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Abstract. A number of backpropagation-based approaches such as De-
ConvNets, vanilla Gradient Visualization and Guided Backpropagation
have been proposed to better understand individual decisions of deep
convolutional neural networks. The saliency maps produced by them
are proven to be non-discriminative. Recently, the Layer-wise Relevance
Propagation (LRP) approach was proposed to explain the classification
decisions of rectifier neural networks. In this work, we evaluate the dis-
criminativeness of the generated explanations and analyze the theoretical
foundation of LRP, i.e. Deep Taylor Decomposition. The experiments
and analysis conclude that the explanations generated by LRP are not
class-discriminative. Based on LRP, we propose Contrastive Layer-wise
Relevance Propagation (CLRP), which is capable of producing instance-
specific, class-discriminative, pixel-wise explanations. In the experiments,
we use the CLRP to explain the decisions and understand the difference
between neurons in individual classification decisions. We also evaluate
the explanations quantitatively with a Pointing Game and an ablation
study. Both qualitative and quantitative evaluations show that the CLRP
generates better explanations than the LRP.

1 Introduction

Deep convolutional neural networks (DCNNs) achieve start-of-the-art perfor-
mance on many tasks, such as visual object recognition[1,2,3], and object detection[4,5].
However, since they lack transparency, they are considered as ”black box” so-
lutions. Recently, research on explainable deep learning has received increased
attention: Many approaches have been proposed to crack the ”black box”. Some
of them aim to interpret the components of a deep-architecture model and under-
stand the image representations extracted from deep convolutional architectures
[6,7,8]. Examples are Activation Maximization [9,10], DeConvNets Visualization
[11]. Others focus on explaining the individual classification decisions. Exam-
ples are Prediction Difference Analysis [12,13], Guided Backpropagation [10,14],
Layer-wise Relevance Propagation (LRP) [15,16], Class Activation Mapping
[17,18] and Local Interpretable Model-agnostic Explanations [19,20].

More concretely, the models in [21,17] were originally proposed to detect
object only using category labels. They work by producing saliency maps of
objects corresponding to the category labels. Their produced saliency maps can
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also explain the classification decisions to some degree. However, the approaches
can only work on the model with a specific architecture. For instance, they might
require a fully convolutional layer followed by a max-pooling layer, a global
average pooling layer or an aggregation layer, before a final softmax output
layer. The requirement is not held in most off-the-shelf models e.g., in [1,2]. The
perturbation methods [19,20,12] require no specific architecture. For a single
input image, however, they require many instances of forward inference to find
the corresponding classification explanation, which is computationally expensive.

The backpropagation-based approaches [10,14,15] propagate a signal from
the output neuron backward through the layers to the input space in a single
pass, which is computationally efficient compared to the perturbation meth-
ods. They can also be applied to the off-the-shelf models. In this paper, we
focus on the backpropagation approaches. The outputs of the backpropagation
approaches are instance-specific because these approaches leverage the instance-
specific structure information (ISSInfo). The ISSInfo, equivalent to bottleneck
information in [22], consist of selected information extracted by the forward
inference, i.e., the Pooling switches and ReLU masks. With the ISSInfo, the
backpropagation approaches can generate instance-specific explanations. A note
on terminology: although the terms ”sensitivity map”, ”saliency map”, ”pixel
attribution map” and ”explanation heatmap” may have different meanings in
different contexts, in this paper, we do not distinguish them and use the term
”saliency map” and ”explanation” interchangeably.

The primal backpropagation-based approaches, e.g., the vanilla Gradient
Visualization [10] and the Guided Backpropagation [14] are proven to be inappro-
priate to study the neurons of networks because they produce non-discriminative
saliency maps [22]. The saliency maps generated by them mainly depend on
ISSInfo instead of the neuron-specific information. In other words, the generated
saliency maps are not class-discriminative with respect to class-specific neurons
in output layer. The saliency maps are selective of any recognizable foreground
object in the image [22]. Furthermore, the approaches cannot be applied to
understand neurons in intermediate layers of DCNNs, either. In [11,23], the
differences between neurons of an intermediate layer are demonstrated by a large
dataset. The neurons are often activated by certain specific patterns. However,
the difference between single neurons in an individual classification decision has
not been explored yet. In this paper, we will also shed new light on this topic.

The recently proposed Layer-wise Relevance Propagation (LRP) approach is
proven to outperform the gradient-based approaches [16]. Apart from explaining
image classifications[24,16], the LRP is also applied to explain the classifications
and predictions in other tasks [25,26]. However, the explanations generated by
the approach has not been fully verified. We summarise our three-fold contribu-
tions as follows:

1 We first evaluate the explanations generated by LRP for individual classi-
fication decisions. Then, we analyze the theoretical foundation of LRP, i.e.,
Deep Taylor Decomposition and shed new insight on LRP.
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2 We propose Contrastive Layer-wise Relevance Propagation (CLRP). To gen-
erate class-discriminative explanations, we propose two ways to model the
contrastive signal (i.e., an opposite visual concept). For individual classifica-
tion decisions, we illustrate explanations of the decisions and the difference
between neuron activations using the proposed approach.

3 We build a GPU implementation of LRP and CLRP using Pytorch Frame-
work, which alleviates the inefficiency problem addressed in [27,13].

Related work is reviewed in the next section. Section 3 analyzes LRP the-
oretically and experimentally. In Section 4, the proposed approach CLRP is
introduced. Section 5 shows experimental results to evaluate the CLRP qualita-
tively and quantitatively on two tasks, namely, explaining the image classification
decisions and understanding the difference of neuron activations in single forward
inference. The last section contains conclusions and discusses future work.

2 Related Work

The DeConvNets were originally proposed for unsupervised feature learning
tasks [28]. Later they were applied to visualize units in convolutional networks
[11]. The DeConvNets maps the feature activity to input space using ISSInfo and
the weight parameters of the forward pass. [10] proposed identifying the vanilla
gradients of the output with respect to input variables are their relevance. The
work also showed its relation to the DeConvNets. They use the ISSInfo in the
same way except for the handling of rectified linear units (ReLUs) activation
function. The Guided Backpropagation [14] combine the two approaches to
visualize the units in higher layers.

The paper [15] propose LRP to generate the explanations for classification
decisions. The LRP propagates the class-specific score layer by layer until to
input space. The different propagation rules are applied according to the domain
of the activation values. [16] proved that the Taylor Expansions of the function
at the different points result in the different propagation rules. Recently, one of
the propagation rules in LRP, z -rule, has been proven to be equivalent to the
vanilla gradients (saliency map in [10]) multiplied elementwise with the input
[29]. The vanilla Gradient Visualization and the Guided Backpropagation are
shown to be not class-discriminative in [22]. This paper rethinks the LRP and
evaluates the explanations generated by the approach.

Existing work that is based on discriminative and pixel-wise explanations are
[30,27,18]. The work Guided-CAM [18] combines the low-resolution map of CAM
and the pixel-wise map of Guided Backpropagation to generate a pixel-wise and
class-discriminative explanation. To localize the most relevant neurons in the
network, a biologically inspired attention model is proposed in [31]. The work
uses a top-down (from the output layer to the intermediate layers) Winner-Take-
All process to generate binary attention maps. The work [27] formulate the top-
down attention of a CNN classifier as a probabilistic Winner-Take-All process.
The work also uses a contrastive top-down attention formulation to enhance the
discriminativeness of the attention maps. Based on their work and the LRP,
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we propose Contrastive Layer-wise Relevance Propagation (CLRP) to produce
class-discriminative and pixel-wise explanations. Another publication related to
our approach is [30], which is able to produce class-discriminative attention
maps. While the work [30] requires modifying the traditional CNNs by adding
extra feedback layers and optimizing the layers during the backpropagation, our
proposed methods can be applied to all exiting CNNs without any modification
and further optimization.

3 Rethinking Layer-wise Relevance Propagation

Each neuron in DCNNs represents a nonliear function XL+1
i = φ(XLWL

i +bLi ),

where φ is an activation function and bLi is a bias for the neuron XL+1
i . The

inputs of the nonliear function corresponding to a neuron are the activation
values of the previous layer Xi or the raw input of the network. The output of
the function are the activation values of the neuron XL+1

i . The whole network
are composed of the nested nonlinear functions.

To identify the relevance of each input variables, the LRP propagates the
activation value from a single class-specific neuron back into the input space,
layer by layer. The logit before softmax normalization is taken, as explained
in [10,15]. In each layer of the backward pass, given the relevance score RL+1

of the neurons XL+1, the relevance RLi of the neuron XL
i are computed by

redistributing the relevance score using local redistribution rules. The most often
used rules are the z+-rule and the zβ-rule, which are defined as follows:

z+-rule: RLi =
∑

j

xiw
+
ij∑

i′ xi′w
+
i′j

RL+1
j

zβ-rule: RLi =
∑

j

xiwij − liw+
ij − hiw−ij∑

i′ xi′wi′j − li′w+
i′j − hi′w−i′j

RL+1
j

(1)

where wij connecting XL
i and XL+1

j is a parameter in L-th layer, w+
ij = wij ∗

1wij>0 and w−ij = wij ∗ 1wij<0, and the interval [l, h] is the domain of the
activation value xi.

3.1 Evaluation of the Explanations Generated by the LRP

The explanations generated by LRP are known to be instance-specific. However,
the discriminativeness of the explanations has not been evaluated yet. Ideally,
the visualized objects in the explanation should correspond to the class the class-
specific neuron represents. We evaluate the explanations generated by LRP on
the off-the-shelf models from torchvision, specifically, AlexNet [1], VGG16 [2]
and GoogLeNet [3] pre-trained on the ImageNet dataset [32].

The experiment settings are similar to [16]. The zβ-rule is applied to the
first convolution layer. For all higher convolutional layers and fully-connected
layers, the z+-rule is applied. In the MaxPooling layers, the relevance is only
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(a) The explanations generated by LRP on AlexNet.

(b) The explanations generated by LRP on VGG16 Network.

(c) The explanations generated by LRP on GoogLeNet.

Fig. 1: The images from validation datasets of ImageNet are classified using
the off-the-shelf models pre-trained on the ImageNet. The classifications of the
images are explained by the LRP approach. For each image, we generate four
explanations that correspond to the top-3 predicted classes and a randomly
chosen multiple-classes.
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redistributed to the neuron with the maximal value inside the pooling region,
while it is redistributed evenly to the corresponding neurons in the Average
Pooling layers. The biases and normalization layers are bypassed in the relevance
propagation pass.

The results are shown in figure 1. For each test image, we create four saliency
maps as explanations. The first three explanation maps are generated for top-3
predictions, respectively. The fourth one is created for randomly chosen 10 classes
from the top-100 predicted classes (which ensure that the score to be propagated
is positive). The white text in each explanation map indicates the class the
output neuron represents and the corresponding classification probability. The
explanations generated by AlexNet are blurry due to incomplete learning (due
to the limited expressive power). The explanations of VGG16 classifications are
sharper than the ones created on GoogLenet. The reason is that VGG16 contains
only MaxPooling layers and GoogLenet, by contrast, contains a few average
pooling layers.

The generated explanations are instance-specific, but not class-discriminative.
In other words, they are independent of class information. The explanations for
different target classes, even randomly chosen classes, are almost identical. The
conclusion is consistent with the one summarised in the paper [7,33], namely,
almost all information about input image is contained in the pattern of non-
zero pattern activations, not their precise values. The high similarity of those
explanations resulted from the leverage of the same ISSInfo (see section 3.2).
In summary, the explanations are not class-discriminative. The generated maps
recognize the same foreground objects instead of a class-discriminative one.

3.2 Theoretical Foundation: Deep Taylor Decomposition

Motivated by the divide-and-conquer paradigm, Deep Taylor Decomposition
decomposes a deep neural network (i.e. the nested nonliear functions) iteratively
[16]. The propagation rules of LRP are derivated from Deep Taylor Decompo-
sition of rectifier neuron network. The function represented by a single neuron
is XL+1

j = max(0,XLWL
j + bL+1

j ). The relevance RL+1
j of the neurons XL+1

j

is given. The Deep Taylor Decomposition assumes RL+1
j = max(0,XLWL

j +

bL+1
j ). The function is expanded with Taylor Series at a point Xr

i subjective to

max(0,XrLWL
j + bL+1

j ) = 0. The LRP propagation rules are resulted from the
first degree terms of the expansion.

One may hypothesize that the non-discriminativeness of LRP is caused by
the first-order approximation error in Deep Taylor Decomposition. We proved
that, under the given assumption, the same propagation rules are derived, even
though all higher-order terms are taken into consideration (see the proof in the
supplementary material). Furthermore, we found that the theoretical foundation
provided by the Deep Taylor Decomposition is inappropriate. The assumption
RL+1
j = max(0,XLWL

j + bL+1
j ) = XL+1

j is not held at all the layers except for
the last layer. The assumption indicates that the relevance value is equal to the
activation value for all the neurons, which, we argue, is not true.
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In our opinion, the explanations generated by the LRP result from the
ISSInfo (ReLU masks and Pooling Switches). The activation values of neurons
are required to create explanations using LRP. In the forward pass, the network
output a vector (y1, y2, · · · , ym). In the backward pass, the activation value of
the class y1 is layer-wise backpropagated into input space. In fully connected
layers, only the activated neurons can receive the relevance according to any
LRP propagation rule. In the Maxpooling layers, the backpropagation conducts
an unpooling process, where only the neuron with maximal activations inside the
corresponding pooling region can receive relevance. In the convolutional layer,
only specific part of neurons Rconv1 in feature map have non-zero relevance in the
backward pass. The part of input pixels Pinput live in the convolutional regions
of those neurons (Rconv1). Only the pixels Pinput will receive the propagated
relevance. The pattern of the Pinput is the explanation generated by LRP.

The backward pass for the class y2 is similar to that of y1. The neurons
that receive non-zero relevance are the same as in case of y1, even though
their absolute values may be slightly different. Regardless of the class chosen for
the backpropagation, the neurons of each layer that receive non-zero relevance
stay always the same. In other words, the explanations generated by LRP are
independent of the class category information, i.e., not class-discriminative.

In summary, in deep convolutional rectifier neuron network, the ReLU masks
and Pooling Switches decide the pattern visualized in the explanation, which
is independent of class information. That is the reason why the explanations
generated by LRP on DCNNs are not class-discriminative. The analysis also ex-
plains the non-discriminative explanations generated by other backpropagation
approaches, such as the DeConvNets Visualization [11], The vanilla Gradient
Visualization [10] and the Guided Backpropagation [14].

4 Contrastive Layer-wise Relevance Propagation

Before introducing our CLRP, we first discuss the conservative property in the
LRP. In a DNN, given the input X = {x1, x2, x3, · · · , xn}, the output Y =
{y1, y2, y3, · · · , ym}, the score Syj (activation value) of the neuron yj before
softmax layer, the LRP generate an explanation for the class yj by redistributing
the score Syj layer-wise back to the input space. The assigned relevance values
of the input neurons are R = {r1, r2, r3, · · · , rn}. The conservative property is
defined as follows:

Definition 1. The generated saliency map is conservative if the sum of assigned
relevance values of the input neurons is equal to the score of the class-specific
neuron,

∑n
i=1 ri = Syj .

In this section, we consider redistributing the same score from different
class-specific neurons respectively. The assigned relevance R are different due
to different weight connections. However, the non-zero patterns of those rel-
evance vectors are almost identical, which is why LRP generate almost the
same explanations for different classes. The sum of each relevance vector is
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Fig. 2: The figure shows an overview of our CLRP. For each predicted class, the
approach generates a class-discriminative explanation by comparing two signals.
The blue line means the signal that the predicted class represents. The red line
models a dual concept opposite to the predicted class. The final explanation is
the difference between the two saliency maps that the two signal generate.

equal to the redistributed score according to the conservative property. The
input variables that are discriminative to each target class are a subset of input
neurons, i.e., Xdis ⊂X. The challenge of producing the explanation is to identify
the discriminative pixels Xdis for the corresponding class.

In the explanations of image classification, the pixels on salient edges always
receive higher relevance value than other pixels including all or part of Xdis.
Those pixels with high relevance values are not necessary discriminative to the
corresponding target class. We observe that Xdis receive higher relevance values
than that of the same pixels in explanations for other classes. In other words,
we can identify Xdis by comparing two explanations of two classes. One of the
classes is the target class to be explained. The other class is selected as an
auxiliary to identify Xdis of the target class. To identify Xdis more accurately,
we construct a virtual class instead of selecting another class from the output
layer. We propose two ways to construct the virtual class.

The overview of the CLRP are shown in figure 2. We describe the CLRP
formally as follows. The j−th class-specific neuron yj is connected to input

variables by the weights W = {W 1,W 2, · · · ,WL−1,WL
j } of layers between

them, where WL means the weights connecting the (L − 1)−th layer and the
L−th layer, and WL

j means the weights connecting the (L − 1)−th layer and
the j−th neuron in the L−th layer. The neuron yj models a visual concept O.
For an input example X, the LRP maps the score Syj of the neuron back into
the input space to get relevance vector R = fLRP (X,W , Syj ).

We construct a dual virtual concept O, which models the opposite visual
concept to the concept O. For instance, the concept O models the zebra, and the
constructed dual concept O models the non-zebra. One way to model the O is to
select all classes except for the target class representing O. The concept O is rep-
resented by the selected classes with weights W = {W 1,W 2, · · · ,WL−1,WL

{−j}},
where W {−j} means the weights connected to the output layer excluding the
j−th neuron. E.g. the dashed red lines in figure 2 are connected to all classes
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except for the target class zebra. Next, the score Syj of target class is uniformly
redistributted to other classes. Given the same input example X, the LRP
generates an explanation Rdual = fLRP (X,W , Syj ) for the dual concept. The
Contrastive Layer-wise Relevance Propagation is defined as follows:

RCLRP = max(0, (R−Rdual)) (2)

where the function max(0,X) means replacing the negative elements of X with
zeros. The difference between the two saliency maps cancels the common parts.
Without the dominant common parts, the non-zero elements in RCLRP are the
most relevant pixels Xdis. If the neuron yj lives in an intermediate layer of a
neural network, the constructed RCLRP can be used to understand the role of
the neuron.

Similar to [27], the other way to model the concept O is to negate the weights
Wij . The concept O can be represented by the weights W = {W 1,W 2, · · · ,
WL−1,−1 ∗WL

j }. All the weights are same as in the concept O except that the
weights of the last layer Wij are negated. In the experiments section, we call
the first modeling method CLRP1 and the second one CLRP2. The contrastive
formulation in [27] can be applied to other backpropagation approaches by
normalizing and subtracting two generated saliency maps. However, the nor-
malization strongly depends on the maximal value that could be caused by a
noisy pixel. Based on the conservative property of LRP, the normalization is
avoided in the proposed CLRP.

5 Experiments and Analysis

In this section, we conduct experiments to evaluate our proposed approach. The
first experiment aims to generate class-discriminative explanations for individual
classification decisions. The second experiment evaluates the generated explana-
tions quantitatively on the ILSVRC2012 validation dataset. The discriminative-
ness of the generated explanations is evaluated via a Pointing Game and an
ablation study. The last experiment aims to understand the difference between
neurons in a single classification forward pass.

5.1 Explaining Classification Decisions of DNNs

In this experiment, the LRP, the CLRP1 and the CLRP2 are applied to generate
explanations for different classes. The experiments are conducted on a pre-
trained VGG16 Network [2]. The propagation rules used in each layer are the
same as in the section 3.1. We classify the images of multiple objects. The
explanations are generated for the two most relevant predicted classes, respec-
tively. The figure 3 shows the explanations for the two classes (i.e., Zebra and
African elephant). The explanations generated by the LRP are same for the two
classes. Each generated explanation visualizes both Zebra andAfrican elephant,
which is not class-discriminative. By contrast, both CLRP1 and CLRP2 only
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Fig. 3: The images of multiple objects are classified using VGG16 network pre-
trained on ImageNet. The explanations for the two relevant classes are generated
by LRP and CLRP. The CLRP generates class-discriminative explanations,
while LRP generates almost same explanations.

identify the discriminative pixels related to the corresponding class. For the
target class Zebra, only the pixels on the zebra object are visualized. Even for
the complicated images where a zebra herd and an elephant herd co-exist, the
CLRP methods are still able to find the class-discriminative pixels.

We evaluate the approach with a large number of images with multiple
objects. The explanations generated by CLRP are always class-discriminative,
but not necessarily semantically meaningful for every class. One of the reasons
is that the VGG16 Network is not trained for multi-label classification. Other
reasons could be the incomplete learning and bias in the training dataset [34].

The implementation of the LRP is not trivial. The one provided by their
authors only supports CPU computation. For the VGG16 network, it takes
the 30s to generate one explanation on an Intel Xeon 2.90GHz×6 machine.
The computational expense makes the evaluation of LRP impossible on a large
dataset [27]. We implement a GPU version of the LRP approach, which reduces
the 30s to 0.1824s to generate one explanation on a single NVIDIA Telsa K80
GPU. The implementation alleviates the inefficiency problem addressed in [27,13]
and makes the quantitative evaluation of LRP on a larget dataset possible.

5.2 Evaluating the explanations

In this experiments, we quantitatively evaluate the generated explanations on
the ILSVRC2012 validation dataset containing 50, 000 images. A Pointing Game
and an ablation study are used to evaluate the proposed approach.
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(a) Pointing Accuracy On the AlexNet (b) Pointing Accuracy On the VGG16

Fig. 4: The figure shows the localization ability of the saliency maps generated
by the LRP, the CLRP1, the CLRP2, the vanilla Gradient Visualization and the
Guided Backpropagation. On the pre-trained models, AlexNet and VGG16, the
localization ability is evaluated at different thresholds. The x-axis corresponds
to the threshold that keeps a certain percentage of energy left, and the y-axis
corresponds to the pointing accuracy.

Pointing Game: To evaluate the discriminativeness of saliency maps, the
paper [27] proposes a pointing game. The maximum point on the saliency map is
extracted and evaluated. In case of images with a single object, a hit is counted
if the maximum point lies in the bounding box of the target object, otherwise a
miss is counted. The localization accuracy is measured by Acc = #Hits

#Hits+#Misses .
In case of ILSVRC2012 dataset, the naive pointing at the center of the image
shows surprisingly high accuracy. Based on the reason, we extend the pointing
game into a difficult setting. In the new setting, the first step is to preprocess
the saliency map by simply thresholding so that the foreground area covers p
percent energy out of the whole saliency map (where the energy is the sum of
all pixel values in saliency map). A hit is counted if the remaining foreground
area lies in the bounding box of the target object, otherwise a miss is counted.

The figure 4 show that the localization accuracy of different approaches
in case of different thresholds. With more energy kept, the remained pixels
are less likely to fall into the ground-truth bounding box, and the localization
accuracy is low correspondingly. The CLRP1 and the CLRP2 show constantly
much better pointing accuracy than that of the LRP. The positive results in-
dicate that the pixels that the contrastive backpropagation cancels are on the
cluttered background or non-target objects. The CLRP can focus on the class-
discriminative part, which improves the LRP. The CLRP is also better than other
primal backpropagation-based approaches. One exception is that the Guided
Backpropagation shows a better localization accuracy in VGG16 network in case
of high thresholds. In addition, the localization accuracy of the CLRP1 and the
CLRP2 is similar in the deep VGG16 network, which indicates the equivalence
of the two methods to model the opposite visual concept.
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Table 1: Ablation study on ImagNet Validation dataset. The dropped activation
values after the corresponding ablation are shown in the table.

Random vanilla Gradient[10] Guided BP[14] LRP[15] CLRP1 CLRP2

AlexNet 0.0766 0.1716 0.1843 0.1624 0.2093 0.2030

VGG16 0.0809 0.3760 0.4480 0.3713 0.3844 0.3913

Ablation Study: In the Pointing Game above, we evaluate the discrimina-
tiveness of the explanations according to the localization ability. In this ablation
study, we evaluate the discriminativeness from another perspective. We observe
the changes of activation in case of ablating the found discriminative pixels. The
activation value of the class-specific neuron will drop if the ablated pixels are
discriminative to the corresponding class.

For an individual image classification decision, we first generate a saliency
map for the ground-truth class. We identify the maximum point in the generated
saliency map as the most discriminative position. Then, we ablate the pixel of
the input image at the identified position with a 9 × 9 image patch. The pixel
values of the image patch are the mean value of all the pixel values at the same
position across the whole dataset. We classify the perturbated image and observe
the activation value of the neuron corresponding to the ground-truth class. The
dropped activation value is computed as the difference between the activations
of the neuron before and after the perturbation. The dropped score is averaged
on all the images in the dataset.

The experimental results of different approaches are shown in the table 1.
For the comparison, we also ablate the image with a randomly chosen position.
The random ablation has hardly impact on the output. The saliency maps corre-
sponding to all other approaches find the relevant pixel because the activations
of the class-specific neurons dropped a lot after the corresponding ablation. In
both networks, CLRP1 and CLRP2 show the better scores, which means the
discriminativeness of explanations generated by CLRP is better than that of
the LRP. Again, the Guided Backpropagation shows better score than CLRP.
This ablation study only considers the discriminative of the pixel with maximal
relevance value, which corresponds to a special case in the Pointing Game,
namely, only one pixel with maximal relevance is left after the thresholding. The
two experiments show the consistent result that the Guided Backpropagation is
better than LRP in the special case. We do not report the performance of the
GoogLeNet in the experiments. Our approach shows that the zero-padding oper-
ations of convolutional layers have a big impact on the output of the GoogLeNet
model in torchvision module of Pytorch. The impact leads to a problematic
saliency map (see supplementary material).
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5.3 Understanding the Difference between Neurons

The neurons of DNNs have been studying with their activation values. The
DeConvNets [11] visualize the patterns and collect the images that maximally
activate the neurons, given an image set. The activation maximization method
[9,35] aims to generate an image in input space that maximally activates a single
neuron or a group of neurons. Furthermore, the work [36,23] understand the
semantic concepts of the neurons with an annotated dataset. In this experiment,
we aim to study the difference among neurons in a single classification decision.

The neurons of low layers may have different local receptive fields. The
difference between them could be caused by the different input stimuli. We
visualize high-level concepts learned by the neurons that have the same receptive
fields, e.g., a single neuron in a fully connected layer. For a single test image, the
LRP and the CLRP2 are applied to visualize the stimuli that activate a specific
neuron. We do not use CLRP1 because the opposite visual concept cannot be
modeled by the remaining neurons in the same layer.

In the VGG16 network, we visualize the 8 activated neurons x1−8 from the
fc1 layer. The visualized maps are shown in figure 5. The image is classified
as a toyshop by the VGG16 network. The receptive field (the input image) is
shown in the center, and the 8 explanation maps are shown around it. While
the LRP produces almost identical saliency map for the 8 neurons (in figure 5a),
the CLRP2 gains a meaningful insight about their difference, which shows that
different neurons focus on different parts of images. By comparison (see figure
5b), the neurons x1, x2, x3 in the first row are activated more by the lion, the
gorilla, and the monkey respectively. The neurons x4, x5 in the second row by
the eye of the elephant and the bird respectively. The right-down one x6 by the
panda. The last two neurons x7 and x8 focus on the similar patterns (i.e., the
tiger).

To our knowledge, there is no known work on the difference between neurons
in an individual classification decision and also no evaluation metric. We evaluate
the found difference by an ablation study. More concretely, we first find the
discriminative patch for each neuron (e.g., x1−8) using CLRP2. Then, we ablate
the patch and observe the changes of neuron activations in the forward pass.
The discriminative patch of a neuron is identified by the point with maximal
value in its explanation map created by CLRP2. The 9 × 9 neighboring pixels
around the maximum point are replaced with the values that are mean of pixel
values in the same positions across the whole dataset.

The ablation study results are shown in the figure 5c. The positive value in
the grid of the figure means the decreased activation value, and the negative
ones mean the activations increase after the corresponding ablation. In case of
the ablation corresponding to neuron xi, we see that the activation of xi is
significantly dropped (could become not-activated). The maximal droped values
of each row often occur on the diagonal axis. We also try with other ablation
sizes and other neurons, which shows the similar results. The ablations for the
last two neurons x7 and x8 are same because their explanation maps are similar.
The changes of activations of all other neurons are also the same for the same
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(a) Explanations by LRP (b) Explanations by CLRP (c) Ablation Study

Fig. 5: The figures show explanation maps of neurons in fc1 layers. The
explanations generated by LRP are not discriminative. By contrast, the ones
generated by CLRP explain the difference between the neurons.

ablation. We found that many activated neurons correspond to same explanation
maps.

6 Conclusion

The explanations generated by LRP are evaluated. We find that the explanations
are not class-discriminative. We discuss the theoretical foundation and provide
our justification for the non-discriminativeness. To improve discriminativeness
of the generated explanations, we propose the Contrastive Layer-wise Rele-
vance Propagation. The qualitative and quantitative evaluations confirm that
the CLRP is better than the LRP. We also use the CLRP to shed light on the
role of neurons in DCNNs.

We propose two ways to model the opposite visual concept the class-specific
neuron represents. However, there could be other more appropriate modeling
methods. Even though our approach produces a pixel-wise explanation for the
individual classification decisions, the explanations for similar classes are similar.
The fine-grained discriminativeness are needed to explain the classifications of
the intra-classes. We leave the further exploration in future work.
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SUPPLEMENTARY MATERIAL

Jindong Gu, Yinchong Yang, Volker Tresp

Abstract. This is a supplementary meterial (appendixes) for the paper
. The appendix A provides proofs, detailed derivations for decomposing
rectifier neural networks with higher-order Taylor Decomposition. The
appendix B gives more details about GoogLeNet model from torchvision
module of Pytorch.

A Decomposition of Rectifier Neural Network with
Higher-oder Taylor Expansion

First, we give the detailed derivations of propagation rules resulting from deep
higher-order Taylor decomposition of the neural network. The rules can be ap-
plied to any activation function where a root point exists. In DNNs, the function
of each neuron is the activation of the linear combination of activation values
of the previous layer or input variables. The input of the function f(x) of the
neuron k is x = (x1, x2, x3, · · · , xn). Given a root point xr = (xr1, x

r
2, x

r
3, · · · , xrn)

where f(xr) = 0 of the function, the relevance Rk = f(x) of the neuron k is
decomposed at the root point with higher-order Taylor expansion as follows

Rk =
∑
i(
∂f

∂xi
|x=xr ) ∗ (xi − xri )

︸ ︷︷ ︸
first-order term

+
∑
i

1
2!

∑
j(

∂2f

∂xi∂xj
|x=xr ) ∗ (xi − xri ) ∗ (xj − xrj)

︸ ︷︷ ︸
second-order term

+

∑
i

1
3!

∑
j

∑
m(

∂3f

∂xi∂xj∂xm
|x=xr ) ∗ (xi − xri ) ∗ (xj − xrj) ∗ (xm − xrm)

︸ ︷︷ ︸
third-order term

+

∞∑

n=4

∑
i

1
n!

∑
...
∑

︸ ︷︷ ︸
n-1

(
∂nf

∂xi∂xl1 ...∂xln−1

|x=xr ) ∗ (xi − xri ) ∗
n−1∏

p=1

(xlp − xrlp)

︸ ︷︷ ︸
higher-order terms

The neuron i, which lives in the last layer of the neuron k, receives relevance Rik
from the neuron k. The decomposition of the relevance Rk can be reformulated
as below

Rk =
∑

i

Rik1 +
∑

i

Rik2 +
∑

i

Rik3 +

∞∑

n=4

∑

i

Rikn
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where Rik =
∞∑

n=1

Rikn The relevance Ri of the neuron i is the accumulative sum of

the received relevance from the neurons of the next layer, namely, Ri =
∑m
k=1Rik

where m is the number of neurons of the next layer. The relevance Ri of the
neuron i is

Ri =

m∑

k=1

Rik =

m∑

k=1

(Rik1 +Rik2 +Rik3 +
∞∑

n

Rikn)

=

m∑

k=1

((
∂f

∂xi
|x=xr ) ∗ (xi − xri ) + 1

2!

∑
j(

∂2f

∂xi∂xj
|x=xr ) ∗ (xi − xri ) ∗ (xj − xrj)+

1
3!

∑
j

∑
m(

∂3f

∂xi∂xj∂xm
|x=xr ) ∗ (xi − xri ) ∗ (xj − xrj) ∗ (xm − xrm)+

∞∑

n=4

1
n!

∑
...

∑
︸ ︷︷ ︸

n-1

(
∂nf

∂xi∂xl1 ...∂xln−1

|x=xr ) ∗ (xi − xri ) ∗
n−1∏

p=1

(xlp − xrlp))

Next, we give the detailed derivations of propagation rules resulting from deep
higher-order Taylor decomposition of the rectifier neural network. The relevance
of neurons in the detection layer is given as Rk = max(0,

∑
i xiwik + bk), where

bj < 0. All the rules correspond to different root points where the function is
expanded with higher-order Taylor decomposition. If the root point lives in the
search direction v from the input point x, the root piont is written as xr = x+tv.
We consider two cases separately:

χ1 = {k :
∑

i

xiwik + bk ≤ 0} = {k : Rk = 0}

χ2 = {k :
∑

i

xiwik + bk > 0} = {k : Rk > 0}

In the first case (k ∈ χ1), the data point itself is already the nearest root point
of the function Rk, i.e., xr = x. In the second case (k ∈ χ2), the ith element of
the root point is subject to following equation

xri = xi −
∑
i xi′wi′k + bk∑
i′ vi′wi′k

vi
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In case of the ReLU activation function, the propagation rule resulting from
higher-order Taylor decomposition is as below

Ri =
∑

k∈χ1

(

∞∑

n=1

1
n!

∑
...
∑

︸ ︷︷ ︸
n-1

(
∂nf

∂xi∂xl1 ...∂xln−1

|x=xr ) ∗ (xi − xri ) ∗
n−1∏

p=1

(xlp − xrlp))+

∑
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((
∂f

∂xi
|x=xr ) ∗ (xi − xri ) + 1
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∑
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∂2f

∂xi∂xj
|x=xr ) ∗ (xi − xri ) ∗ (xj − xrj)+

1

3!

∑
j

∑
m(

∂3f

∂xi∂xj∂xm
|x=xr ) ∗ (xi − xri ) ∗ (xj − xrj) ∗ (xm − xrm)+

∞∑

n=4

1
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∑
...

∑
︸ ︷︷ ︸

n-1

(
∂nf

∂xi∂xl1 ...∂xln−1

|x=xr ) ∗ (xi − xri ) ∗
n−1∏

p=1

(xlp − xrlp))

=0 +
∑

k∈χ2

((
∂f

∂xi
|x=xr ) ∗ (xi − xri ) + 0)

=
∑

k∈χ2

∑
i xi′wi′k + bk∑
i′ vi′wi′k

viwik =
∑

k∈χ2

viwik∑
i′ vi′wi′k

Rk

The rule derived from higher-order Taylor decomposition is the same as the one
derived from first-order Taylor approximation. The reason is that the higher-
order terms are zeros in two cases of ReLU function. The expansions at different
root points (i.e. different search directions vi) correspond to the different prop-
agation rules in LRP and Deep Taylor Decomposition, such as w2rule, z-rule,
z+-rule and zβ-rule.

B The MaxPooling Indices of GoogLeNet (inception v3)

We do not report the performance on the GoogLeNet in both the Pointing Game
task and the ablation study. The saliency maps generated by CLRP and LRP
on the GoogLeNet [?] show that the network works in an unexpected way. The
model we use is from torchvision module in Pytorch. After further exploring the
model inception v3, we find that the low performance of GoogLeNet on both
tasks is caused by the first two MaxPooling layers before Inception module.
In the two pooling layers, the pooling indices occur often on the boundary in
the outermost pooling regions. In the backpropagation through the MaxPool-
ing layer, the relevance score is only redistributed to the pixels which achieve
maximal values within a pooling region. Because the pooling indices often occur
on the boundary, the pixels on the boundary receive much relevance score. The
effect can also be seen in the figure 1 by zooming in. Therefore, the saliency
maps from GoogLeNet shows pool localization ability.

We now show more details about the issue. First, we show that explanations
generated by the LRP, and CLRP1 and CLRP2. The GoogLenet Model used in



4 SUPPLEMENTARY MATERIAL

this paper is the inception v3 from torchvision. In the figure 1, the explanation
from the CLRP1 and the CLRP2 focus on the boundary pixels of images. By
zooming in the explanation generated by the LRP, you can also see that the
boundary pixels receive more relevance inside a pooling region. A clear boundary
edge can be seen in the explanations.

Fig. 1: The figure shows two examples generated on the GoogLeNet model. The
three approaches correspond to the LRP, the CLRP1 and the CLRP2. The
classes to be explained in each example are ”alp” and ”mousetrap” respectively.

We investigate the backpropagation process and find that the reason is the
MaxPooling layers in first several building blocks. In the MaxPooling Layers,
the pixels on the boundary are more often to be the maximal value inside
the corresponding pooling region. In the backpropagation unpooling process,
those pixels receives more relevance, which leads to the obvious boundary in the
explanations, in both the LRP and the CLRP.

To show the effect of the MaxPooling layer of the GoogLeNet model in
torchvision, we visualize the pooling indices of randomly chosen feature maps.
In the figure 2, the indices of the first two MaxPooling layers are visualized.
Only the indices corresponding to the boundary of pooling result feature are
visualized. In case of the pooling size (3 × 3), the indices of maximal values of
pooling input should distribute uniformly on the outmost three rows or columns.
However, it is not the case. In most feature maps, the indices lie more often on
the outmost row or column.

We further study the reason for the unexpected effect of pool indices in
MaxPooling layers. The effect that the pooling indices lie more often on the
boundary is caused by the convolutional result from the last layer. We conjecture
that the convolutional result with higher activation value on the boundary is
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Fig. 2: The figure visualizes the pooling indices of the MaxPooling Layers from
the GoogLeNet model. The feature maps are chosen from a random channel.

caused by the Zero Padding of the convolutional layer. It is only the case in
inception v3 model in torchvision.


