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Semantic knowledge graphs are large-scale triple-oriented databases for knowledge representation and reasoning. Implicit knowledge

can be inferred by modeling and reconstructing the tensor representations generated from knowledge graphs. However, as the

sizes of knowledge graphs continue to grow, classical modeling becomes increasingly computational resource intensive. This paper

investigates how to capitalize on quantum resources to accelerate the modeling of knowledge graphs. In particular, we propose the

first quantum machine learning algorithm for making inference on tensorized data, e.g., on knowledge graphs. Since most tensor

problems are NP-hard [18], it is challenging to devise quantum algorithms to support that task. We simplify the problem by making a

plausible assumption that the tensor representation of a knowledge graph can be approximated by its low-rank tensor singular value

decomposition, which is verified by our experiments. The proposed sampling-based quantum algorithm achieves speedup with a

polylogarithmic runtime in the dimension of knowledge graph tensor.
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1 INTRODUCTION

Semantic knowledge graphs (KGs) are graph-structured databases consisting of semantic triples (subject, predicate,

object), where subject and object are nodes in the graph, and the predicate is the label of a directed link between subject

and object. An existing triple normally represents a fact, e.g., ( California, located_in, USA) and missing triples stand

for triples known to be false (closed-world assumption) or with an unknown truth value. In recent years a number

of sizable knowledge graphs have been built, such as Freebase [3], Yago [34], etc. The largest knowledge graph, e.g.,

Google’s Knowledge Vault [9], contains more than 100 billion facts and hundreds of millions of distinguishable entities.

An adjacency tensor can represent a knowledge graph with three dimensions: One stands for subjects, one for

predicates, and one for objects. More precisely, we let 𝜒 ∈ {0, 1}𝑑1×𝑑2×𝑑3
denote the semantic tensor of a knowledge

graph, where 𝑑1, 𝑑2, and 𝑑3 represent the number of subjects, predicates, and objects, respectively. An entry 𝑥𝑠𝑝𝑜 in 𝜒

assumes the value 1 if the semantic triple (𝑠, 𝑝, 𝑜) is known to be true, while it assumes the value 0 if the triple is false

or missing. Machine learning aims to infer the truth value of triples, given the knowledge graph triples were known
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2 Yunpu Ma and Volker Tresp

to be true. Popular learning-based algorithms for modeling KGs are based on a factorization of the adjacency tensor

such as the Tucker tensor decomposition, PARAFAC, RESCAL [27], or compositional models such as DistMult [41] and

HolE [29].

The vast number of facts and entities makes it particularly challenging to scale learning and inference algorithms to

perform inference on the entire knowledge graph. This paper aims to use quantum computation to design algorithms that

can dramatically accelerate the inference task. Thanks to the rapid development of quantum computing technologies,

quantum machine learning [2] is becoming an active research area that attracts researchers from different communities.

In general, quantum machine learning exhibits great potential for accelerating classical algorithms, e.g., solving

linear systems of equations [17], supervised and unsupervised learning [40], support vector machines [31], Gaussian

processes [7], non-negative matrix factorization [11], recommendation systems [19], etc.

Most of the aforementioned quantum machine learning algorithms contain subroutines for singular value decompo-

sition, singular value estimation, and singular value projection of data matrices prepared and presented as quantum

density matrices. We show that the tensor factorization algorithm presented in this paper, which uses existing quantum

algorithms as subroutines, has a polylogarithmic runtime complexity. However, unlike matrices, most tensor problems

are NP-hard, and there is no current quantum algorithm that can handle tensorized data. Therefore, to understand

the difficulties of designing quantum machine learning algorithms on tensorized data, e.g., data derived from a vast

relational database, we need first to answer the following questions:

(1) Under what conditions can we infer implicit knowledge from an incomplete knowledge graph by reconstructing

it via classical algorithms; (2) Does there exist an analogous tensor singular value decomposition method that we can

map to a quantum algorithm? (3) Assuming that the knowledge graph has global and well-defined relational patterns,

can the tensor SVD of a subsampled semantic tensor approximate the original tensor. Mainly, after projecting onto

the lower-rank space, previously unobserved truth values of semantic triples might be boosted? (4) If all the above

conditions are fulfilled, how can we design a quantum algorithm which projects the tensorized data onto lower-rank

space to reconstruct the original tensor?

The first part of this paper contributes to the classical theory of binary tensor sparsification. As a novel contribution,

we derive the first binary tensor sparsification condition under which the original tensor can be approximated by

the truncated or projected tensor SVD of its subsampled tensor. The second part focuses on developing the quantum

machine learning algorithm. To handle the tensorized data, we first explain a quantum tensor contraction subroutine.

We then design a quantum learning algorithm on knowledge graphs using quantum principal component analysis,

quantum phase estimation, and quantum singular value projection. We study the runtime complexity and show that

this sampling-based quantum algorithm provides acceleration w.r.t. the size of the knowledge graph during inference.

1.1 Related Work

In this section, we discuss recent work on quantum machine learning for big data. It is commonly believed that the

quantum recommendation system (QRS) proposed in [19] will potentially be one of the first commercial applications of

quantummachine learning. The quantum recommendation system provides personalized recommendations to individual

users according to a preference matrix𝐴 with runtime O(poly(𝑘)polylog(𝑚𝑛)), where𝑚×𝑛 is the size of the preference

matrix 𝐴 which is assumed to have a low rank-𝑘 approximation. On the other hand, a recent breakthrough made by

[35] shows that by dequantizing the quantum recommendation algorithm, a classical machine learning algorithm can

achieve the same acceleration if the classical algorithm has access to a data structure which resembles the one required

in the QRS. However, as commented by the authors of [19] in [20], this new classical algorithm is based on the FKV
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methods [13] has a much worse polynomial dependence on the rank of the preference matrix and a dramatic slowdown

dependence on a predefined precision parameter, making it completely impractical. Therefore, it remains an open

question to find the corresponding dequantized classical algorithms for machine learning on tensorized data that are

polylogarithmic in dimension as the proposed quantum algorithm.

A recent work [16] that presents a quantum algorithm for higher-order tensor singular value decomposition (HOSVD)

[8]. The quantum HOSVD algorithm decomposes a𝑚-way 𝑛-dimensional tensor into a core tensor and unitary matrices

with computational complexity O(𝑚𝑛3/2
log

𝑚 𝑛). It provides an acceleration compared with the classical HOSVD with

complexity O(𝑚𝑛𝑚+1). Note that the polynomial dependence of the complexity on the tensor dimension comes from

the quantum subroutines since the quantum HOSVD reconstructs the core tensor and unitary matrices explicitly. In

contrast, our quantum tensor SVD method doesn’t estimate singular values and unitary matrices explicitly. Instead,

it samples results from a projected tensor under the assumption that the tensorized data has a low-rank orthogonal

approximation. Hence, it provides a polylogarithmic dependence on the tensor dimension. Almost all classical knowledge

graph embedding and completion methods are based on HOSVD or similar techniques. Take Tucker [39] as an example

(since many other methods, such as DistMult, Rescal, CeomplEx, are special cases of Tucker); it is based on the Tucker

decomposition of the binary tensor representation of knowledge graph triples (i.e., 𝑚 = 3). Hence, we expect our

quantum tensor SVD method to be much faster than all the classical approaches.

2 TENSOR SINGULAR VALUE DECOMPOSITION

First, we recap the singular value decomposition (SVD) of matrices. Then we introduce tensor SVD and show that a

given tensor can be reconstructed with a small error from the low-rank tensor SVD of the subsampled tensor. Other

tensor decomposition algorithms, e.g., higher-order tensor SVD [8], will not be considered in this work since designing

their quantum counterparts can be much more involved.

SVD Let 𝐴 ∈ R𝑚×𝑛
, the SVD is a factorization of 𝐴 is the form 𝐴 = 𝑈 Σ𝑉 ⊺ , where Σ is a rectangle diagonal

matrix singular values on the diagonal, 𝑈 ∈ R𝑚×𝑚
and 𝑉 ∈ R𝑛×𝑛 are orthogonal matrices with𝑈 ⊺𝑈 = 𝑈𝑈 ⊺ = 𝐼𝑚 and

𝑉 ⊺𝑉 = 𝑉𝑉 ⊺ = 𝐼𝑛 .

Notations for Tensors A 𝑁 -way tensor is defined as A = (A𝑖1𝑖2 · · ·𝑖𝑁 ) ∈ R𝑑1×𝑑2×···×𝑑𝑁
, where 𝑑𝑘 is the 𝑘-

th dimension. Given two tensors A and B with the same dimensions, the inner product is defined as ⟨A,B⟩𝐹 :=∑𝑑1

𝑖1=1
· · ·∑𝑑𝑁

𝑖𝑁 =1
A𝑖1𝑖2 · · ·𝑖𝑁 B𝑖1𝑖2 · · ·𝑖𝑁 . The Frobenius norm is defined as | |A||𝐹 :=

√︁
⟨A,A⟩𝐹 . The spectral norm | |A||𝜎

of the tensor A is defined as | |A||𝜎 = max{A ⊗1 x1 · · · ⊗𝑁 x𝑁 |x𝑘 ∈ 𝑆𝑑𝑘−1, 𝑘 = 1, · · · , 𝑁 }, where the tensor-vector
product is defined as

A ⊗1 x1 · · · ⊗𝑁 x𝑁 :=

𝑑1∑︁
𝑖1=1

· · ·
𝑑𝑁∑︁
𝑖𝑁 =1

A𝑖1𝑖2 · · ·𝑖𝑁 𝑥1𝑖1𝑥2𝑖2 · · · 𝑥𝑁𝑖𝑁

and 𝑆𝑑𝑘−1
denotes the unit sphere in R𝑑𝑘 .

Tensor SVD Parallel to the matrix singular value decomposition, several orthogonal tensor decompositions with

different definitions of orthogonality are studied in [22]. Among them the complete orthogonal rank decomposition is also

referred to as the tensor singular value decomposition (tensor SVD, c.f. Definition 1) studied in [6]. Especially, [42] shows

that for all tensors with 𝑁 ≥ 3, the tensor SVD can be uniquely determined via incremental rank-1 approximation.

Definition 1. If a tensor A ∈ R𝑑1×𝑑2×···×𝑑𝑁 can be written as sum of rank-1 outer product tensors A =
∑𝑅
𝑖=1

𝜎𝑖𝑢
(𝑖)
1

⊗
𝑢
(𝑖)
2

· · · ⊗ 𝑢
(𝑖)
𝑁

, with singular values 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑅 and ⟨𝑢 (𝑖)
𝑘

, 𝑢
( 𝑗)
𝑘

⟩ = 𝛿𝑖 𝑗 for 𝑘 = 1, · · · , 𝑁 . Then A has a tensor

singular value decomposition with rank 𝑅.
Manuscript submitted to ACM



4 Yunpu Ma and Volker Tresp

Define the orthogonal matrices 𝑈𝑘 = [𝑢 (1)
𝑘

, 𝑢
(2)
𝑘

, · · · , 𝑢 (𝑅)
𝑘

] ∈ R𝑑𝑘×𝑅 with 𝑈𝑇
𝑘
𝑈𝑘 = I𝑅 for 𝑘 = 1, · · · , 𝑁 , and

the diagonal tensor D ∈ R𝑅×𝑅×···×𝑅 with D𝑖𝑖 · · ·𝑖 = 𝜎𝑖 , then the tensor SVD for A can be also written as A =

D ⊗1 𝑈1 ⊗2 𝑈2 · · · ⊗𝑁 𝑈𝑁 . Given an arbitrary tensor A ∈ R𝑑1×𝑑2×···×𝑑𝑁
, an interesting question is to find a low-rank

approximation via tensor SVD. In particular, [6] proves the existence of the global optima of the following optimization

problem

min | |A −
𝑟∑︁
𝑖=1

𝜎𝑖𝑢
(𝑖)
1

⊗ 𝑢
(𝑖)
2

· · · ⊗ 𝑢
(𝑖)
𝑁

| |𝐹 ; s.t. ⟨𝑢 (𝑖)
𝑘

, 𝑢
( 𝑗)
𝑘

⟩ = 𝛿𝑖 𝑗 , for 𝑘 = 1, · · · , 𝑁

for any 𝑟 ≤ min{𝑑1, 𝑑2, · · · , 𝑑𝑁 }. We will utilize this fact to derive the error bound after projecting the tensor onto

low-rank subspaces. Note that, in contrast to the matrix SVD, tensor SVD is unique up to the signs of singular values.

Our quantum algorithm builds on the assumption that the semantic tensor 𝜒 can be well approximated by a low-rank

tensor 𝜒 with | |𝜒 − 𝜒 | |𝐹 ≤ 𝜖 | |𝜒 | |𝐹 for small 𝜖 > 0. Previous work of recommendation systems [10] has shown that the

quality of recommendations for users depends on the reconstruction error. Similarly, in the case of relational learning,

with a bounded tensor approximation error it is possible to estimate the probability of a successful information retrieval.

Consider the query (s, p, ?) (i.e., given a subject s and a predicate p, to find the corresponding object o) on a KG using

classical algorithm. We normally only readout top-𝑛 returns from the reconstructed tensor 𝜒 , written as 𝑥sp1, . . . , 𝑥sp𝑛 ,

where 𝑛 is a small integer corresponding to the commonly used Hits@𝑛 metric. The information retrieval is called

successful if the correct object corresponding to the query can be found in the returned list 𝑥sp1, . . . , 𝑥sp𝑛 . In particular,

we have the following estimation.

Lemma 1. If an algorithm returns an approximation of the binary semantic tensor 𝜒 , denoted 𝜒 , with | |𝜒 − 𝜒 | |𝐹 ≤ 𝜖 | |𝜒 | |𝐹
and 𝜖 < 1

2
, then the probability of a successful information retrieval from the top-𝑛 returns of 𝜒 is at least 1 − ( 𝜖

1−𝜖 )
𝑛 .

(Proof in Appendix A.1)

In real-world applications, we can only observe part of the non-zero entries in a given tensor A, and the task is to

infer unobserved non-zero entries with high probability. This task corresponds to items recommendation for users given

an observed preference matrix, or implicit knowledge inference given partially observed relational data. The partially

observed tensor is called as subsampled or sparsified, denoted
ˆA. Without further specifying the dimensionality of the

tensor, we consider the following subsampling and rescaling scheme proposed in [1]:

ˆA𝑖1𝑖2 · · ·𝑖𝑁 =


A𝑖

1
𝑖
2
···𝑖𝑁
𝑝 with probability 𝑝

0 otherwise.
(1)

It means that the non-zero elements of a tensor are independently and identically sampled with the probability 𝑝 and

rescaled afterwards. The subsampled tensor can be rewritten as
ˆA = A+N , whereN is a noise tensor. Entries ofN are

independent random variables with distribution Pr(N𝑖1 · · ·𝑖𝑁 = (1/𝑝 − 1)A𝑖1 · · ·𝑖𝑁 ) = 𝑝 and Pr(N𝑖1 · · ·𝑖𝑁 = −A𝑖1 · · ·𝑖𝑁 ) =
1 − 𝑝 .

Now, the task is to reconstruct the original tensor A by modeling
ˆA. We use tensor SVD to model the observed

tensor
ˆA. The reconstruction error can be bounded either using the truncated 𝑟 -rank tensor SVD, denoted

ˆA𝑟 , or

the projected tensor SVD with absolute singular value threshold 𝜏 , denoted ˆA | · | ≥𝜏 . Notation ˆA | · | ≥𝜏 means that the

subsampled tensor
ˆA is projected onto the eigenspaces with absolute singular values larger than a cutoff threshold

𝜏 > 0. By comparison, in matrix SVD, essentially the singular values larger than, or equal to, a cutoff threshold are kept

and those that are smaller are disregarded. However, in the tensor case, negative singular values can arise. The same
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cutoff scheme then is no longer meaningful, as it would disregard singular values with large negative values which may

potentially be important.

Theorem 1 gives the reconstruction error bound usingA𝑟 and the corresponding conditions on the sample probability.

Theorem 1. Let A ∈ {0, 1}𝑑1×𝑑2×···×𝑑𝑁 . Suppose that A can be well approximated by its 𝑟 -rank tensor SVD A𝑟 . Using

the subsampling scheme defined in Eq. 1 with the sample probability𝑝 ≥ max{0.22, 8𝑟

(
log( 2𝑁

𝑁0

)
𝑁∑
𝑘=1

𝑑𝑘 + log
2

𝛿

)
/(𝜖 | |A||𝐹 )2},

𝑁0 = log
3

2
, then the original tensor A can be reconstructed from the truncated tensor SVD of the subsampled tensor ˆA.

The error satisfies | |A − ˆA𝑟 | |𝐹 ≤ 𝜖 | |A||𝐹 with probability at least 1 − 𝛿 , where 𝜖 is a function of 𝜖 . Especially, 𝜖 together

with the sample probability controls the norm of the noise tensor.

Proof. We outline the ideas involved in the proof and relegate details to the appendix A.2. The proof is divided into

two parts. We first derive the following bound for the reconstruction error (see appendix Lemma A 2, 3, 4)

| |A − ˆA𝑟 | |𝐹 ≤ 2| |A − A𝑟 | |𝐹 + 2

√︁
| |A𝑟 | |𝐹 | |A − A𝑟 | |𝐹 + 2

√︁
| |N𝑟 | |𝐹 | |A𝑟 | |𝐹 + ||N𝑟 | |𝐹 .

Notice that the RHS doesn’t contain the subsampled tensor
ˆA. Therefore we can further simplify the RHS by assuming

that the original tensor has a low-rank approximation, namely | |A−A𝑟 | |𝐹 ≤ 𝜖0 | |A||𝐹 . After that, we prove numerically

that the random variables N𝑖1 · · ·𝑖𝑁 𝑥1𝑖1 · · · 𝑥𝑁𝑖𝑁 for any x𝑘 ∈ 𝑆𝑑𝑘−1
, 𝑘 = 1, · · · , 𝑁 are sub-Gaussian distributed if the

sample probability fulfills 𝑝 ≳ 0.22. Hence we can further use the covering number on the product space 𝑆𝑑1−1 × · · · ×
𝑆𝑑𝑁 −1

to bound the norm of N (see appendix Lemma A 5, 6, 7):

| |N𝑟 | |𝐹 ≤

√√√
𝑟

8

𝑝

(
log( 2𝑁

𝑁0

)
𝑁∑︁
𝑘=1

𝑑𝑘 + log

2

𝛿

)
. (2)

Finally, by requiring | |N𝑟 | |𝐹 ≤ 𝜖 | |A||𝐹 or by selecting

𝑝 ≥ max{0.22, 8𝑟

(
log( 2𝑁

𝑁0

)
𝑁∑︁
𝑘=1

𝑑𝑘 + log

2

𝛿

)
/(𝜖 | |A||𝐹 )2}

we have | |A − ˆA𝑟 | |𝐹 ≤ 𝜖 | |A||𝐹 via Eq. 2, where 𝜖 := 2(𝜖0 +
√
𝜖0 +

√
𝜖) + 𝜖 .

We further introduce the projected tensor SVD
ˆA | · | ≥𝜏 and analyze its error bound for the later use in the quantum

singular value projection. Note that quantum algorithms are fundamentally different from classical algorithms. For

example, classical algorithms for matrix factorization approximate a low-rank matrix by projecting it onto a subspace

spanned by the eigenspaces possessing top-𝑟 singular values with predefined small 𝑟 . Quantum subroutine, e.g., quantum

singular value estimation, on the other hand, can read and store all singular values of a unitary operator into a quantum

register. However, singular values stored in the quantum register cannot be read out and compared simultaneously

since the quantum state collapses after one measurement; measuring the singular values one by one will also break

the quantum advantage. Therefore, we perform a projection onto the union of operator’s subspaces whose singular

values are larger than a threshold; and this step can be implemented on the quantum register without destroying the

superposition. Moreover, since we use quantum PCA as a subroutine which ignores the sign of singular values during

the projection, we have to analyze the reconstruction error given by
ˆA | · | ≥𝜏 for the quantum algorithm. Theorem 2

gives the reconstruction error bound using
ˆA | · | ≥𝜏 and conditions for the sample probability.

Theorem 2. Let A ∈ {0, 1}𝑑1×𝑑2×···×𝑑𝑁 . Suppose that A can be well approximated by its 𝑟 -rank tensor SVD A𝑟 . Using

the subsampling scheme defined in Eq. 1 with the sample probability 𝑝 ≥ max{0.22, 𝑝1 :=
𝑙1𝐶0

(𝜖 | |A | |𝐹 )2
, 𝑝2 :=

𝑟𝐶0

(𝜖 | |A | |𝐹 )2
, 𝑝3 :=

Manuscript submitted to ACM



6 Yunpu Ma and Volker Tresp

√
2𝑟𝐶0

𝜖1𝜖 | |A | |𝐹 }, with 𝐶0 = 8

(
log( 2𝑁

𝑁0

)∑𝑁
𝑘=1

𝑑𝑘 + log
2

𝛿

)
, 𝑁0 = log

3

2
, where 𝑙1 denotes the largest index of singular values of

tensor ˆA with 𝜎𝑙1 ≥ 𝜏 , and choosing the threshold as 0 < 𝜏 ≤
√

2𝐶0

𝑝𝜖
, then the original tensor A can be reconstructed from

the projected tensor SVD of ˆA. The error satisfies | |A − ˆA | · | ≥𝜏 | |𝐹 ≤ 𝜖 | |A||𝐹 with probability at least 1 − 𝛿 , where 𝜖 is

a function of 𝜖 and 𝜖1. Especially, 𝜖 together with 𝑝1 and 𝑝2 determine the norm of noise tensor and 𝜖1 together with 𝑝3

control the value of ˆA’s singular values that are located outside the projection boundary.

Proof. The proof resembles that of Theorem 1, and details are relegated in appendix A.2. One can first derive

| |A− ˆA | · | ≥𝜏 | |𝐹 ≤ 3| |A− ˆA𝑙1 | |𝐹 . Then we distinguish two cases: 𝑙1 ≥ 𝑟 and 𝑙1 < 𝑟 and show that if 𝑝 ≥ max{0.22, 𝑝1, 𝑝2}
it gives | |N𝑟 | |𝐹 ≤ 𝜖 | |A||𝐹 via Eq. 2. Moreover, requiring 𝑝 ≥ 𝑝3 leads to | | ˆA𝑟 − ˆA𝑙1 | |𝐹 ≤ 𝜖1 | |A||𝐹 . It says that the
singular values of

ˆA that are outside the projection boundary can be controlled by 𝑝3 and predefined small 𝜖1. Notice that

𝑝3 ≫ 𝑝1, 𝑝2 if tensor A is dense and | |A||𝐹 is large enough. Hence we can estimate sample probability 𝑝 ≥ {0.22, 𝑝3}
given predefined 𝜖 , 𝜖1 without knowing 𝑙1 a prior. On the other hand, this theorem indicates that it is impossible to

complete an over sparsified tensor with subsample probability smaller than 0.22.

In the bodies of Theorem 1 and 2 there exist data-dependent parameters 𝑟 and 𝑙1 which are unknown a prior. These

parameters can only be estimated by performing tensor SVD to the original and subsampled tensors explicitly. However,

in practice, mostly, we are only given the subsampled tensor without even knowing the subsample probability. For

example, given an incomplete semantic tensor, we do not know what percentage of information is missing, and therefore

we cannot rescale the entries in the incomplete tensor. Fortunately, unlike any other matrix sparsification [1] or tensor

sparsification algorithms [26], our analysis suggests a reasonable initial guess for the subsample probability numerically,

and inversely an initial guess for the lower-rank 𝑟 and the projection threshold 𝜏 as well.

3 QUANTUMMACHINE LEARNING ALGORITHM FOR KNOWLEDGE GRAPHS

3.1 Quantum Mechanics

To make this work self-consistent we briefly introduce the Dirac notations of quantum mechanics. Under Dirac’s

convention quantum states can be represented as complex-valued vectors in a Hilbert spaceH . For example, a two-

dimensional complex Hilbert H2 space can describe the quantum state of a spin-1 particle, which provides the physical

realization of a qubit. By default, the basis inH2 for a spin-1 qubit read |0⟩ = [1, 0]⊺ and |1⟩ = [0, 1]⊺ . The Hilbert space
of a 𝑛-qubits system has dimension 2

𝑛
whose computational basis can be chosen as the canonical basis |𝑖⟩ ∈ {|0⟩ , |1⟩}⊗𝑛 ,

where ⊗ represents tensor product. Hence any quantum state |𝜙⟩ ∈ H2
𝑛 can be written as a quantum superposition

|𝜙⟩ = ∑
2
𝑛

𝑖=1
𝜙𝑖 |𝑖⟩, where the coefficients |𝜙𝑖 |2 can also be interpreted as the probability of observing the canonical basis

state |𝑖⟩ after measuring |𝜙⟩ using canonical basis. Moreover, we use ⟨𝜙 | to represent the conjugate transpose of |𝜙⟩, i.e.,
( |𝜙⟩)† = ⟨𝜙 |. Given two stats |𝜙⟩ and |𝜓 ⟩ The inner product on the Hilbert space is defined as ⟨𝜙 |𝜓 ⟩∗ = ⟨𝜓 |𝜙⟩. A density

matrix is a projection operator which is used to describe the statistics of a quantum system. For example, the density

operator of the mixed state |𝜙⟩ in the canonical basis reads 𝜌 =
∑

2
𝑛

𝑖=1
|𝜙𝑖 |2 |𝑖⟩ ⟨𝑖 |. Moreover, given two subsystems with

density matrices 𝜌 and 𝜎 the density matrix for the whole system is their tensor product, namely 𝜌 ⊗ 𝜎 .

The time evolution of a quantum state is generated by the Hamiltonian of the system. The Hamiltonian 𝐻 is a

Hermitian operator with 𝐻† = 𝐻 . Let |𝜙 (𝑡)⟩ denote the quantum state at time 𝑡 under the evolution of an invariant

Hamiltonian 𝐻 . Then according to the Schrödinger equation |𝜙 (𝑡)⟩ = e
−𝑖𝐻𝑡 |𝜙 (0)⟩, where the unitary operator e

−𝑖𝐻𝑡

can be written as the matrix exponentiation of the Hermitian matrix 𝐻 , i.e., e
−𝑖𝐻𝑡 =

∑∞
𝑛=0

(−𝑖𝐻𝑡 )𝑛
𝑛!

. Eigenvectors of the

Hamiltonian 𝐻 , denoted |𝑢𝑖 ⟩, also form a basis of the Hilbert space. Then the spectral decomposition of the Hamiltonian
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𝐻 reads 𝐻 =
∑
𝑖 𝜆𝑖 |𝑢𝑖 ⟩ ⟨𝑢𝑖 |, where 𝜆𝑖 is the eigenvalue or the energy level of the system. Therefore, the evolution

operator of a time-invariant Hamiltonian can be rewritten as

e
−𝑖𝐻𝑡 = e

−𝑖𝑡 ∑𝑖 𝜆𝑖 |𝑢𝑖 ⟩ ⟨𝑢𝑖 | =
∑︁
𝑖

e
−𝑖𝜆𝑖𝑡 |𝑢𝑖 ⟩ ⟨𝑢𝑖 | , (3)

where we use the observation ( |𝑢𝑖 ⟩ ⟨𝑢𝑖 |)𝑛 = |𝑢𝑖 ⟩ ⟨𝑢𝑖 | for 𝑛 = 1, · · · ,∞. When applying it on an arbitrary initial state

|𝜙 (0)⟩ we obtain |𝜙 (𝑡)⟩ = e
−𝑖𝐻𝑡 |𝜙 (0)⟩ = ∑

𝑖 e
−𝑖𝜆𝑖𝑡 𝛽𝑖 |𝑢𝑖 ⟩, where 𝛽𝑖 indicates the overlap between the initial state and

the eigenbasis of 𝐻 , i.e., 𝛽𝑖 := ⟨𝑢𝑖 |𝜙 (0)⟩. To implement the time evolution operator e
−𝑖𝐻𝑡

and simulate the dynamics of

a quantum system using universal quantum circuits is a challenging task since it involves the matrix exponentiation

of a possibly dense matrix. Therefore, Hamiltonian simulation is an active research area which was first proposed by

Richard Feynman [12], see also [23].

3.2 Quantum Tensor Singular Value Decomposition

In this section, we propose a quantum algorithm for inference on knowledge graphs using quantum singular value

estimation and projection. In the following, a 3-dimensional semantic tensor 𝜒 ∈ {0, 1}𝑑1×𝑑2×𝑑3
as one example of a

tensor A is of particular interest. The present method builds on the assumption that the original semantic tensor 𝜒

modeling the complete knowledge graph has a low-rank orthogonal approximation, denoted 𝜒𝑟 , with small rank 𝑟 . The

low-rank assumption is plausible if the knowledge graph contains global and well-defined relational patterns, as has

been discussed in [28]. 𝜒 could be thereof reconstructed approximately from 𝜒 via tensor SVD according to Theorem 1

and 2. Since our quantum algorithm is sampling-based instead of learning-based, w.l.o.g., we consider sampling the

correct objects given the query (s, p, ?) as an example and discuss the runtime complexity of one inference.

Recall that the preference matrix of a recommendation system normally contains multiple nonzero entries in a given

user-row; items recommendations are made according to the nonzero entries in the user-row by assuming that the user

is ’typical’ [10]. However, in a KG there might be only one nonzero entry in the row (s, p, ·). Therefore, we suggest,
for the inference on a KG quantum algorithm needs to sample triples with the given subject s and post-select on the

predicate p. Post-selection can be a feasible step if the number of semantic triples with s as subject and p and predicate

is O(1).
Before sketching the algorithm, we need to mention the quantum data structure since our method contains the

preparing and exponentiating of a density matrix derived from the tensorized classical data. The most difficult technical

challenges of quantum machine learning are loading classical data as quantum states and measuring the sates since

reading or writing high-dimensional data from quantum states might obliterate the quantum acceleration. Therefore, the

technique quantum Random Access Memory (qRAM) [15] was developed, which can load classical data into quantum

states with acceleration. Appendix A.3 gives more details on loading vector and tensorized classical data.

The basic idea of our quantum algorithm is to project the observed data onto the eigenspaces of 𝜒 whose corresponding

singular values are larger than a threshold. Therefore, we need to create an operator that can reveal the eigenspaces and

singular values of 𝜒 . The first step is to prepare the following density matrix from 𝜒 via a tensor contraction scheme:

𝜌𝜒†𝜒 :=
∑︁

𝑖2𝑖3𝑖
′
2
𝑖′
3

∑︁
𝑖1

𝜒
†
𝑖1,𝑖2𝑖3

𝜒𝑖1,𝑖′
2
𝑖′
3

|𝑖2𝑖3⟩ ⟨𝑖 ′2𝑖
′
3
| , (4)
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8 Yunpu Ma and Volker Tresp

where

∑
𝑖1

𝜒
†
𝑖1,𝑖2𝑖3

𝜒𝑖1,𝑖′
2
𝑖′
3

means tensor contraction along the first dimension; a normalization factor is neglected temporarily.

Later we will elaborate why we perform contraction along the first dimension. We have the following lemma about

𝜌𝜒†𝜒 preparation.

Lemma 2. 𝜌𝜒†𝜒 can be prepared via qRAM in time O(polylog(𝑑1𝑑2𝑑3)).

Proof. Since 𝜒 ∈ R𝑑1×𝑑2×𝑑3
is a real-valued tensor, the quantum state

∑
𝑖1𝑖2𝑖3

𝜒𝑖1𝑖2𝑖3 |𝑖1𝑖2𝑖3⟩ =
∑
𝑖1𝑖2𝑖3

𝜒𝑖1𝑖2𝑖3 |𝑖1⟩⊗ |𝑖2⟩⊗ |𝑖3⟩

can be prepared via qRAM in time O(polylog(𝑑1𝑑2𝑑3)), where |𝑖1⟩ ⊗ |𝑖2⟩ ⊗ |𝑖3⟩ represents the tensor product of index
registers in the canonical basis. The corresponding density matrix of the quantum state reads

𝜌 =
∑︁
𝑖1𝑖2𝑖3

∑︁
𝑖′
1
𝑖′
2
𝑖′
3

𝜒𝑖1𝑖2𝑖3 |𝑖1⟩ ⊗ |𝑖2⟩ ⊗ |𝑖3⟩ ⟨𝑖 ′1 | ⊗ ⟨𝑖 ′
2
| ⊗ ⟨𝑖 ′

3
| 𝜒†
𝑖′
1
𝑖′
2
𝑖′
3

.

After preparation, a partial trace implemented on the first index register of the density matrix

tr1 (𝜌) =
∑︁
𝑖2𝑖3

∑︁
𝑖′
2
𝑖′
3

∑︁
𝑖1

𝜒𝑖1𝑖2𝑖3 |𝑖2⟩ ⊗ |𝑖3⟩ ⟨𝑖 ′2 | ⊗ ⟨𝑖 ′
3
| 𝜒†
𝑖1𝑖

′
2
𝑖′
3

=
∑︁

𝑖2𝑖3𝑖
′
2
𝑖′
3

∑︁
𝑖1

𝜒
†
𝑖1𝑖2𝑖3

𝜒𝑖1𝑖′
2
𝑖′
3

|𝑖2𝑖3⟩ ⟨𝑖 ′2𝑖
′
3
|

gives the desired operator 𝜌𝜒†𝜒 .

Suppose that 𝜒 has a tensor SVD approximation with 𝜒 ≈ ∑𝑅
𝑖=1

𝜎𝑖𝑢
(𝑖)
1

⊗𝑢
(𝑖)
2

⊗𝑢
(𝑖)
3

. Then the spectral decomposition

of the density operator can be written as

𝜌𝜒†𝜒 =
1∑𝑅

𝑖=1
𝜎2

𝑖

𝑅∑︁
𝑖=1

𝜎2

𝑖 |𝑢
(𝑖)
2

⟩ ⊗ |𝑢 (𝑖)
3

⟩ ⟨𝑢 (𝑖)
2

| ⊗ ⟨𝑢 (𝑖)
3

| .

Especially, the eigenstates |𝑢 (𝑖)
2

⟩ ⊗ |𝑢 (𝑖)
3

⟩ of 𝜌𝜒†𝜒 form another set of basis in the Hilbert space of the tensor product of

quantum index registers.

The next step is to readout singular values of 𝜌𝜒†𝜒 and write into another quantum register via the density matrix

exponentiation method proposed in [24]. This step is also referred to as quantum principal component analysis (qPCA).

The key is to prepare the unitary operator

𝑈 :=

𝐾−1∑︁
𝑘=0

|𝑘 Δ𝑡⟩ ⟨𝑘 Δ𝑡 |𝐶 ⊗ exp(−𝑖𝑘Δ𝑡𝜌𝜒†𝜒 )

which is the tensor product of a maximally mixed state

𝐾−1∑
𝑘=0

|𝑘 Δ𝑡⟩ ⟨𝑘 Δ𝑡 |𝐶 with the exponentiation of the rescaled

density matrix 𝜌𝜒†𝜒 . Especially, the clock register𝐶 is needed for the phase estimation and Δ𝑡 determines the precision

of estimated singular values. The following Lemma shows that the Hamiltonian simulation with unitary operator

e
−𝑖𝑡𝜌

𝜒†𝜒
can be applied on arbitrary quantum states for any simulation time 𝑡 .

Lemma 3. Unitary operator e
−𝑖𝑡𝜌

𝜒†𝜒 can be applied to any quantum state, where 𝜌𝜒†𝜒 :=
𝜌
𝜒†𝜒
𝑑2𝑑3

, up to simulation time 𝑡 .

The total number of steps for simulation is O( 𝑡2

𝜖 𝑇𝜌 ), where 𝜖 is the desired accuracy, and 𝑇𝜌 is the time for accessing the

density matrix.

Manuscript submitted to ACM



Quantum Machine Learning Algorithm for Knowledge Graphs 9

Proof. The proof uses the dense matrix exponentiation method proposed in [32], which was developed from [23].

One crucial step is to show that Hamiltonian simulation in infinitesimal time step can be implemented with a simple

unitary swap operator without exponentiating the Hamiltonian. Details are in Appendix A.4 and Lemma A 8, 9.

The algorithm samples triples with subject s given the query (s, p, ?). Hence a quantum state |𝜒 (1)
s

⟩𝐼 needs to be

created first via qRAM in the input data register 𝐼 , where 𝜒
(1)
s

denotes the s-row of the flattened tensor 𝜒 along the first

dimension. A flatting of a tensor 𝜒 ∈ R𝑑1×𝑑2×...×𝑑𝑘
along the 𝑖-th (1 ≤ 𝑖 ≤ 𝑘) dimension is

𝜒 (𝑖) :=



𝜒1,1,...,1,1,1,...,1 𝜒2,1,...,1,1,1,...,1 · · · 𝜒𝑑1,𝑑2,...,𝑑𝑖−1,1,𝑑𝑖+1,...,𝑑𝑘

𝜒1,1,...,1,2,1,...,1 𝜒2,1,...,1,2,1,...,1 · · · 𝜒𝑑1,𝑑2,...,𝑑𝑖−1,2,𝑑𝑖+1,...,𝑑𝑘
.
.
.

.

.

.
.
.
.

𝜒
1,1,...,1,𝑑𝑖 ,1,...,1 𝜒

2,1,...,1,𝑑𝑖 ,1,...,1 · · · 𝜒𝑑1,𝑑2,...,𝑑𝑖−1,𝑑𝑖 ,𝑑𝑖+1,...,𝑑𝑘


After that, the operator 𝑈 is applied to the quantum state

𝐾−1∑
𝑘=0

|𝑘Δ𝑡⟩𝐶 ⊗ |𝜒 (1)
s

⟩𝐼 . After this stage of computation, we

obtain

𝑅∑︁
𝑖=1

𝛽𝑖

(
𝐾−1∑︁
𝑘=0

e
−𝑖𝑘 Δ𝑡 �̃�2

𝑖 |𝑘 Δ𝑡⟩𝐶

)
|𝑢 (2)
𝑖

⟩
𝐼
⊗ |𝑢 (3)

𝑖
⟩
𝐼
, (5)

where �̃�𝑖 :=
𝜎𝑖√
𝑑2𝑑3

are the rescaled singular values of 𝜌𝜒†𝜒 (see Eq. 3). Moreover, 𝛽𝑖 are the coefficients of |𝜒 (1)
s

⟩𝐼
decomposed in the eigenbasis |𝑢 (𝑖)

2
⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼
of 𝜌𝜒†𝜒 , namely |𝜒 (1)

s
⟩𝐼 =

∑𝑅
𝑖=1

𝛽𝑖 |𝑢 (𝑖)
2

⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼
.

The third step is to perform the quantum phase estimation on the clock register 𝐶 , which is restated in the next

Theorem.

Theorem 3 (Quantum Phase Estimation [21]). Let unitary𝑈 |𝑣 𝑗 ⟩ = e
𝑖𝜃 𝑗 |𝑣 𝑗 ⟩ with 𝜃 𝑗 ∈ [−𝜋, 𝜋] for 𝑗 ∈ [𝑛]. There is

a quantum algorithm that transforms
∑
𝑗 ∈[𝑛] 𝛼 𝑗 |𝑣 𝑗 ⟩ ↦→

∑
𝑗 ∈[𝑛] 𝛼 𝑗 |𝑣 𝑗 ⟩ | ¯𝜃 𝑗 ⟩ such that | ¯𝜃 𝑗 − 𝜃 𝑗 | ≤ 𝜖 for all 𝑗 ∈ [𝑛] with

probability 1 − 1/poly(𝑛) in time O(𝑇𝑈 log(𝑛)/𝜖), where 𝑇𝑈 is the time to implement𝑈 .

The resulting state after phase estimation reads

∑𝑅
𝑖=1

𝛽𝑖 |𝜆𝑖 ⟩𝐶 ⊗ |𝑢 (𝑖)
2

⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼
where 𝜆𝑖 := 2𝜋

�̃�2

𝑖

. In fact, it can

be shown that the probability amplitude of measuring the register 𝐶 is maximized when 𝑘 Δ𝑡 = ⌊ 2𝜋

�̃�2

𝑖

⌉, where ⌊·⌉
represents the nearest integer. Therefore, the small time step Δ𝑡 determines the accuracy of quantum phase estimation.

We chose Δ𝑡 = O( 1

𝜖 ), and according to Lemma 3 the total run time is O( 1

𝜖3
𝑇𝜌 ) = O( 1

𝜖3
polylog(𝑑1𝑑2𝑑3)). We also

perform a quantum arithmetic [33] on the clock register to recover the original singular values of 𝜌𝜒†𝜒 , and obtain∑𝑅
𝑖=1

𝛽𝑖 |𝜎2

𝑖
⟩
𝐶
⊗ |𝑢 (𝑖)

2
⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼
.

The next step is to perform quantum singular value projection on the quantum state obtained from the last step.

Notice that, classically, this step corresponds to projecting 𝜒 onto the subspace 𝜒 | · | ≥𝜏 . In this way, observed entries will

be smoothed and unobserved entries get boosted from which we can infer unobserved triples (s, p, ?) in the test dataset

(see Theorem 2). Quantum singular value projection given the threshold 𝜏 > 0 can be implemented in the following way.

We first create a new register 𝑅 using an auxiliary qubit and a unitary operation that maps |𝜎2

𝑖
⟩
𝐶
⊗ |0⟩𝑅 to |𝜎2

𝑖
⟩
𝐶
⊗ |1⟩𝑅

only if 𝜎2

𝑖
< 𝜏2

, otherwise |0⟩𝑅 remains unchanged. This step of projection gives the state∑︁
𝑖:𝜎2

𝑖
≥𝜏2

𝛽𝑖 |𝜎2

𝑖 ⟩𝐶 ⊗ |𝑢 (𝑖)
2

⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼
⊗ |0⟩𝑅 +

∑︁
𝑖:𝜎2

𝑖
<𝜏2

𝛽𝑖 |𝜎2

𝑖 ⟩𝐶 ⊗ |𝑢 (𝑖)
2

⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼
⊗ |1⟩𝑅 . (6)
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Algorithm 1 Quantum Tensor SVD on Knowledge Graph

Input: Inference task (s, p, ?)
Output: Possible objects to the inference task

Require: Quantum access to 𝜒 stored in a classical memory structure; threshold 𝜏 for the singular value projection

1: Create 𝜌𝜒†𝜒 via qRAM

2: Create state |𝜒 (1)
s

⟩𝐼 on the input data register 𝐼 via qRAM

3: Prepare unitary operator𝑈 and apply on |𝜒 (1)
s

⟩𝐼 , where

𝑈 :=

𝐾−1∑︁
𝑘=0

|𝑘 Δ𝑡⟩ ⟨𝑘 Δ𝑡 |𝐶 exp(−𝑖𝑘 Δ𝑡 𝜌𝜒†𝜒 )

4: Quantum phase estimation on the clock register 𝐶 to obtain

∑𝑅
𝑖=1

𝛽𝑖 |𝜆𝑖 ⟩𝐶 ⊗ |𝑢 (𝑖)
2

⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼

5: Quantum arithmetic on the clock register 𝐶 to obtain

∑𝑅
𝑖=1

𝛽𝑖 |𝜎2

𝑖
⟩
𝐶
⊗ |𝑢 (𝑖)

2
⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼

6: Singular value projection given the threshold 𝜏 to obtain∑︁
𝑖:𝜎2

𝑖
≥𝜏2

𝛽𝑖 |𝜎2

𝑖 ⟩𝐶 ⊗ |𝑢 (𝑖)
2

⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼
⊗ |0⟩𝑅 +

∑︁
𝑖:𝜎2

𝑖
<𝜏2

𝛽𝑖 |𝜎2

𝑖 ⟩𝐶 ⊗ |𝑢 (𝑖)
2

⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼
⊗ |1⟩𝑅

7: Measure on the register 𝑅 and post-select the state |0⟩𝑅 to obtain∑︁
𝑖:𝜎2

𝑖
≥𝜏2

𝛽𝑖 |𝜎2

𝑖 ⟩𝐶 ⊗ |𝑢 (𝑖)
2

⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼

8: Uncompute the clock register 𝐶 by inversing steps 3, 4, and 5

9: Measure the resulting state

∑
𝑖: |𝜎𝑖 | ≥𝜏

𝛽𝑖 |𝑢 (𝑖)
2

⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼
in the canonical basis of the input register 𝐼

10: Post-select on the predicate p from the sampled triples (s, ·, ·)

The last step is to erase the clock register using reversible unitary operator𝑈 again; measure the new register 𝑅 and

post-select on the state |0⟩𝑅 ; and trace-out the clock register 𝐶 . This leads the projected state

∑
𝑖:𝜎2

𝑖
≥𝜏2

𝛽𝑖 |𝑢 (𝑖)
2

⟩
𝐼
⊗ |𝑢 (𝑖)

3
⟩
𝐼
.

In summary, implementing all aforementioned quantum operations, in fact, produces |𝜒+| · |≥𝜏 𝜒 | · | ≥𝜏 𝜒
(1)
s

⟩
𝐼
from the input

data state |𝜒 (1)
s

⟩𝐼 , where
𝜒+| · |≥𝜏 𝜒 | · | ≥𝜏 =

∑︁
𝑖: |𝜎𝑖 | ≥𝜏

( 1

𝜎𝑖
𝑢
(𝑖)
2

⊗ 𝑢
(𝑖)
3

) ⊗ (𝜎𝑖𝑢 (𝑖)
2

⊗ 𝑢
(𝑖)
3

)⊺,

and ·+ represents pseudo-inverse. Nowwe can recover the ignored normalization factor in Eq. 6 and derive the probability

of a successful singular value projection, which is

| |𝜒+|·|≥𝜏 𝜒 |·|≥𝜏 𝜒
(1)
s

| |2
| |𝜒 (1)

s
| |2

. Finally, we measure this state in the canonical basis

to get the triples with subject s and post-select on the predicate p. This will return objects to the inference (s, p, ?) after
O( 1

𝜖3
polylog(𝑑1𝑑2𝑑3)) times of repetitions. The quantum algorithm is summarized in Algorithm 1.

4 EXPERIMENTS WITH CLASSICAL TENSOR SVD

At the present stage, universal quantum computers are limited by the coherence times of qubits and the fidelity for

two-qubit gates. Hence, we investigate the performance of classical tensor SVD on benchmark datasets: Kinship,

FB15k-237 [37], and YAGO3 [25] as the verification of proposed quantum algorithm since it is essentially the quantum

counterpart of classical tensor singular value decompositionmethod. On the other hand, the experiments can additionally

verify the primary assumption that the tensor representation of a knowledge graph has a low-rank approximation if the
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knowledge graph contains global patterns. Table 1 provides the statistics of compared datasets. In particular, Kinship

contains family tree relationships of two families; FB15k-237 is a subset of Freebase which is a large collaborative

knowledge base containing structured human knowledge in the triple form; YAGO3 is a huge semantic knowledge base

containing facts about persons, organizations, cities, etc.

Dataset # Entity # Predicate Avg. Node Degree # Train # Valid # Test

Kinship 104 25 102.8 8, 544 1, 068 1, 074

FB15k-237 14, 541 237 21.3 272, 115 17, 535 20, 466

YAGO3 123, 182 37 8.8 1, 079, 040 5000 5000

Table 1. Statistics of compared datasets in the experiments, including the number of entities, predicates, average node degree,

and the number of triples in the training set, validation set, and test set. Note that the average node degree is calculated as

(#Train + #Valid + #Test)/#Entity.

Fig. 1. Low-rank representability of the Kinship semantic tensor by classical models ComplEx [38] and DistMult [41]. Chosen metrics

are filtered Mean Reciprocal Rank (MRR), filtered Hits@1, and filtered Hits@3, which were first introduced in [4] for quantifying the

performance of link prediction. Metrics are evaluated on the ranks [2, 4, 16, 64, 128, 256, 512, 1024, 2048].

Knowledge graphs are assumed to possess structural patterns that capture global relations and rules. For instance,

the composition rule Cousin(𝑋,𝑌 ) ∧ hasChild(𝑌, 𝑍 ) → Relative(𝑋,𝑍 ) implies that if 𝑋 is the cousin of 𝑌 , and 𝑌 is the

child of 𝑍 , then 𝑋 is a relative of 𝑍 . Such global relational patterns are supposed can be well learned and modeled by

low-rank representation models. To experimentally verify the low-rank representability of semantic tensors, we study

classical benchmark models’ performance as a function of ranks on the Kinship dataset. We choose the Kinship dataset

of family relationships since its relation patterns are less noisy than other datasets. The low-rank representability of the

Kinship semantic tensor can be well observed in Figure 1, where all the metrics saturate after a small rank value.

It is, therefore, reasonable to expect that the classical counterpart of quantum tensor SVD also inherits the low-rank

property. In the following, we elaborate on how to classically implement the quantum tensor SVD algorithm. Given a

semantic triple (s, p, o), the value function of the tensor SVD is defined as

𝜂spo =

𝑅∑︁
𝑖=1

𝜎𝑖 us𝑖 up𝑖 uo𝑖 ,

where us, up, uo are 𝑅-dimensional vector representations of the subject s, predicate p, and object o, respectively. Note

that the vector representations are read out from separate embedding matrices of subjects, predicates, and objects. The

dimension 𝑅, also known as the rank, serves as a hyperparameter. In general, for benchmark classical models, we assign

value 1 to genuine semantic triples and 0 to negative triples as ground truth labels. By formulating the link prediction
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task as a binary classification task, embedding matrices are learned such that the scores of genuine triples are close to 1

and scores of negative triples close to 0. However, for the classical counterpart of quantum tensor SVD, to reconstruct

the original semantic tensor, the ground-truth values need to be rescaled by the subsample probability 𝑝 (see Eq. 1).

The model is optimized by minimizing the following objective function

L :=
1

|Dtrain |
∑︁

(s,p,o) ∈Dtrain

(𝑦spo − 𝜂spo)2 + 𝛾 ( | |𝑈 ⊺𝑠 𝑈𝑠 − I𝑅 | |𝐹 + ||𝑈 ⊺𝑝 𝑈𝑝 − I𝑅 | |𝐹 + ||𝑈 ⊺𝑜 𝑈𝑜 − I𝑅 | |𝐹 ) (7)

via stochastic gradient descent, which contains a mean square error loss and a penalization. The hyper-parameter 𝛾 is

used to encourage the orthonormality of embedding matrices for subjects, predicates, and objects as required by the

definition of tensor SVD.

Fig. 2. Learning curves of Mean Rank (left) and Hits@10 (middle) on the FB15k-237 dataset for different ranks. The right panel

demonstrates the decreasing orthonormality penalty of embedding matrices during the training.

In the left and middle panels of Figure 2, we plot training curves of the classical counterpart of quantum tensor

SVD on the FB1k-237 dataset using different rank values. The evaluation metrics are filtered Mean Rank (MR) and

filtered Hits@10
1
first introduced in [4] for quantifying the performance of link prediction. For both metrics, the

classical counterpart of quantum tensor SVD performs reasonably well using only a small rank value 𝑅 = 32. This

experimental observation indicates that even for the relatively noisy FB15k-237 dataset, the corresponding semantic

tensor is low-rank representable. Thus, the low-rank approximation of the tensor of the complete knowledge graph is a

plausible assumption. Furthermore, knowing an approximate range of the low rank, we can estimate the projection

threshold 𝜏 necessary to the quantum algorithm according to Theorem 2. Besides, in the right panel of Figure 2, we

show that the orthonormality penalty of embedding matrices decreases with the training.

Kinship FB15k-237 YAGO3

Methods MR @3 @10 MR @3 @10 @50 MR @10 @50 @100

DistMult 2.92 88.50 95.76 355.2 22.49 36.11 57.36 4841.9 46.07 65.81 76.28
ComplEx 2.30 90.32 97.77 343.8 22.15 36.12 58.06 4793.7 50.10 68.83 74.35

RESCAL 2.40 91.06 98.00 393.3 16.17 27.36 50.53 3589.6 19.15 41.95 51.56

Tucker 2.33 90.78 96.97 410.8 16.40 28.53 50.83 3590.6 24.29 45.43 54.87

Tensor SVD 2.49 85.57 97.44 414.5 22.54 37.69 59.66 6384.8 58.38 70.90 74.30

Improve − − − − 2.22% 4.35% 2.76% − 16.53% 3.00% −
Table 2. Mean Rank and Hits@𝑛 metrics compared on the Kinship, FB15k-237, and YAGO3 datasets. Relative improvements are

obtained by comparing with the best classical baselines.

1
For the sake of simplicity, we use filtered metrics as default.
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In Table 2, the classical implementation of quantum tensor SVD is compared with other benchmark models, which

are RESCAL [27], Tucker [39], DistMult [41], and ComplEx [38]. Since the magnitudes of the number of entities

are different on datasets, we report different Hits@𝑛 metrics on three datasets. For a fair comparison, benchmark

classical models are trained using mean squared error as the loss function. Moreover, major hyperparameters for tuning

the classical counterpart of quantum tensor SVD are the rank value 𝑅, the orthonormality penalty factor 𝛾 , and the

subsample probability 𝑝 in Eq. 1. One noticeable observation is that the classical implementation of quantum tensor

SVD achieves comparable or even better performance on FB15k-237 and YAGO3. For the Hits@10 metric, the classical

implementation of quantum tensor SVD even outperforms the best baseline ComplEx by 16.53% on YAGO3. One

possible explanation is that YAGO3 has the lowest average node degree (see Table 1), which implies relatively simple

relational patterns in the dataset. Therefore, the quantum algorithm for sampling and reasoning on semantic knowledge

graph might find important applications when the number of to be inferred entities is enormous, and when the global

relational patterns are easy to learn.

Fig. 3. Hits@𝑛 metrics versus the subsample probability of 𝑝 on datasets Kinship, FB15k-237, and YAGO3. Metrics are evaluated on

the subsample probabilities 𝑝 = [0.0001, 0.001, 0.01, 0.1, 0.5, 0.9, 1, 2, 10, 100].

One important hyperparameter for tuning the performance of the classical counterpart of quantum tensor SVD on

the validation set is the subsample probability 𝑝 , which is used to rescale the ground-truth values before training. This

hyperparameter is dataset dependent. Since, normally, 90% of genuine semantic triples are randomly sampled and used

as training samples, our initial guess to this hyperparameter is 𝑝 = 0.9. To verify this assumption, in Figure 3, we plot

Hits@𝑛 metrics versus subsample probability on three datasets. One can observe that the best performance on Kinship

and FB15k-237 is achieved when the subsample probability 𝑝 = 0.9, which meets our expectation. However, for the

YAGO3 dataset, the best performance is found when the subsample probability equals 0.01 or 0.1, depending on the

considered metrics. One reasonable explanation is that the YAGO3 dataset is highly sparse, and the original dataset is

already largely incomplete with a lot of missing facts.

The subsample probability is not the only factor that can affect the performance of quantum tensor SVD on knowledge

graphs. Recall that given a query triple (s, p,?), quantum tensor SVD returns appropriate object candidates by post-

selecting the predicate p, which is different from the classical reasoning method. To verify, in practice, whether the

post-selection on predicate has an unexpected impact on the algorithm performance, we design a new task for the

classical implementation of quantum tensor SVD and benchmark classical models, which is called the (p, o)-sampling

test. Given a query triple (s, p, o), we evaluate the filtered ranking of the ground-truth (p, o) pair after calculating all
the score functions whose subject is the given subject s in the query, namely 𝜂s· · values.

In Table 3, we report filtered Hits@𝑛 metrics for the novel (p, o)-sampling test on three datasets. Note that the

(p, o)-sampling test is much more challenging than simply predicting the object. There are only 𝑁𝑒 candidates for the
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14 Yunpu Ma and Volker Tresp

object prediction, while there are 𝑁𝑝 · 𝑁𝑒 predicate-object candidate pairs for the (p, o) prediction, where 𝑁𝑒 is the
number of entities and 𝑁𝑝 the number of predicates. Therefore, we use a higher 𝑛 value in the Hits@𝑛 metrics for the

(p, o)-sampling task. One can still observe comparable results on the largest and highly sparse YAGO3 dataset. This

observation is attractive since it reflects that even using the post-selection step, correct objects can be found in the

top-100 returns with high probability. One can, therefore, expect that, on large and highly sparse knowledge graphs,

sampling-based quantum tensor SVD algorithm might have comparable performance as benchmark classical models,

while showing quantum advantages.

Kinship FB15k-237 YAGO3

Methods @10 @50 @100 @200 @100 @200

DistMult 57.4 84.8 38.0 49.5 74.0 77.0

ComplEx 57.0 84.8 39.5 54.5 75.0 78.0
RESCAL 75.1 94.4 15.0 27.5 62.0 69.0

Tucker 69.4 89.4 5.0 9.0 7.0 12.0

Tensor SVD 39.6 82.0 20.0 29.5 73.5 75.0

Table 3. Hits@𝑛 results for the novel (p, o)-sampling task on three datasets.

5 CONCLUSION

In this work, we presented a quantum machine learning algorithm showing accelerated inference on knowledge graphs.

We first proved that the semantic tensor could approximately be reconstructed from the truncated or projected tensor

SVD of the subsampled tensor. Afterward, we constructed a quantum algorithm using quantum principal component

analysis and singular value projection. The resulting sample-based quantum machine learning algorithm shows an

acceleration w.r.t. the dimensions of the semantic tensor. Due to technical limitations, we investigate the performance

of the classical counterpart of quantum tensor SVD on conventional entity prediction and novel p, o-sampling tasks.

The comparable, or even superior, results of the classical implementation of quantum tensor SVD on both tasks might

guarantee a good performance of the quantum tensor SVD implemented on future quantum computers.

In this paper, we aim to build a first framework of quantum knowledge graph algorithms, but every component

hasn’t been optimized. For example, we are aware of the techniques proposed in [5] and [14]. As future work, we

will try to apply these techniques and others to improve the efficiency of our algorithm and/or avoid unnecessary

computations.

A APPENDIX

A.1 Proof of Lemma 1

Lemma A 1 (Lemma 1 in the main text). If an algorithm returns an approximation of the binary semantic tensor 𝜒 ,

denoted 𝜒 , with | |𝜒 − 𝜒 | |𝐹 ≤ 𝜖 | |𝜒 | |𝐹 and 𝜖 < 1

2
, then the probability of a successful information retrieval from the top-𝑛

returns of 𝜒 is at least 1 − ( 𝜖
1−𝜖 )

𝑛 .

Proof. Since the reconstruction error of 𝜒 from 𝜒 is upper bounded, we have the following inequality

(1 − 𝜖) | |𝜒 | |𝐹 ≤ ||𝜒 | |𝐹 ≤ (1 + 𝜖) | |𝜒 | |𝐹 .
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We can use this inequality of Frobenius norm to estimate the number of tripes which are in 𝜒 but not in 𝜒

𝜖2 | |𝜒 | |2𝐹 ≥ ||𝜒 − 𝜒 | |2𝐹 =
∑︁

(𝑖, 𝑗,𝑘) ∈𝜒∩(𝑖, 𝑗,𝑘) ∈𝜒
(1 − 𝜒𝑖 𝑗𝑘 )2 +

∑︁
(𝑖, 𝑗,𝑘) ∈𝜒∩(𝑖, 𝑗,𝑘)∉𝜒

𝜒2

𝑖 𝑗𝑘
+

∑︁
(𝑖, 𝑗,𝑘) ∈𝜒∩(𝑖, 𝑗,𝑘)∉𝜒

(1 − 𝜒𝑖 𝑗𝑘 )2

≥
∑︁

(𝑖, 𝑗,𝑘) ∈𝜒∩(𝑖, 𝑗,𝑘)∉𝜒
𝜒2

𝑖 𝑗𝑘
,

where we use the notation (𝑖, 𝑗, 𝑘) ∈ 𝜒 ∩ (𝑖, 𝑗, 𝑘) ∉ 𝜒 to represent a semantic triple that can be observed in 𝜒 but not

in 𝜒 , etc. Hence the probability of sampling a semantic triple from 𝜒 that doesn’t exist in the original tensor is upper

bounded by

Pr[(𝑖, 𝑗, 𝑘) ∈ 𝜒 ∩ (𝑖, 𝑗, 𝑘) ∉ 𝜒] =

√︂ ∑
(𝑖, 𝑗,𝑘) ∈𝜒∩(𝑖, 𝑗,𝑘)∉𝜒

𝜒2

𝑖 𝑗𝑘

| |𝜒 | |𝐹
≤ 𝜖 | |𝜒 | |𝐹

| |𝜒 | |𝐹
≤ 𝜖

1 − 𝜖
.

Without loss of generality, consider the retrieval of objects given the inference task (s, p, ?). The retrieval becomes

unsuccessful if the top-𝑛 returns from 𝜒 do not contain the correct objects regarding to the query, which has probability

at most ( 𝜖
1−𝜖 )

𝑛
. Hence the probability of a successful information retrieval from 𝜒 is at least 1 − ( 𝜖

1−𝜖 )
𝑛
.

A.2 Proof of Theorem 1 and Theorem 2

We first introduce and recap notations. Consider a 𝑁 -way tensor A ∈ R𝑑1×𝑑2×···×𝑑𝑁
, which has a tensor singular value

decomposition with rank 𝑅. Let A𝑟 = D ⊗1 𝑈1 ⊗2 𝑈2 · · · ⊗𝑁 𝑈𝑁 denote the truncated 𝑟 -rank tensor SVD of A with

𝑈𝑖 = [𝑢 (1)
𝑖

, · · · , 𝑢 (𝑟 )
𝑖

] ∈ R𝑑𝑖×𝑟 for 𝑖 = 1, · · · , 𝑁 and D = diag(𝜎1, · · · , 𝜎𝑟 ) ∈ R𝑟×···×𝑟 . Define the projection operators

PA,𝑟
𝑖

:= I ⊗ · · · ⊗ 𝑈𝑖𝑈
𝑇
𝑖

⊗ · · · ⊗ I with 𝑖 = 1, · · · , 𝑁 and the product projections PA,𝑟
:=

∏𝑁
𝑖=1

PA,𝑟
𝑖

. We have the

following Lemma for the projection operator.

Lemma A 2. Consider a tensor A, if A has an exact tensor SVD with rank 𝑅 then PA,𝑟A = A𝑟 . If the tensor SVD of A

is obtained by minimizing | |A −
𝑅∑
𝑖=1

𝜎𝑖𝑢
(𝑖)
1

⊗ 𝑢
(𝑖)
2

⊗ · · · ⊗ 𝑢
(𝑖)
𝑁

| |𝐹 := | |A − A𝑅 | |𝐹 , s.t. ⟨𝑢 (𝑖)
𝑘

, 𝑢
( 𝑗)
𝑘

⟩ = 𝛿𝑖 𝑗 for 𝑘 = 1, · · · , 𝑁

with predefined rank 𝑅, then PA,𝑟A = A𝑟 still holds.

Proof. We first consider A has an exact tensor SVD. It means that A = ˜D ⊗1 �̃�1 · · · ⊗𝑁 �̃�𝑁 , where ˜D =

diag(𝜎1, · · · , 𝜎𝑅) and �̃�𝑖 = [𝑢 (1)
𝑖

, 𝑢
(2)
𝑖

, · · · , 𝑢 (𝑅)
𝑖

] for 𝑖 = 1, · · · , 𝑁 . Hence

PA,𝑟A = ˜D ⊗1 𝑈1𝑈
⊺
1
𝑈1 · · · ⊗𝑁 𝑈𝑁𝑈

⊺
𝑁

˜𝑈𝑁 =

𝑟∑︁
𝑖=1

𝜎𝑖𝑢
(𝑖)
1

⊗1 ⊗2𝑢
(𝑖)
2

· · ·𝑢 (𝑖)
𝑁

= A𝑟 .

On the other hand, suppose that A’s tensor SVD is found by minimizing the objective function. Define A⊥
𝑅

:= A −A𝑅 ,

then we have ⟨A⊥
𝑅
,T𝑖 ⟩ = 0 with T𝑖 := 𝑢

(𝑖)
1

⊗ 𝑢
(𝑖)
2

⊗ · · · ⊗ 𝑢
(𝑖)
𝑁

for 𝑖 = 1, · · · , 𝑅. To see this, suppose ∃ 𝑗 , such that

⟨A⊥
𝑅
,T𝑗 ⟩ = 𝜖 ≠ 0. Then,

| |A −
𝑅∑︁
𝑖=1

𝜎𝑖T𝑖 − 𝜖T𝑗 | |2𝐹 = | |A −
𝑅∑︁
𝑖=1

𝜎𝑖T𝑖 | |2𝐹 − 𝜖2 < | |A −
𝑅∑︁
𝑖=1

𝜎𝑖T𝑖 | |2𝐹 ,

which contradicts the fact thatA𝑅 is the global minimum of the objective function. Thus, PA,𝑟A = PA,𝑟 (A𝑅 +A⊥
𝑅
) =

PA,𝑟A𝑅 = A𝑟 .
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As we can see the projection operator PA,𝑟
projects the tensor onto the space spanned by T𝑖 , · · · ,T𝑟 . Lemma A 2

also implies that for any two tensors A and B we have the inequality

| |PA,𝑟A||𝐹 ≥ ||PB,𝑟A||𝐹 . (8)

In the next Lemma we give the lower bound of | |PB,𝑟A||𝐹 . The proof is similar to the matrix case which is given in [1].

LemmaA 3. Given two tensorsA andB having tensor SVDwith ranks𝑅𝐴 and𝑅𝐵 , respectively. Suppose 𝑟 ≤ min{𝑅𝐴, 𝑅𝐵},
we have

| |PB,𝑟A||𝐹 ≥ ||PA,𝑟A||𝐹 − 2| |PA−B,𝑟 (A − B)||𝐹 .

Proof.

| |PB,𝑟A||𝐹 = | |PB,𝑟 (B + (A − B))| |𝐹 ≥ ||PB,𝑟B||𝐹 − ||PB,𝑟 (A − B)||𝐹

≥ ||PA,𝑟B||𝐹 − ||PB,𝑟 (A − B)||𝐹 = | |PA,𝑟 (A − (A − B))| |𝐹 − ||PB,𝑟 (A − B)||𝐹

≥ ||PA,𝑟A||𝐹 − ||PA,𝑟 (A − B)||𝐹 − ||PB,𝑟 (A − B)||𝐹

≥ ||PA,𝑟A||𝐹 − 2| |PA−B,𝑟 (A − B)||𝐹 ,

where we used Eq. 8 multiple times.

Lemma A 3 indicates that if A and B are similar tensors, then the projection of tensor A onto the first 𝑟 bases of

tensor B has only small error which is bounded by | |PA−B,𝑟 (A −B)||𝐹 . Using Lemma A 3 we can derive the following

bound which will serve as the main Lemma for estimating the bound of reconstruction error.

LemmaA 4. Given two tensorsA andB having tensor SVDwith ranks𝑅𝐴 and𝑅𝐵 , respectively. Suppose 𝑟 ≤ min{𝑅𝐴, 𝑅𝐵},
we have

| |A − PB,𝑟B||𝐹

≤ 2| |A − A𝑟 | |𝐹 + 2

√︁
| |A𝑟 | |𝐹 | |A − A𝑟 | |𝐹 + 2

√︃
| |A𝑟 | |𝐹 | |PA−B,𝑟 (A − B)||𝐹 + ||PA−B,𝑟 (A − B)||𝐹 .

Proof.

| |A − PB,𝑟B||𝐹 = | |A − PB,𝑟 (A − (A − B))| |𝐹 ≤ ||A − PB,𝑟A||𝐹 + ||PB,𝑟 (A − B)||𝐹

≤ ||PA,𝑟A − PB,𝑟A||𝐹 + ||A − PA,𝑟A||𝐹 + ||PB,𝑟 (A − B)||𝐹

= | |A𝑟 − PB,𝑟 ((A − A𝑟 ) + A𝑟 ) | |𝐹 + ||A − PA,𝑟A||𝐹 + ||PB,𝑟 (A − B)||𝐹

≤ ||A𝑟 − PB,𝑟A𝑟 | |𝐹 + ||PB,𝑟 (A − A𝑟 ) | |𝐹 + ||A − PA,𝑟A||𝐹 + ||PB,𝑟 (A − B)||𝐹

≤ ||A𝑟 − PB,𝑟A𝑟 | |𝐹︸                  ︷︷                  ︸
(★)

+2| |A − PA,𝑟A||𝐹 + ||PA−B,𝑟 (A − B)||𝐹 ,

Manuscript submitted to ACM



Quantum Machine Learning Algorithm for Knowledge Graphs 17

for the last inequality we use Eq. 8 multiple times. Now we can apply Pythagorean theorem on the first 𝑟 eigenbases of

tensor A to bound the term (★). Hence

(★) =
√︃
| |A𝑟 | |2𝐹 − ||PB,𝑟A𝑟 | |2𝐹

(1)
≤

√︃
| |A𝑟 | |2𝐹 − ||A𝑟 | |2𝐹 + 4| |A𝑟 | |𝐹 | |PA𝑟−B,𝑟 (A𝑟 − B)||𝐹

= 2

√︃
| |A𝑟 | |𝐹 | |PA𝑟−B,𝑟 (A𝑟 − B)||𝐹

≤ 2

√︃
| |A𝑟 | |𝐹 [| |PA𝑟−B,𝑟 (A𝑟 − A)||𝐹 + ||PA𝑟−B,𝑟 (A − B)||𝐹 ]

(2)
≤ 2

√︃
| |A𝑟 | |𝐹 [| |A𝑟 − A||𝐹 + ||PA−B,𝑟 (A − B)||𝐹 ]

(3)
≤ 2

√︁
| |A𝑟 | |𝐹 | |A − A𝑟 | |𝐹 + 2

√︃
| |A𝑟 | |𝐹 | |PA−B,𝑟 (A − B)||𝐹 ,

where inequality (1) is given by Lemma A 3, (2) by Eq. 8 and (3) is according to

√
𝑥 + 𝑦 ≤

√
𝑥 + √

𝑦.

In summary, we have the following bound

| |A − PB,𝑟B||𝐹

≤ 2| |A − A𝑟 | |𝐹 + 2

√︁
| |A𝑟 | |𝐹 | |A − A𝑟 | |𝐹 + 2

√︃
| |A𝑟 | |𝐹 | |PA−B,𝑟 (A − B)||𝐹 + ||PA−B,𝑟 (A − B)||𝐹 .

Consider a tensor A which will be subsampled and rescaled. The resulting perturbed tensor can be written as

ˆA = A +N , whereN is a noise tensor. In the following, we use
ˆA to represent subsampled (sparsified) tensor, and

ˆA𝑟

the truncated 𝑟 -rank tensor SVD of
ˆA. Thus, according to Lemma A 4 the reconstruction error using the truncated

tensor SVD of the sparsified tensor
ˆA is upper bounded by

| |A − ˆA𝑟 | |𝐹 ≤ 2| |A − A𝑟 | |𝐹 + 2

√︁
| |A𝑟 | |𝐹 | |A − A𝑟 | |𝐹 + 2

√︁
| |N𝑟 | |𝐹 | |A𝑟 | |𝐹 + ||N𝑟 | |𝐹 . (9)

To further estimate the bound of the error, we briefly recap the tensor subsampling and sparsification techniques. The

basic idea behind matrix/tensor sparsification algorithms is to neglect all small entries and keep or amplify sufficiently

large entries, such that the original matrix/tensor can be reconstructed element-wise with bounded error. Matrix

sparsification was first studied in [1], and tensor sparsification in [26].

Without further specification, we consider the following general sparsification and rescaling method used in the

main text:

ˆA𝑖1𝑖2 · · ·𝑖𝑁 =


A𝑖

1
𝑖
2
···𝑖𝑁
𝑝 with probability 𝑝 > 0

0 otherwise,
(10)

where the choose of the element-wise sample probability 𝑝 will be discussed later. Note that the expectation values of

the entries of the sparsified tensor read E[ ˆA𝑖1𝑖2 · · ·𝑖𝑁 ] = A𝑖1𝑖2 · · ·𝑖𝑁 . Recall that the perturbation is defined asN = ˆA−A.

Thus, the entries of the noise tensor have zero mean E[N𝑖1𝑖2 · · ·𝑖𝑁 ] = 0 and variance Var[N𝑖1𝑖2 · · ·𝑖𝑁 ] = A2

𝑖1𝑖2 · · ·𝑖𝑁 ( 1

𝑝 − 1).
To bound the norms of the noise tensor N we also need the following auxiliary lemmas.

Lemma A 5. Define two functions 𝑓1 (𝑥) = 𝑝𝑥 + ln(1 − 𝑝 + 𝑝 e
−𝑥 ) and 𝑓2 (𝑥) = 𝑝𝑥2/2. For any 𝑥 ∈ (−∞,∞) and

0.22 ≤ 𝑝 ≤ 1, we have 𝑓1 (𝑥) ≤ 𝑓2 (𝑥).
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Proof. We first consider the case when 𝑥 ≥ 0. First we have 𝑓1 (0) = 𝑓2 (0) and 𝑓 ′
1
(0) = 𝑓 ′

2
(0). Since

1 − 𝑝 + 𝑝 e
−𝑥 = (

√︁
1 − 𝑝 −

√
e
−𝑥 )2 + 2

√︁
(1 − 𝑝)e−𝑥 − e

−𝑥 + 𝑝 e
−𝑥

≥ 2

√︁
(1 − 𝑝)e−𝑥 − (1 − 𝑝)e−𝑥 ,

we immediately have the following inequality for the second derivatives of 𝑓1 (𝑥) and 𝑓2 (𝑥),

𝑓 ′′
1
(𝑥) = 𝑝 (1 − 𝑝)e−𝑥

(1 − 𝑝 + 𝑝 e
−𝑥 )2

≤ 𝑝 (1 − 𝑝)e−𝑥

(2
√︁
(1 − 𝑝)e−𝑥 − (1 − 𝑝)e−𝑥 )2

≤ 𝑝 (1 − 𝑝)e−𝑥

(
√︁
(1 − 𝑝)e−𝑥 )2

= 𝑝 = 𝑓 ′′
2
(𝑥). (11)

We used the condition that 0 ≤ 𝑝 ≤ 1 and e
−𝑥 ≤ 1 for 𝑥 ≥ 0 to derive the second inequality in Eq. 11. Hence

𝑓1 (𝑥) ≤ 𝑓2 (𝑥) for any 𝑥 ≥ 0 and 0 ≤ 𝑝 ≤ 1.

Next, we consider the case when 𝑥 < 0 for different values of 𝑝 . To find the condition of non-negative 𝑝 such that

𝑓1 (𝑥) ≤ 𝑓2 (𝑥) we need to solve a transcendent inequality numerically. Hence in Figure 4 we plot 𝑓1 (𝑥) − 𝑓2 (𝑥) as a
function of 𝑥 and 𝑝 . From Figure 4 we can read the following numerical conditions

𝑥 = 0. 𝑝 ≥ 0. 𝑥 = −0.5 𝑝 ≥ 0.1185 𝑥 = −1 𝑝 ≥ 0.1772 𝑥 = −6 𝑝 ≥ 0.1787

𝑥 = −0.1 𝑝 ≥ 0.0310 𝑥 = −0.6 𝑝 ≥ 0.1337 𝑥 = −2 𝑝 ≥ 0.2184 𝑥 = −7 𝑝 ≥ 0.1652

𝑥 = −0.2 𝑝 ≥ 0.0577 𝑥 = −0.7 𝑝 ≥ 0.1469 𝑥 = −3 𝑝 ≥ 0.2196 𝑥 = −8 𝑝 ≥ 0.1531

𝑥 = −0.3 𝑝 ≥ 0.0809 𝑥 = −0.8 𝑝 ≥ 0.1585 𝑥 = −4 𝑝 ≥ 0.2082 𝑥 = −10 𝑝 ≥ 0.1331

𝑥 = −0.4 𝑝 ≥ 0.1010 𝑥 = −0.9 𝑝 ≥ 0.1685 𝑥 = −5 𝑝 ≥ 0.1934 𝑥 = −20 𝑝 ≥ 0.0794

Table 4. Numerical conditions for non-negative 𝑝 such that 𝑓1 (𝑥, 𝑝) − 𝑓2 (𝑥, 𝑝) ≤ 0 for different values of 𝑥 .

Table 4 and Figure 4 indicate that if 𝑝 ≳ 0.22 we have 𝑓1 (𝑥) ≤ 𝑓2 (𝑥) for any 𝑥 < 0 in the worst case. In summary,

𝑓1 (𝑥) ≤ 𝑓2 (𝑥) for any 𝑥 ∈ (−∞,∞) and 0.22 ≤ 𝑝 ≤ 1.

Fig. 4. Plotting 𝑓1 (𝑥, 𝑝) − 𝑓2 (𝑥, 𝑝) for 𝑥 = [−10,−9,−8,−7,−6,−5,−4,−3,−2] (left) and 𝑥 =

[−1.,−0.9,−0.8,−0.7,−0.6,−0.5,−0.4,−0.3,−0.2] (right).
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Lemma A 6. Assume that the noise tensor N is generated by subsampling a binary tensor A ∈ {0, 1}𝑑1×𝑑2×···×𝑑𝑁

according to Eq. 10 with sample probability 𝑝 ≳ 0.22. The spectral norm of N is bounded by

| |N ||𝜎 ≤

√√√
8

𝑝

(
log( 2𝑁

𝑁0

)
𝑁∑︁
𝑘=1

𝑑𝑘 + log

2

𝛿

)
, (12)

with probability at least 1 − 𝛿 .

Proof. Recall that the noise tensor entries N𝑖1𝑖2 · · ·𝑖𝑁 are independent random variables with zero mean and

N𝑖1𝑖2 · · ·𝑖𝑁 =


( 1

𝑝 − 1)A𝑖1𝑖2 · · ·𝑖𝑁 with probability 𝑝

−A𝑖1𝑖2 · · ·𝑖𝑁 with probability 1 − 𝑝.

We first estimate the quantity E[e−𝑡N𝑖
1
𝑖
2
···𝑖𝑁 𝑥1𝑖

1
𝑥2𝑖

2
· · ·𝑥𝑁𝑖𝑁 ] for any 𝑡 ≥ 0 with x𝑘 ∈ 𝑆𝑑𝑘−1

, 𝑘 = 1, · · · , 𝑁 . For the

sake of succinct notation we adopt a bijection of index and write N𝑙 := N𝑖1𝑖2 · · ·𝑖𝑁 and 𝑥𝑙 := 𝑥1𝑖1𝑥2𝑖2 · · · 𝑥𝑁𝑖𝑁 for

𝑙 = 1, · · · , 𝑑1𝑑2 · · ·𝑑𝑁 . Then we have the following inequality via Lemma A 5

E[e−𝑡N𝑙𝑥𝑙 ] = 𝑝 e
−𝑡 ( 1

𝑝
−1)A𝑙𝑥𝑙 + (1 − 𝑝) e

𝑡A𝑙𝑥𝑙 = e
𝑡A𝑙𝑥𝑙

(
1 − 𝑝 + 𝑝 e

− 𝑡
𝑝
A𝑙𝑥𝑙

)
= e

𝑝𝑦+ln(1−𝑝+𝑝e
−𝑦 ) ≤ e

𝑝𝑦2

2 for 𝑝 ≳ 0.22,

where 𝑦 :=
𝑡A𝑙𝑥𝑙
𝑝 . Since A𝑙 ∈ [0, 1], we have E[e−𝑡N𝑙𝑥𝑙 ] ≤ e

𝑡2

2𝑝
𝑥2

𝑙 for any 𝑡 ≥ 0. In other words, random variables N𝑙𝑥𝑙
are sub-Gaussian distributed if the sample probability fulfills 𝑝 ≳ 0.22.

Hence

E[e−𝑡
∑

𝑙 N𝑙𝑥𝑙 ] = E[e−𝑡N⊗1x1 · · ·⊗𝑁 x𝑁 ] ≤
∏
𝑙

e

𝑡2

2𝑝
𝑥2

𝑙

= e

𝑡2

2𝑝

∑𝑑
1

𝑖
1
=1
𝑥2

1𝑖
1

∑𝑑
2

𝑖
2
=1
𝑥2

2𝑖
2

· · ·∑𝑑𝑁
𝑖𝑁 =1

𝑥2

𝑁𝑖𝑁 = e

𝑡2

2𝑝 ,

where we use | |x𝑘 | |2 = 1, 𝑘 = 1, · · · , 𝑁 .

Given non-negative auxiliary parameters 𝜆 and 𝑡 , we have

Pr(N ⊗1 x1 · · · ⊗𝑁 x𝑁 ≤ −𝜆) = Pr(e−𝑡N⊗1x1 · · ·⊗𝑁 x𝑁 ≥ e
𝑡𝜆)

≤ e
−𝑡𝜆E[e−𝑡N⊗1x1 · · ·⊗𝑁 x𝑁 ]

≤ e

𝑡2

2𝑝
−𝑡𝜆 ≤ e

− 𝑝𝜆2

2

by choosing 𝑡 = 𝑝𝜆. Similarly we have the probability Pr(N ⊗1 x1 · · · ⊗𝑁 x𝑁 ≥ 𝜆) ≤ e
− 𝑝𝜆2

2 . In summary,

Pr( |N ⊗1 x1 · · · ⊗𝑁 x𝑁 | ≥ 𝜆) ≤ 2e
− 𝑝𝜆2

2 , (13)

if x𝑘 ∈ 𝑆𝑑𝑘−1
, 𝑘 = 1, · · · , 𝑁 and 𝑝 ≥ 0.22.

Now we are able to use the covering number argument proposed in [36] to bound the spectral norm. Let C1, · · · , C𝑁
be the 𝜖-covering of spheres 𝑆𝑑1−1, · · · , 𝑆𝑑𝑁 −1

with covering number |C𝑘 | upper bounded by ( 2

𝜖 )
𝑑𝑘

for 𝑘 = 1, · · · , 𝑁 .

Since the product space 𝑆𝑑1−1 × · · · × 𝑆𝑑𝑁 −1
is closed and bounded, there is a point (x★

1
, · · · , x★

𝑁
) ∈ 𝑆𝑑1−1 × · · · × 𝑆𝑑𝑁 −1
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which maximizes the tensor-vector product N ⊗1 x1 · · · ⊗𝑁 x𝑁 . Hence

| |N ||𝜎 = N ⊗1 (x̄1 + 𝜹1) · · · ⊗𝑁 (x̄𝑁 + 𝜹𝑁 ), (14)

where x̄𝑘 + 𝜹𝑘 = x★
𝑘
and x̄𝑘 ∈ C𝑘 for 𝑘 = 1, · · · , 𝑁 . According to the definition of 𝜖-covering, we have | |𝜹𝑘 | |2 ≤ 𝜖 .

Expanding Eq. 14 gives

| |N ||𝜎 ≤ N ⊗1 x̄1 · · · ⊗𝑁 x̄𝑁 +
(
𝜖𝑁 + 𝜖2

(
𝑁

2

)
+ · · · + 𝜖𝑁

(
𝑁

𝑁

))
︸                                 ︷︷                                 ︸

(★)

| |N ||𝜎 .

Furthermore, we choose 𝜖 =
log

3

2

𝑁
and estimate the above (★) term as follows

(★) ≤ 𝜖𝑁 + (𝜖𝑁 )2

2!

+ · · · + (𝜖𝑁 )𝑁
𝑁 !

≤ e
𝜖𝑁 − 1 =

1

2

.

Hence

| |N ||𝜎 ≤ 2 max

x̄𝑘 ∈C𝑘 ,𝑘=1, · · · ,𝑁
N ⊗1 x̄1 · · · ⊗𝑁 x̄𝑁 .

Using the property of 𝜖-covering and Eq. 13 we can derive the following inequality for any 𝜆 ≥ 0

Pr( | |N ||𝜎 ≥ 𝜆) ≤ Pr(2 max

x̄𝑘 ∈C𝑘 ,𝑘=1, · · · ,𝑁
N ⊗1 x̄1 · · · ⊗𝑁 x̄𝑁 ≥ 𝜆)

≤
∑︁

x̄𝑘 ∈C𝑘 ,𝑘=1, · · · ,𝑁
≤

(
2

𝜖

) 𝑁∑
𝑘=1

𝑑𝑘

2e
− 𝑝𝜆2

8 .

Setting Pr( | |N ||𝜎 ≥ 𝜆) = 𝛿 , the spectral norm of the noise tensor N can be bounded by

| |N ||𝜎 ≤

√√√
8

𝑝

(
log( 2𝑁

𝑁0

)
𝑁∑︁
𝑘=1

𝑑𝑘 + log

2

𝛿

)
, 𝑁0 := log

3

2

(15)

with probability at least 1 − 𝛿 if the sample probability satisfies 𝑝 ≥ 0.22.

Using | |N𝑟 | |𝜎 = | |N ||𝜎 , and | |N𝑟 | |𝐹 ≤
√
𝑟 | |N𝑟 | |𝜎 we can estimate the norms of the truncated tensor SVD of the noise

tensor.

Lemma A 7.

| |N𝑟 | |𝜎 ≤

√√√
8

𝑝

(
log( 2𝑁

𝑁0

)
𝑁∑︁
𝑘=1

𝑑𝑘 + log

2

𝛿

)

| |N𝑟 | |𝐹 ≤

√√√
𝑟

8

𝑝

(
log( 2𝑁

𝑁0

)
𝑁∑︁
𝑘=1

𝑑𝑘 + log

2

𝛿

)
,

where 𝑁0 = log
3

2
and the sample probability should satisfy 𝑝 ≥ 0.22.

Now we are able to determine the sample probability, such that the error ratio
| |A− ˆA𝑟 | |𝐹

| |A | |𝐹 is bounded.

Theorem A 1 (Theorem 1 in the main text). Let A ∈ {0, 1}𝑑1×𝑑2×···×𝑑𝑁 . Suppose that A can be well approx-

imated by its 𝑟 -rank tensor SVD A𝑟 . Using the subsampling scheme defined in Eq. 10 with the sample probability

𝑝 ≥ max{0.22, 8𝑟

(
log( 2𝑁

𝑁0

)
𝑁∑
𝑘=1

𝑑𝑘 + log
2

𝛿

)
/(𝜖 | |A||𝐹 )2}, 𝑁0 = log

3

2
, then the original tensor A can be reconstructed
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from the truncated tensor SVD of the subsampled tensor ˆA. The error satisfies | |A − ˆA𝑟 | |𝐹 ≤ 𝜖 | |A||𝐹 with probability at

least 1−𝛿 , where 𝜖 is a function of 𝜖 . Especially, 𝜖 together with the sample probability controls the norm of the noise tensor.

Proof. Suppose tensor A can be well approximated by its 𝑟 -rank tensor SVD, in a sense that | |A −A𝑟 | | ≤ 𝜖0 | |A||𝐹
for some small 𝜖0 > 0. According to Lemma A 7 if we want the Frobenius norm of the noise tensor N𝑟 to be bounded

by 𝜖 | |A||𝐹 with 𝜖 > 0, then the sample probability should satisfy 𝑝 ≥ {0.22,

8𝑟

(
log( 2𝑁

𝑁
0

)
𝑁∑
𝑘=1

𝑑𝑘+log
2

𝛿

)
(𝜖 | |A | |𝐹 )2

}.
Using Eq. 9 we have

| |A − ˆA𝑟 | |𝐹 ≤ 2𝜖0 | |A||𝐹 + 2

√
𝜖0 | |A||𝐹 + 2

√
𝜖 | |A||𝐹 + 𝜖 | |A||𝐹 = 𝜖 | |A||𝐹 ,

where 𝜖 := 2(𝜖0 +
√
𝜖0 +

√
𝜖) + 𝜖 .

Note that in the case where A is a two-dimensional matrix, the sample probability derived in [1] reads O( 𝑑1+𝑑2

| |A | |2
𝐹

).
This corresponds the high-dimensional tensor case.

For the later use in the quantum algorithm, instead of considering low-rank approximation of the subsampled tensor,

we study the tensor SVD with projected singular values, denoted as
ˆA | · | ≥𝜏 . This notation denotes that subsampled

tensor
ˆA is projected onto the eigenspaces with absolute singular values larger than a threshold. Later, it will be also

referred to as the projected tensor SVD of
ˆA with threshold 𝜏 . The following theorem discusses the choice of sample

probability and threshold 𝜏 , such that the error ratio

| |A− ˆA |·|≥𝜏 | |𝐹
| |A | |𝐹 is bounded.

TheoremA 2 (Theorem 2 in the main text). LetA ∈ {0, 1}𝑑1×𝑑2×···×𝑑𝑁 . Suppose thatA can be well approximated by

its 𝑟 -rank tensor SVD A𝑟 . Using the subsampling scheme defined in Eq. 10 with the sample probability 𝑝 ≥ max{0.22, 𝑝1 :=

𝑙1𝐶0

(𝜖 | |A | |𝐹 )2
, 𝑝2 :=

𝑟𝐶0

(𝜖 | |A | |𝐹 )2
, 𝑝3 :=

√
2𝑟𝐶0

𝜖1𝜖 | |A | |𝐹 }, with 𝐶0 = 8

(
log( 2𝑁

𝑁0

)∑𝑁
𝑘=1

𝑑𝑘 + log
2

𝛿

)
, 𝑁0 = log

3

2
, where 𝑙1 denotes

the largest index of singular values of tensor ˆA with 𝜎𝑙1 ≥ 𝜏 , and choosing the threshold as 0 < 𝜏 ≤
√

2𝐶0

𝑝𝜖
, then the original

tensor A can be reconstructed from the projected tensor SVD of ˆA. The error satisfies | |A − ˆA | · | ≥𝜏 | |𝐹 ≤ 𝜖 | |A||𝐹 with

probability at least 1−𝛿 , where 𝜖 is a function of 𝜖 and 𝜖1. Especially, 𝜖 together with 𝑝1 and 𝑝2 determine the norm of noise

tensor and 𝜖1 together with 𝑝3 control the value of ˆA’s singular values that are located outside the projection boundary.

Proof. Suppose tensor A can be well approximated by its 𝑟 -rank tensor SVD, in a sense that | |A −A𝑟 | | ≤ 𝜖0 | |A||𝐹
for some small 𝜖0 > 0. Define the threshold as 𝜏 := 𝜅 | | ˆA||𝐹 > 0 for some 𝜅 > 0. Let 𝑙1 denote the largest index of

singular values of tensor
ˆA with 𝜎𝑙1 ≥ 𝜅 | | ˆA||𝐹 , and let 𝑙2 denote the smallest index of singular values of tensor

ˆA with

𝜎𝑙2 ≤ −𝜅 | | ˆA||𝐹 . If the threshold 𝜏 is large enough, we only need to consider the case 𝑙1 ≪ 𝑙2. Moreover, we have the

following constrain for 𝑙1 and 𝜅:

𝑙1 · 𝜎2

𝑙1
≤ || ˆA𝑙1 | |

2

𝐹 ≤ || ˆA||2𝐹 ⇒ 𝑙1 · 𝜅2 ≤ 1. (16)

Suppose that the tensor
ˆA can be well approximated by the tensor SVD with rank 𝑅 which is written as

ˆA𝑅 . Note

that the rank 𝑅 can be much larger than 𝑟 . We first bound | |A − ˆA | · | ≥𝜏 | |𝐹 as follows

| |A − ˆA | · | ≥𝜏 | |𝐹 ≈ ||A − ˆA [0,𝑙1 ]∪[𝑙2,𝑅 ] | |𝐹 = | |A − ( ˆA𝑅 − ˆA𝑙2 + ˆA𝑙1 ) | |𝐹
≤ ||A − ˆA𝑙1 | |𝐹 + || ˆA𝑙2 − ˆA𝑅 | |𝐹 = | |A − ˆA𝑙1 | |𝐹 + ||A − A + ˆA𝑙2 − ˆA𝑅 | |𝐹
≤ ||A − ˆA𝑙1 | |𝐹 + ||A − ˆA𝑅 | |𝐹 + ||A − ˆA𝑙2 | |𝐹
≤ 3| |A − ˆA𝑙1 | |𝐹 .
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Assume 𝑙1 ≪ 𝑙2 and we only distinguish two cases: 𝑙2 ≫ 𝑙1 ≥ 𝑟 and 𝑙1 < 𝑟 ≪ 𝑙2.

Suppose 𝑙1 ≥ 𝑟 , we have

| |A − ˆA | · | ≥𝜏 | |𝐹 ≤ 3| |A − ˆA𝑙1 | |𝐹
(1)
≤ 3(2| |A − A𝑙1 | |𝐹 + 2

√︃
| |A𝑙1 | |𝐹 | |A − A𝑙1 | |𝐹 + 2

√︃
| |N𝑙1 | |𝐹 | |A𝑙1 | |𝐹 + ||N𝑙1 | |𝐹 )

(2)
≤ 3(2| |A − A𝑟 | |𝐹 + 2

√︃
| |A||𝐹 | |A − A𝑙1 | |𝐹 + 2

√︃
| |N𝑙1 | |𝐹 | |A||𝐹 + ||N𝑙1 | |𝐹 ),

where inequality (1) is given by Eq. 9 and (2) uses | |A𝑙1 | |𝐹 ≤ ||A||𝐹 .
According to Lemma A 7 if we want the Frobenius norm | |N𝑙1 | |𝐹 to be bounded by 𝜖 | |A||𝐹 with 𝜖 > 0, then

the sample probability should satisfy 𝑝 ≥ max{0.22, 𝑝1 :=
𝑙1 𝐶0

(𝜖 | |A | |𝐹 )2
} where the constant is defined as 𝐶0 :=

8

(
log( 2𝑁

𝑁0

)
𝑁∑
𝑘=1

𝑑𝑘 + log
2

𝛿

)
(see Lemma A 7). Finally, under this sample condition we have | |A − ˆA | · | ≥𝜏 | |𝐹 ≤ 3(2𝜖0 +

2

√
𝜖0 + 2

√
𝜖 + 𝜖) | |A||𝐹 for 𝑙1 ≥ 𝑟 .

Before considering the case 𝑙1 < 𝑟 ≪ 𝑙2 we first estimate the Frobenius norm of subsampled tensor. | | ˆA||2
𝐹
can

be written as a sum of random variables 𝑋𝑙 := ˆA2

𝑙
for 𝑙 = 1, · · · , 𝑑1𝑑2 · · ·𝑑𝑁 using a bijection of indices, namely

𝑋 := | | ˆA||2
𝐹
=

∑
𝑙 𝑋𝑙 . Moreover, E[𝑋𝑙 ] = 1

𝑝A
2

𝑙
and E[𝑋 ] = 1

𝑝 | |A||2
𝐹
. According to the Chernoff bound

Pr( |𝑋 − E[𝑋 ] | ≥ 𝛿E[𝑋 ]) ≤ 2e
− E[𝑋 ]𝛿2

3 for all 0 < 𝛿 < 1, (17)

we have Pr( | | ˆA||2
𝐹

≥ 1+𝛿
𝑝 | |A||2

𝐹
) ≤ 2e

−
| |A||2

𝐹
𝛿2

3𝑝
for 𝛿 ∈ (0, 1). Hence | | ˆA||𝐹 ≤

√︃
2

𝑝 | |A||𝐹 is satisfied with high

probability.

In the following, we study the case 𝑙1 < 𝑟 ≪ 𝑙2 and fix the sample probability 𝑝 temporarily. It gives

| |A − ˆA | · | ≥𝜏 | |𝐹 ≤ 3| |A − ˆA𝑙1 | |𝐹 ≤ 3( | |A − ˆA𝑟 | |𝐹 + || ˆA𝑟 − ˆA𝑙1 | |𝐹 )
(1)
≤ 3(2| |A − A𝑟 | |𝐹 + 2

√︁
| |A𝑟 | |𝐹 | |A − A𝑟 | |𝐹 + 2

√︁
| |N𝑟 | |𝐹 | |A𝑟 | |𝐹 + ||N𝑟 | |𝐹 + || ˆA𝑟 − ˆA𝑙1 | |𝐹 )

(2)
≤ 3(2| |A − A𝑟 | |𝐹 + 2

√︁
| |A||𝐹 | |A − A𝑟 | |𝐹 + 2

√︁
| |N𝑟 | |𝐹 | |A||𝐹 + ||N𝑟 | |𝐹 +

√︄
2𝑟

𝑝
𝜅 | |A||𝐹︸          ︷︷          ︸
(★)

), (18)

where inequality (1) is given by Eq. 9 and (2) uses the following estimation

| | ˆA𝑟 − ˆA𝑙1 | |𝐹 ≤
√︁
𝑟 − 𝑙1𝜏 ≤

√
𝑟𝜏 =

√
𝑟𝜅 | | ˆA||𝐹 ≤

√︄
2𝑟

𝑝
𝜅 | |A||𝐹 .

Similarly, if we want the Frobenius norm | |N𝑟 | |𝐹 to be bounded by 𝜖 | |A||𝐹 with 𝜖 > 0, then the sample probability

should satisfy 𝑝 ≥ max{0.22, 𝑝1 :=
𝑟 𝐶0

(𝜖 | |A | |𝐹 )2
} according to Lemma A 7. In order to choose 𝜅, we fix the sample

probability 𝑝 temporarily and use the constraint Eq. 16. It gives

𝑙1 < 𝑟 =
𝑝 (𝜖 | |A||𝐹 )2

𝐶0

⇒ 𝜅2 ≤ 𝐶0

𝑝 (𝜖 | |A||𝐹 )2
. (19)

We can further control the sum of singular values that are located outside the projection boundary by requiring

(★) ≤ 𝜖1 | |A||𝐹 for some small 𝜖1 > 0 in Eq. 18. Plug the above inequality of 𝜅 into the (★) term we obtain another

Manuscript submitted to ACM



Quantum Machine Learning Algorithm for Knowledge Graphs 23

condition for the sample probability √︄
2𝑟

𝑝
𝜅 ≤ 𝜖1 ⇒ 𝑝 ≥

√
2𝑟𝐶0

𝜖1𝜖 | |A||𝐹
:= 𝑝3 . (20)

Therefore, in the case 𝑙1 < 𝑟 ≪ 𝑙2 if 𝑝 ≥ max{0.22, 𝑝2 =
𝑟𝐶0

(𝜖 | |A | |𝐹 )2
, 𝑝3 =

√
2𝑟𝐶0

𝜖1𝜖 | |A | |𝐹 } we have | |A − ˆA | · | ≥𝜏 | |𝐹 ≤ 𝜖 | |A||𝐹 ,
where 𝜖 := 3(2𝜖0 + 2

√
𝜖0 + 2

√
𝜖 + 𝜖 + 𝜖1).

In summary, combine two situations we have | |A − ˆA | · | ≥𝜏 | |𝐹 ≤ 𝜖 | |A||𝐹 , where 𝜖 := 3(2𝜖0 + 2

√
𝜖0 + 2

√
𝜖 + 𝜖 + 𝜖1) if

the sample probability is chosen as

𝑝 ≥ max{0.22, 𝑝1 =
𝑙1𝐶0

(𝜖 | |A||𝐹 )2
, 𝑝2 =

𝑟𝐶0

(𝜖 | |A||𝐹 )2
, 𝑝3 =

√
2𝑟𝐶0

𝜖1𝜖 | |A||𝐹
}.

Moreover, the threshold can be determined from the following approximation after choosing the sample probability:

𝜏 = 𝜅 | | ˆA||𝐹 ≤
√︄

𝐶0

𝑝𝜖2

| | ˆA||𝐹
| |A||𝐹

≤
√

2𝐶0

𝑝𝜖
,

where the inequality is derived by using Eq. 19 and | | ˆA||𝐹 ≤
√︃

2

𝑝 | |A||𝐹 .

The above estimation on the error bound in the case of projected tensor SVD is crucial for the quantum algorithm

since quantum singular value projection depends only on the positive threshold defined for the singular values.

A.3 Data Structure

Theorem A 3. [30] Let x ∈ R𝑅 be a real-valued vector. The quantum state |𝑥⟩ = 1

| |x | |2
𝑅∑
𝑖=1

𝑥𝑖 |𝑖⟩ can be prepared using

⌈log
2
𝑅⌉ qubits in time O(log

2
𝑅).

Theorem A 3 claims that there exist a classical memory structure and a quantum algorithm which can load classical

data into a quantum state with acceleration. Figure 5 illustrates a simple example. Given an 𝑅 = 4 dimensional real-

valued vector, the quantum state |𝑥⟩ = 𝑥1 |00⟩ + 𝑥2 |01⟩ + 𝑥3 |10⟩ + 𝑥4 |11⟩ can be prepared by querying the classical

memory structure and applying 3 controlled rotations.

Let us assume that x is normalized, namely | |x| |2 = 1. The quantum state |𝑥⟩ is created from the initial state |0⟩ |0⟩
by querying the memory structure from the root to the leaf. The first rotation is applied on the first qubit, giving

(cos𝜃1 |0⟩ + sin𝜃1 |1⟩) |0⟩ = (
√︃
𝑥2

1
+ 𝑥2

2
|0⟩ +

√︃
𝑥2

3
+ 𝑥2

4
|1⟩) |0⟩ ,

where 𝜃1 := tan
−1

√︂
𝑥2

3
+𝑥2

4

𝑥2

1
+𝑥2

2

. The second rotation is applied on the second qubit conditioned on the state of qubit 1. It

gives √︃
𝑥2

1
+ 𝑥2

2
|0⟩ 1√︃

𝑥2

1
+ 𝑥2

2

( |𝑥1 | |0⟩ + |𝑥2 | |1⟩) +
√︃
𝑥2

3
+ 𝑥2

4
|1⟩ 1√︃

𝑥2

3
+ 𝑥2

4

( |𝑥3 | |0⟩ + |𝑥4 | |1⟩).

The last rotation loads the signs of coefficients conditioned on qubits 1 and 2. In general, an 𝑅-dimensional real-valued

vector needs to be stored in a classical memory structure with ⌈log
2
𝑅⌉ + 1 layers. The data vector can be loaded into a

quantum state using O(log
2
𝑅) non-trivial controlled rotations.

The above simple example of quantum Random Access Memory for generating quantum state from a real-valued

vector can be generalized to quantum access of other more complicated data structures, e.g., matrices, tensors.
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| |x| |2

𝑥2

1
+ 𝑥2

2

𝑥2

1

sgn(𝑥1)

𝑥2

2

sgn(𝑥2)

𝑥2

3
+ 𝑥2

4

𝑥2

3

sgn(𝑥3)

𝑥2

4

sgn(𝑥4)

Fig. 5. Classical memory structure with quantum access for creating the quantum state |𝑥 ⟩ = 𝑥1 |00⟩ + 𝑥2 |01⟩ + 𝑥3 |10⟩ + 𝑥4 |11⟩.

A.4 Simulation of the unitary operator e
−𝑖𝑡𝜌

𝜒†𝜒

Before proving Lemma A 9 of unitary operator simulation in the main text, we give the following auxiliary Lemma. The

difficulty of simulating a unitary operator e
−𝑖𝜌𝑡

up to time 𝑡 is to efficiently exponentiate the density matrix 𝜌 . In [23],

Lloyd suggested an efficient algorithm for Hamiltonian simulation using a tensor product structure. In particular, the

unitary operator e
−𝑖𝜌Δ𝑡

with short simulation time Δ𝑡 can be constructed via a simple swap operator.

Lemma A 8. Let 𝜌 and 𝜎 be density matrices, and 𝑆 a swap operator such that 𝑆 |𝑥⟩ |𝑦⟩ = |𝑦⟩ |𝑥⟩. Then for an infinitesimal

simulation step Δ𝑡 we have e
−𝑖𝜌Δ𝑡𝜎e

𝑖𝜌Δ𝑡 = tr1{e−𝑖𝑆Δ𝑡 𝜌 ⊗ 𝜎e
𝑖𝑆Δ𝑡 } up to the first order of Δ𝑡 , where tr1 is a partial trace

applied on the first subsystem of the tensor product structure.

Proof. First note that density matrices 𝜌 and 𝜎 can be written in the eigenbasis as 𝜌 =
∑
𝑖
|𝜌𝑖 ⟩ ⟨𝜌𝑖 | and 𝜎 =

∑
𝑗
|𝜎 𝑗 ⟩ ⟨𝜎 𝑗 |.

Moreover, for Δ𝑡 → 0 we have approximations e
−𝑖𝑆Δ𝑡 ≈ cosΔ𝑡 𝐼 − 𝑖 sinΔ𝑡 𝑆 and e

𝑖𝑆Δ𝑡 ≈ cosΔ𝑡 𝐼 + 𝑖 sinΔ𝑡 𝑆 , where 𝐼

denotes the identity operator.

Hence

tr1{e−𝑖𝑆Δ𝑡 𝜌 ⊗ 𝜎e
𝑖𝑆Δ𝑡 } =tr1{(cosΔ𝑡 𝐼 − 𝑖 sinΔ𝑡 𝑆) (

∑︁
𝑖 𝑗

|𝜌𝑖 ⟩ |𝜎 𝑗 ⟩ ⟨𝜌𝑖 | ⟨𝜎 𝑗 |) (cosΔ𝑡 𝐼 + 𝑖 sinΔ𝑡 𝑆)}

=tr1{
∑︁
𝑖 𝑗

[cos
2 Δ𝑡 |𝜌𝑖 ⟩ |𝜎 𝑗 ⟩ ⟨𝜌𝑖 | ⟨𝜎 𝑗 | − 𝑖 sinΔ𝑡 cosΔ𝑡𝑆 |𝜌𝑖 ⟩ |𝜎 𝑗 ⟩ ⟨𝜌𝑖 | ⟨𝜎 𝑗 |

+ 𝑖 cosΔ𝑡 sinΔ𝑡 |𝜌𝑖 ⟩ |𝜎 𝑗 ⟩ ⟨𝜌𝑖 | ⟨𝜎 𝑗 | 𝑆† + sin
2 Δ𝑡𝑆 |𝜌𝑖 ⟩ |𝜎 𝑗 ⟩ ⟨𝜌𝑖 | ⟨𝜎 𝑗 | 𝑆†]}

Recall that 𝑆 |𝜌𝑖 ⟩ |𝜎 𝑗 ⟩ = |𝜎 𝑗 ⟩ |𝜌𝑖 ⟩ and ⟨𝜌𝑖 | ⟨𝜎 𝑗 | 𝑆† = ⟨𝜎 𝑗 | ⟨𝜌𝑖 |. Applying the swap operator 𝑆 gives

tr1{e−𝑖𝑆Δ𝑡 𝜌 ⊗ 𝜎e
𝑖𝑆Δ𝑡 } ≈ 𝜎 − 𝑖Δ𝑡 [

∑︁
𝑖 𝑗

⟨𝜌𝑖 |𝜎 𝑗 ⟩ |𝜌𝑖 ⟩ ⟨𝜎 𝑗 | −
∑︁
𝑖 𝑗

⟨𝜎 𝑗 |𝜌𝑖 ⟩ |𝜎 𝑗 ⟩ ⟨𝜌𝑖 |] + O(Δ𝑡2),

where we used cosΔ𝑡 ≈ 1 and sinΔ𝑡 ≈ Δ𝑡 as Δ𝑡 → 0. The commutator of two operators is defined as

[𝜌, 𝜎] := 𝜌𝜎 − 𝜎𝜌 =
∑︁
𝑖 𝑗

⟨𝜌𝑖 |𝜎 𝑗 ⟩ |𝜌𝑖 ⟩ ⟨𝜎 𝑗 | −
∑︁
𝑖 𝑗

⟨𝜎 𝑗 |𝜌𝑖 ⟩ |𝜎 𝑗 ⟩ ⟨𝜌𝑖 |

and we finally have

tr1{e−𝑖𝑆Δ𝑡 𝜌 ⊗ 𝜎e
𝑖𝑆Δ𝑡 } = 𝜎 − 𝑖Δ𝑡 [𝜌, 𝜎] + O(Δ𝑡2). (21)
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On the other hand, applying the limits lim

Δ𝑡→0

e
−𝑖𝜌Δ𝑡 = 𝐼 − 𝑖𝜌Δ𝑡 and lim

Δ𝑡→0

e
𝑖𝜌Δ𝑡 = 𝐼 + 𝑖𝜌Δ𝑡 we can derive

e
−𝑖𝜌Δ𝑡𝜎e

𝑖𝜌Δ𝑡 ≈ (𝐼 − 𝑖Δ𝑡
∑︁
𝑖

|𝜌𝑖 ⟩ ⟨𝜌𝑖 |)
∑︁
𝑗

|𝜎 𝑗 ⟩ ⟨𝜎 𝑗 | (𝐼 + 𝑖Δ𝑡
∑︁
𝑖

|𝜌𝑖 ⟩ ⟨𝜌𝑖 |)

=𝜎 − 𝑖Δ𝑡 [𝜌, 𝜎] + O(Δ𝑡2).

In summary, we have e
−𝑖𝜌Δ𝑡𝜎e

𝑖𝜌Δ𝑡 = tr1{e−𝑖𝑆Δ𝑡 𝜌 ⊗ 𝜎e
𝑖𝑆Δ𝑡 } up to th first order of Δ𝑡 . The above proof indicates

that we can construct the unitary operator e
−𝑖𝜌𝑡

and act on the density 𝜎 by repeatedly applying simple operations

e
−𝑖𝑆Δ𝑡 ≈ 𝐼 − 𝑖𝑆Δ𝑡 on the tensor product state 𝜌 ⊗ 𝜎 in 𝑛 = 𝑡

Δ𝑡 steps.

Lemma A 9 (Lemma 3 in the main text). Unitary operator e
−𝑖𝑡𝜌

𝜒†𝜒 can be applied to any quantum state, where

𝜌𝜒†𝜒 :=
𝜌
𝜒†𝜒
𝑑2𝑑3

, up to simulation time 𝑡 . The total number of steps for simulation is O( 𝑡2

𝜖 𝑇𝜌 ), where 𝜖 is the desired accuracy,
and 𝑇𝜌 is the time for accessing the density matrix.

Proof. The proof uses the dense matrix exponentiation method proposed in [32] which was developed from [23].

Recall that 𝜌𝜒†𝜒 =
∑

𝑖2𝑖3𝑖
′
2
𝑖′
3

C𝑖2𝑖3𝑖′
2
𝑖′
3

|𝑖2𝑖3⟩ ⟨𝑖 ′
2
𝑖 ′
3
|, where C𝑖2𝑖3𝑖′

2
𝑖′
3

=
∑
𝑖1

𝜒
†
𝑖1,𝑖2𝑖3

𝜒𝑖1,𝑖′
2
𝑖′
3

. For the sake of simplicity, we rewrite

𝜌𝜒†𝜒 as 𝐴 ∈ R𝑁 2×𝑁 2

, where 𝑁 := 𝑑2𝑑3. Suppose that the unitary operator needs to be applied on the quantum state |𝑥⟩
whose density matrix reads 𝜎 := |𝑥⟩ ⟨𝑥 |. Then follow the method in [32], we first create a modified swap operator

𝑆𝐴 =

𝑁∑︁
𝑗,𝑘=1

𝐴 𝑗𝑘 |𝑘⟩ ⟨ 𝑗 | ⊗ | 𝑗⟩ ⟨𝑘 | ,

and another auxiliary density matrix 𝜇 = |®1⟩ ⟨®1|, with |®1⟩ := 1√
𝑁

𝑁∑
𝑘=1

|𝑘⟩. Consider the evolution of the system 𝜇 ⊗ 𝜎

under the unitary operator e
−𝑖𝑆𝐴Δ𝑡

for a small step Δ𝑡 . With Lemma A 8 it can be shown that

tr1{e−𝑖𝑆𝐴Δ𝑡 𝜇 ⊗ 𝜎e
𝑖𝑆𝐴Δ𝑡 } ≈ e

−𝑖 𝐴
𝑁
Δ𝑡𝜎e

𝑖 𝐴
𝑁
Δ𝑡 .

Moreover, repeated applications of e
−𝑖𝑆𝐴Δ𝑡

, say 𝑛 times with 𝑡 := 𝑛Δ𝑡 , on the bigger system 𝜇 ⊗ 𝜎 can give e
−𝑖 𝐴

𝑁
𝑡𝜎e

𝑖 𝐴
𝑁
𝑡

with is the density matrix of the quantum state e
−𝑖 𝐴

𝑁
𝑡 |𝑥⟩. In other words, we can simulate the unitary operator e

−𝑖𝑡𝜌
𝜒†𝜒

with 𝜌𝜒†𝜒 :=
𝜌
𝜒†𝜒
𝑑2𝑑3

.

Furthermore, [32] shows that given 𝑡 and the required accuracy 𝜖 , the step size Δ𝑡 should be small enough, such

that 𝑛 = O( 𝑡2

𝜖 ). In addition, the quantum access for obtaining the density 𝜌𝜒†𝜒 and creating the modified swap

operator requires 𝑇𝜌 = O(polylog(𝑑1𝑑2𝑑3)) steps. In summary, the total run time for simulating e
−𝑖𝑡𝜌

𝜒†𝜒 |𝑥⟩ is 𝑛𝑇𝜌 =

O( 𝑡2

𝜖 polylog(𝑑1𝑑2𝑑3)).
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