

ton” available on the facebook social network).

The specific dataset on which we report our results

has 3,076 users and 9,707 movies and a single user gave
up to 400 times positive feedback (i.e. likes) on different

movies. On average a user gave feedback on 170 movies.

The first date in the data lies in July 2006 and users

gave ratings over an average time interval of 98 days.
The median date in the data is 26th of October 2009.

We pruned the data to the 3-core, meaning every item

was rated at least 3 times and each user rated at least

3 items. The resulting training data is 98.21 % sparse,

or in other words 98.21% of the entries of the resulting
user-movie-rating matrix are zero entries representing

missing/unknown information.

Sequential information (see Sec. 5.1.2) is inferred

from the timestamps that are available as is the month

in which the movie was rated (see Sec. 5.1.3).

5.1 Applying CARTD

In the following we recommend movies to users based

on the GetGlue data described in Section 5 using the

CARTD method. We will describe how to achieve a

collaborative filtering setting first and describe how to

add additional context information next.

5.1.1 Modeling User-Movie Events

In the formalism of abstract sets described in Section 3.1,

we define:

Entity := I all the available items

Context1 := U all the users

This corresponds to a usual collaborative filtering

setting. The user preference similarities are shared be-

tween users by means of matrix factorization. In the

3 http://getglue.com/api

generic CARTD model, the user information is also con-

sidered as context information just like all other not

deterministically dependent context (see Sec. 3.1).

5.1.2 Adding Information on the Last Movie Watched

Next, we add to the user-movie recommendation set-

ting the available sequential context information, i.e.,
on which movie the user has last given positive feed-

back. This is not deterministically dependent context

in the sense of Fig. 1. It is not determined by either

the user or the movie and it is available when the rec-
ommendation is performed. The sequential information

is calculated from the GetGlue data by means of the

available timestamps of every rating. Our experiments

(see Sec. 6) show that the added sequential information

is able to significantly improve predictive performance
of the model.

Context2 := I all the available items (as last items)

5.1.3 Adding Time of the Event

We also add time information directly, as the month in

which the movie was rated. The total rating period of

our dataset is 43 months. Again, in the experiments we

will see that the added time information also results in
a gain in predictive performance of the model.

Context3 := M all the months of the rating period

5.1.4 Implementation

The CARTD model is implemented in Java including

all the extraction tools needed in order to gain the rele-

vant information and the tensor from data coming from

the RDF wrapper (see 3.1). This makes extensive use

of Apache’s implementation of a http client in Java4

and for temporary storage the eXist XML database 5 is

used. The matrices and tensors are represented in the

Colt matrix library from CERN 6 and computations

have been done on an off-the-shelf 2.53 GHz MacBook
Pro (4GB RAM). For computation times needed for the

predictions see Section 6.

5.2 Applying CRSVD

In the following we model the user-movie recommen-

dation by using CRSVD. We incrementally increase

the model complexity by first describing a user-movie

model, and by then adding information about the last
movie watched by a user and the time of the event.

4 http://hc.apache.org/httpcomponents-client-ga/
5 http://exist-db.org
6 http://acs.lbl.gov/software/colt/
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MU
Fig. 5 A graphical model for the dependencies between users
U and movies M .

5.2.1 Modeling User-Movie Events

We model the event that a user watches a movie. The

graphical model consists of two attributes, i.e., the user

and the movie (Figure 5). The rows in the data matrix
are then defined by known user-movie events and the

columns consist of two variables with as many states

as there are users and movies, respectively. A contin-

gency table C is formed. Entry cu,m counts how often
user u has watched movie m. By dividing the entries by

the overall counts, we can interpret the entries as esti-

mates for the probabilities of observing a user-movie

pair under this sampling assumption, i.e. as a maxi-

mum likelihood estimate of P (u, m). This matrix will
contain many zero entries and the maximum likelihood

estimates are notoriously unreliable. We follow common

practice and smooth the matrix using a matrix factor-

ization approach. We perform a singular value decom-
position CCT = UDUT and obtain the low-rank ap-

proximation [Huang et al (2010)]:

Ĉ = Us diags

(

dl

dl + λ

)

U⊤
s C,

where diags

(

dl

dl+λ

)

is a diagonal matrix containing the

s leading eigenvalues in D and where Us contains the

corresponding s columns of U . λ is a regularization pa-

rameter. After proper normalization Ĉ, the entries can

be interpreted as P̂ (u, m), i.e., an estimate of the prob-

ability of observing the relation that user u watches
movie m.7

It should be noted that matrix completion is an ac-

tive area of research and many other matrix completion

methods are applicable as well.
Recommendations for users can now be based on

P̂ (u, m).

5.2.2 Adding Information on the Last Movie Watched

Certainly, there is a sequential nature to the user-watches-

movie process that the model so far cannot capture.

In particular we might consider the last movie that

a user has watched as additional information [Rendle

7 Normalization takes care that all entries are non-zero and
are smaller than one. Incidentally, this step turns out to be
unnecessary in the regularized reconstruction, since after ma-
trix completion all entries already obeyed these constraints.
A second step ensures that the sum over matrix entries is
equal to one.

et al (2010)]. Note that we now obtain a truly ternary

relation watches(u,m,l) consisting of user, movie and

last movie l watched by the user. The approach fol-

lowed in Rendle et al (2010) is to consider a three-

way contingency table and apply tensor factorization
as a tensor smoothing approach. There it was argued

that general tensor factorization, such as PARAFAC

or Tucker [Kolda and Bader (2009)], are too difficult

to apply in this situation since the contingency table
is very sparse and a simplified additive model is ap-

plied instead. In our approach we suggest an appropri-

ate graphical model as shown in Figure 6 (left).8 The

model indicates that the last movie watched by a user

directly influences the next movie that a user watches
but that given that information, last movie and user

are independent. The great advantage now is that we

do not need to readapt the user-movie model but can

model independently the movie-last-movie dependency.
Again we calculate empirical probabilities based on the

contingency table, smooth the table using matrix fac-

torization and obtain P̂ (m, l). We combine both models

and form

P̂ (u, m, l) =
P̂ (u, m)P̂ (m, l)

P̂ (m)
.

Note that in contrast to Rendle et al (2010), we do not

obtain a sum of local models but a product of local

models.

5.2.3 Adding Time of the Event

Next we consider the instance of time t when a movie is

watched. Certainly, the preference for movies changes
through time and at certain points in time a movie

might be very popular and then decrease in popularity.

Also, a movie can only be watched after it is released.

Time of watching in units of month is added to the
model. Again we formed an empirical estimate based

on the movie-time of watching contingency table. The

graphical model is shown in Figure 6 (right).

We now obtain

P̂ (u, m, l, t) =
P̂ (u, m)P̂ (m, l)P̂ (m, t)

(P̂ (m))2
.

8 A link from the last movie to movie might appear more
plausible. If one does that change, the link between user and
movie would need to point from movie to user, such that
no collider (more than one link pointing to the same node)
appears. With a collider one would need to use a tensor model
as a local model.
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TimeOf

Watching
MU

Last

MU

Last

Fig. 6 Left: As additional information, the last movie, which
the user has watched, is added. Right: The month when the
user watches the movie is added.

5.2.4 Implementation

We implemented the CRSVD model in Matlab where

we used the svds function9 to compute the largest sin-

gular values and associated singular vectors of data ma-

trices. We ran the evaluation on a laptop with Windows
7, Intel i5 CPU 2.5 GHz and 8 GB RAM. The compu-

tation times needed for training models are reported in

Section 6.

6 Experiments

In this section we report experimental results of apply-

ing the two proposed approaches CRSVD and CARTD
on the data set described in Section 5. First, we describe

two settings of our experiments. Then, we introduce a

baseline which we used to compare both approaches

and different evaluation measures used, i.e., HitRatio,

area under the curve (AUC) and normalized discounted
cumulative gain (nDCG). We evaluate the quality of

recommendation with only user-movie ratings and by

integrating contextual information.

6.1 Settings

We tested the approaches on two different scenarios. In

the first scenario, the newest movie setting, we used for
testing the lastest movie for which the respective user

provided positive feedback. This setting corresponds to

a very realistic application: usually we would want to

recommend to a user movies to watch next given a
sequence of movies that were rated positively before.

In the second scenario, the random movie setting, we

randomly used one movie as test data for each user.

This setting corresponds more to traditional tasks for

collaborative filtering, where context information and
especially sequential information is not considered. In

both settings movies that a user already rated are not

recommended again to the same user (i.e., we do not

recommend watched movies). This might be handled

9 http://www.mathworks.de/help/techdoc/ref/svds.html

differently in other applications, for instance in an e-

commerce application where each user would reason-

ably want to buy the same items twice or more. In the

latter setting we repeated the experiment 5 times such

that error bars can be produced (see figures below).

6.2 Methodology

The particular approaches and context information for

which we report evaluation results are:

most popular: The most popular baseline recom-

mends for every user the same list of movies which

are sorted by the number of positive ratings in de-

scending order. The most positively rated movies
are on top of the list.

CARTD(UM): The Context-Aware Recommenda-

tion Tensor Decomposition approach, described in

Section 3.1 using only the user-movie ratings (see

Sec. 5.1.1). This corresponds to traditional collab-
orative filtering with a ranking-based optimization

criterion.

CARTD(UM+Sequence+Month): The CARTD

approach, using additionally sequence and month
context information. This information is taken into

account as described in Section 5.1.2 and 5.1.3.

CRSVD(UM): The Context-aware Regularized Sin-

gular Value Decomposition approach, described in

Section 4 using only the user-movie ratings.
CRSVD(UM+Sequence+Month): The CRSVD ap-

proach, using additionally sequence and month con-

text information as described in Sections 5.2.2 and

5.2.3.

In our experiments we utilized three evaluation meth-

ods. First, we generated a recommended list of k items

for each user. If the single test item appears in the rec-
ommended list, then for that user we consider the rec-

ommendation successful. The ratio of successful recom-

mendations vs. all recommendations is called HitRatio.

Mathematically, the HitRatio is defined as

HitRatio(k) =
1

|U |

∑

u∈U

δ(Tu ∈ Rk),

where δ is the indicator function, Tu is the user’s test

item, Rk are the top k recommended items given the

contexts which in our case are the last movie watched
and the month of watching.

Secondly, we evaluated the tested approaches ac-

cording to the area under the curve (AUC) measure

which for ranking tasks can be simplified to the form

AUC(u) =
|I| − pos(Tu)

|I| − 1
,
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where Tu is the test item for the user u and pos(·) gives

the position of an item in the ranked list of recom-

mended items, 1 being the best position and |I| the

worst position. Ataman et al (2006) describes the equiv-

alence relation between the AUC and the Wilcoxon-
Mann-Whitney statistic from which the simplified for-

mulation can easily be derived, since in both settings

there is only one single test movie for each user.

Finally, we applied normalized discounted cumula-

tive gain (nDCG) to evaluate the quality of the rec-

ommendation. NDCG is calculated by summing over

all the gains in the ranked list R with a log discount
factor as

nDCG(R) =
1

Z

∑

k

2r(k) − 1

log(1 + k)
,

where r(k) denotes the target label for the k-th ranked

item in R, and r is chosen such that a perfect ranking

obtains value 1. To focus more on the top ranked items,
one can also consider the nDCG@n which only counts

the top n items in the ranked list for a user.

Each of these evaluation measures focuses on differ-
ent aspects of the ranking. NDCG especially emphasizes

the very top positions in R due to the log function on

the position k, which means that the nDCG score in-

creases when the position of a test item is lifted from

the second position to the first one, much more than
when its position is improved from 100 to 99. In con-

trast, AUC evaluates the quality of the entire ranking

list. The HitRatio measures all positions in the ranking

list equally, similar to AUC, but it is specified to focus
on the top k items in the ranking list only.

6.3 Results

Figure 7 shows the AUC performance of the evaluated
approaches in the newest movie setting and the ran-

dom movie setting, respectively. The AUC values are

plotted against the factorization dimension which is

10, 50, 100, 200, 400 and 1000 respectively. In the ran-

dom movie setting we also report error bars which show
the standard error.

The CARTD approach clearly outperformed the most

popular baseline in both settings. The performance of
CARTD increases with increasing dimensions and reaches

its best AUC value at 400 dimensions. Integrating the

contextual information significantly improved its per-

formance when compared to only using rating infor-
mation. CRSVD(UM) outperformed the most popular

baseline independent of the factorization dimension. In

particular, in the random movie setting its performance

was even close to CARTD(UM+sequence+month). Add-

ing contextual information could not improve AUC val-

ues for the CRSVD approach. CRSVD(UM+sequence+month)

was better than the baseline only at low dimensions,

i.e., 10 and 50, and always worse than CRSVD(UM).
This scenario occurred again in comparisons using the

HitRatio measure when the number of the top items k

was reasonably large (see Figures 8 (c) and (d)). As ex-

plained before, AUC evaluates the quality of the entire
recommended list. For the CRSVD approach we did not

observe any improvement with increasing factorization

dimension.

Figures 8 (a) and (b) show the HitRatio for the

top 10 movies achieved by the two approaches in the
newest movie setting and the random movie setting re-

spectively. We ran each of the approaches including the

different context information with factorization dimen-

sions 10, 50, 100, 200, 400 and 1000. Again, for the ran-
dom movie setting we also report the standard error.

Both figures show that CARTD with only user-movie

rating information was not able to perform better than

the most popular baseline for a top 10 movies recom-

mendation on this dataset. The additional time and
sequence context information clearly improved the rec-

ommendations given by the CARTD model, although

it was outperformed in both settings by the CRSVD

approach even without additional context information.
Clearly, also the performance of the CRSVD approach

improved significantly if the time and sequence context

information was taken into account. It performed espe-

cially well in the random movie setting, where it was

able to correctly recommend the test movie with close
to 28% of the users with the top 10 recommendations,

when the factorization dimension was equal to 400.

Figures 8 (c) and (d) show the HitRatio of the tested

approaches with different values of k for a fixed fac-

torization dimension of 400. The figures show that for
low values of k, the CRSVD approach outperformed

CARTD, as has been seen in Figures 8 (a) and (b). For

k greater than 100, CARTD with all context informa-

tion outperformed all other approaches. Especially in
the random movie recommendation setting we see that

the CRSVD approach was only able to gain 20% from

k = 100 up to k = 1000, while CARTD with all con-

text information remained able to outperform the most

popular baseline throughout.

Figure 9 shows nDCG scores achieved by the CRSVD

approach in the newest movie setting and the random

movie setting respectively. The results are plotted against

dimensions, again, from 10 to 1000. The most popular
baseline generated the worst scores. CRSVD with only

rating information performed much better and CRSVD

with all contextual information produced the overall
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Fig. 7 The AUC values for different factorization dimensions. Left: The newest movie setting. Right: The random movie

setting. Details in Sec. 6.1.

Time [min] 10 50 100 200 400 1000
CARTD(UM) 2.17 2.68 3.57 5.58 13.47 33.93
CARTD(full) 2.85 4.06 5.58 10.69 23.90 61.76
CRSVD(UM) 0.01 0.04 0.11 0.35 0.97 4.74
CRSVD(full) 0.04 0.11 0.25 0.74 2.46 14.32

Fig. 10 The computation times for different settings on com-
mon laptops, where “full here means that all available context
information was used, i.e. the user, sequence information and
month information.

best results. Here, we do not plot the nDCG scores of

the CARTD approach, as the performance of CARTD(UM)

was more or less the same as that of the baseline and

CARTD(UM+sequence+month) performed only slightly
better than the baseline.

The time needed for computations of the two meth-

ods with different factorization dimensions (columns)

are reported in Table 10. CRSVD is computationally
more efficient but CARTD also proofs to be scalable to

higher-order relations in most real-world scenarios.

6.4 Discussion

Based on the experimental results described in the pre-

vious section we observed the following points.

First, both CRSVD and CARTD outperformed sig-
nificantly the most popular baseline in most cases. Sec-

ond, modeling contextual information improved the qual-

ity of the recommendation to a great extent, when com-

pared to considering only user-item ratings. That con-
firms the main contribution of the methods presented

in this paper. Third, for the recommendation task em-

phasizing the quality of the very top ranked items, the

CRSVD approach performs usually better, while the

CARTD approach is rather suitable for general relation
prediction tasks, since it provides a higher quality of

recommendation regarding the whole ranking list. This

can be explained by the nature of CRSVD that tends to

better model both, more popular items and such users
who own a great amount of ratings and can be viewed as

opinion leaders. Both popular items and opinion leaders

strongly affect the behavior of the whole community, in

particular in social networks and recommendation sys-

tems. Forth, CRSVD and CARTD are both, robust and
insensitive to the number of latent variables. This can

be explained by the fact that CRSVD, in contrast to

other matrix factorization approaches such as SVD, is

regularized and CARTD performs implicit model aver-
aging. The insensitivity to parameter tuning improves

the usability of both approaches. Fifth, these two ap-

proaches are efficient and are capable to scale up to

large data sets. Again, we carried out our experiments

on a regular laptop.

7 Conclusion and Future Work

In this paper we covered the modeling of context-aware

relations for the task of relation prediction in social
networks, e.g., recommending movies to users. We con-

sider relational information to be context-aware if it

provides supplementary information for predicting the

relation of interest, as in watches(User, Movie, Last-
MovieWatchedByUser, Month). We have argued that

an n-ary relation can be elegantly modeled by a tensor

with n modes but that sparsity and computational com-
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Fig. 8 Top: (a) and (b) report the HitRatio for a recommended list of top k = 10 movies vs. the factorization dimension.
Bottom: (c) and (d) report the HitRatio for different values of k while the factorization dimension is fixed at 400. Left: (a)
and (c) plot HitRatio values in the newest movie setting. Right: (b) and (d) plot HitRatio values in the random movie setting

with error bars showing the standard error.

plexity make tensor factorization impractical for n > 3.

We introduced two different approaches to simplifying

the tensor model, both relying on factorization methods
to estimate unknown tensor elements. The main differ-

ence lies in the way each method handles the extreme

sparsity of a high dimensional tensor. While the first ap-

proach, the Context-Aware Recommender Tensor De-

composition (CARTD), proposes an efficient ranking
and optimization criterion, the second approach, the

Context-aware Regularized Singular Value Decompo-

sition (CRSVD), introduces a generative probabilistic

model and aims at reducing the dimensionality using

independence assumptions in graphical models.

Our experimental results show that both models

can successfully handle the high dimensionality, mak-

ing them computationally efficient and providing accu-
rate predictions. Also, both approaches provide a ro-

bust performance making them usable for non machine

learning experts. However, our evaluation also suggests

that CARTD has an advantage if a complete ranking
is to be predicted, whereas CRSVD is especially suited

for tasks where only a small number of top recommen-

dations is needed.
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Fig. 9 The nDCG scores at top 4000 for different factorization dimensions. Left: The random movie setting. Right: The
newest movie setting. Details in Sec. 6.1.

We suggest that tensor decomposition for relation

prediction has great potential for future work. Exam-

ples are the extension of models to scenarios with mul-

tiple relations, social network analysis on latent fac-
tor matrices and the analysis of the dynamical devel-

opments in social networks.
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