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Abstract

The hippocampal memory indexing theory of Teyler and
DiScenna is one of the leading theories of memory forma-
tion. The main idea is that high-dimensional latent rep-
resentations are formed in the hierarchical sensory pro-
cessing layers of the brain as response to sensory in-
puts, and that these representations are linked to indices
in the hippocampal area, forming a basis for an episodic
memory. We extend the hippocampal memory indexing
theory by including a decoder that extracts explicit infor-
mation in the form of semantic triples using latent rep-
resentations of entities and predicates. We demonstrate
that, if a tensor model is used for explicit decoding, a se-
mantic memory can be derived from episodic memory by
a marginalization operation. Thus, our model supports
the assumption that semantic memory is derived from
episodic memory and that both rely on the same latent
representations of generalized entities.
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Introduction

The hippocampal memory indexing theory (HMIT) of Teyler
and DiScenna is one of the leading theories of memory for-
mations (Teyler & DiScenna, 1986; Teyler & Rudy, 2007). The
main idea is that high-dimensional latent representations are
formed in the hierarchical sensory processing layers of the
brain as response to sensory inputs, and that these represen-
tations are linked to indices in the hippocampal area, form-
ing a basis for an episodic memory. One of the interesting
features of the theory is that new episodic memories can be
stored without affecting already stored memories, thus avoid-
ing memory interference. The theory is subsymbolic: it shows
how past memories can be recovered by re-activating the time
index which then restores the same sensory processing pat-
terns that were originally generated by the sensory inputs.
However, the theory does not address a number of essen-
tial aspects of episodic memory: first, episodic memory is an
explicit memory, which means that individuals can describe
past episodic memories. A second issue is the relationship
between episodic memory and semantic memory. How can
semantic memory (“things we know”) be derived from episodic
memory (“things we remember”)? In this paper, we present a
mathematical model, based on tensor decompositions, which
implements explicit decoding of sensory inputs and, at the
same time, is instrumental in forming explicit episodic and se-
mantic memories. Our tensor memories are closely related
to statistical models of knowledge graphs, which have found

Figure 1: Main components of the HMIT.

a number of technical applications (Nickel, Murphy, Tresp, &
Gabrilovich, 2015).

The Hippocampal Memory Indexing Theory

Figure 1 summarizes some of the main components of the
HMIT. It is shown how information from sensory input is re-
layed through the thalamus (except olfaction), a part of the
forebrain, and then forms the input to the hierarchical sensory
processing layers. A sensory response at time t, denoted
as ht , typically activates most areas in the early processing
steps, and is more specific at the later processing steps, rely-
ing on few higher order features (this property is represented
by the red triangle). If an episode is worth remembering, e.g.,
because it is significant, novel, or emotional, an index et is
formed in the hippocampus and ht is stored as a connection
pattern aet = ht . If a past episode is recalled, the correspond-
ing index et is re-activated (for example by a partial sensory
pattern or by other means), and then aet is approximately re-
stored in the sensory processing layers, thus providing a sen-
sory impression of the past episode. The HMIT provides a
detailed hypothesis on how the index is generated in the hip-
pocampal area. In a memory consolidation process, the index
et might also find a representation in the neocortex. Current
thinking is that consolidation happens during non-REM sleep,
possibly by a form of replay. The representation in the cortex
might be index-based and, in addition or instead, might have
complementary memory representations, as well (Kumaran,
Hassabis, & McClelland, 2016).



Explicit Episodic Memories
The episodic memory in the HMIT does not really provide
a means of extracting declarative information: a recall sim-
ply re-activates the hierarchical sensory layers. In this pa-
per we assume that an explicit decoding produces “triples in
time” as (s, p,o, t) where s is the subject (head entity), p is
the predicate, o is the object (tail entity), and t is the time
step. (et ,aet ), but also that each entity i is represented by
the pair (ei,aei), and a predicate k is represented by the pair
(ek,aek). It is typically assumed that indices for entities ei are
also formed in the hippocampal region and are later consoli-
dated in neocortex, where they form topological maps (Huth,
de Heer, Griffiths, Theunissen, & Gallant, 2016). For the de-
coding step, we assume a joint probabilistic model based on
a tensor decomposition. An example is a Tucker model with
P(s, p,o, t) ∝ f epi(s, p,o, t) and where

f epi(s, p,o, t) =
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∑
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aes,r1 aep,r2 aeo,r3 aet ,r4 g(r1,r2,r3,r4). (1)

Here, g(r1,r2,r3,r4) ∈R are elements of the core tensor G ∈
Rr̃1×r̃2×r̃3×r̃4 , where r̃1, r̃2, r̃3, r̃4 are the ranks. All parameters
are constrained to be nonnegative.

Declarative decoding generates a set of (s, p,o) triples from
P(s, p,o|t) where aet is either generated from sensory input
(aet = ht ) or from re-activating the corresponding past time
index et . For example, a visual scene is decoded as a triple
set which describes that scene, as in (Lu, Krishna, Bernstein,
& Fei-Fei, 2016). We can also calculate marginal and other
conditional probabilities in biologically plausible ways (Tresp
et al., 2015).

Semantic Memory
It is generally assumed that episodic memory is the gateway
to semantic memory, but the precise relationship is still un-
clear. In our model we can generate semantic memory by sim-
ply marginalizing episodic memory. Thus if (Jack, diagnosed-
With, Diabetes, January 10, 2016-01-10) is part of episodic
memory, the derived semantic memory is (Jack, diagnosed-
With, Diabetes). Since nonnegative tensor models are sum-
product nets, marginalization is trivial. One can also derive
P(o|s, p) answering queries, e.g., as “what (=o) does Jack
(=s) like (=p)?”. The model can also accommodate for start-
date and end-date of a fact, such as a disease which was first
diagnosed and then cured, by introducing a representation for
negation, i.e., a representation for the end-date. Details on the
mathematical operations in the model can be found in (Tresp
et al., 2015).

First experimental results for a link prediction task on the
ICEWS knowledge base are shown in Figure 2. We show
recall scores for the training and the test set as a function of
the rank of the model.

We report results for the semantic memory (“Semantic”),
for the semantic memory projected from the episodic memory

with considering only representation of starting point (“Start”),
and for the projected semantic memory with considering rep-
resentations of both stating and terminal points (“Start-End”).
The figures confirm that we can obtain a semantic memory by
projecting the episodic memory in a proper way, supporting
the hypothesis that episodic memory is a “gateway” to seman-
tic memory.
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Figure 2: Rank-dependent recall scores for training and test-
ing data for models with nonnegative parameters.

Discussion
We have discussed how semantic and episodic adjacency
tensors and their decompositions might serve as models for
human explicit memories. Our models only use biologically
plausible constructs, such as latent representations of entities
and time steps. Our technical memories are approximate and
provide a basis for inductive inference. In our experiments we
have demonstrated recall of memories but also the general-
ization to new facts. Of course, generalization also brings the
danger of over generalization, or false memories. Note that,
although an index might only involve few neurons (Quiroga,
2012), the index is never activated alone, but is activated
by, and activates, the associated latent representations in the
sensory processing layers.
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