
Manifolds, Autoencoders, Generative
Adversarial Networks, and Diffusion

Models

Volker Tresp
Winter 2023-2024

1

Generative Models

• Generating beautiful and crazy images out of noise

• So far we considered that the input space might be high-dimensional M >> 1; all

natural inputs (images) form a manifold in the input space

• Autoencoder, GAN: We model that manifold as all points which are outputs of a

generator DNN; inputs h ∈ RMhidd to the generator are low-dimensional and random

2

Manifolds

• In mathematics, a manifold is a topological space that locally resembles Euclidean

space near each point

• A topological space may be defined as a set of points, along with a set of neighbour-

hoods for each point, satisfying a set of axioms relating points and neighbourhoods

3

Data Represented in Feature Space

• Consider Case Ib (manifold): input data only occupies a manifold

• Example: consider that the data consists of face images; all images that look like faces

would be part of a manifold

• What is a good mathematical model? We assume that“nature”produces data in some

low-dimensional space hnat ∈ RMhidd, but nature only makes data available in some

high-dimensional feature space x ∈ RM (x might describe an image, in which case

M might be a million)

• Features map

x = featureMap(hnat)

4

Manifold in Machine Learning

• In Machine Learning: in the observed M -dimensional input space, the data is dis-

tributed on an Mhidd-dimensional manifold

{x ∈ RM : ∃h ∈ RMhidd s.th. x = gd(h)}

where gd(·) is smooth

• Note that for a given x, it is not easy to see if it is on the manifold

5

Feature Engineering

• In a way, features are like basis functions, but supplied by nature or an application

expert (feature engineering)

• In the spirit of the discussion in the lecture on the Perceptron: hnat might be low-

dimensional and explainable, but we can only measure x

6

Learning a Generator / Decoder

• Example: x represents a face; let’s assume nature selects hnat from an Mhidd-

dimensional Gaussian distribution with unit covariance

• Then, if the feature map is known, we can generate new natural looking faces of

people who do not exist: x = featureMap(hnat)

• We try to emulate this process by a model

x = ggen(h)

(here we drop the superscript nat, since this h is part of our model and not the

ground truth hnat)

• In an autoencoder, the generator is also called a decoder gd(·)

7

Learning an Encoder

• Of course for data point i we only know xi but we do not know hnat
i

• But maybe we can estimate hi ≈ hnat
i based on some encoder neural network

hi = ge(xi)

8

Encoder

• An encoder can be useful by itself: it can serve as a preprocessing step in a classification

problem (Case Ib (manifold))

9

Learning an Autoencoder

11

Learning an Encoder

• If we have,

x = featureMap(hnat)

we might want to learn an approximate inverse of the feature map

h = ge(x)

• ge(x) is called an encoder

Autoencoder

• How can we learn h = ge(x) if we do not measure h ?

• Consider a decoder (which might be close to the feature map)

x = gd(h)

But again, h is not measured

• We now simply concatenate the two models and get

x̂ = gd(ge(x))

• This is called an autoencoder

12

Linear Autoencoder

• If the encoder and the decoder are linear functions, we get a linear autoencoder

• A special solution is provided by the principal component analysis (PCA)

Encoder:

h = ge(x) = VT
hx

Decoder:

x̂ = gd(h) = VMhidd
h = VMhidd

VT
Mhidd

x

• TheVMhidd
are the firstMhidd columns ofV, whereV is obtained from the singular

value decomposition SVD

X = UDVT

13

Neural Network Autoencoder

• In the Neural Network Autoencoder, the encoder and the decoder are modelled by

neural networks

• The cost function is

cost(W,V) =
N∑

i=1

M∑
j=1

(xi,j − x̂i,j)
2

where x̂i,1, . . . , x̂i,M are the outputs of the neural network autoencoder

14

Comments and Applications

• Since h cannot directly be measured, it is called a latent vector in a latent space.

The representation of a data point xi in latent space hi is called its representation or

embedding

• Distances in latent space are often more meaningful than in data space, so the latent

representations can be used in information retrieval

• The reconstruction error ∥x− x̂∥2 is often large for patterns which are very different

from the training data; the error thus measures novelty, anomality. This can be a basis

for fraud detection and plant condition monitoring

• The encoder can be used to pretrain the first layer in a neural network; after initializa-

tion, the complete network is then typically trained with backpropagation, including

the pretrained layer

15

Data Represented in a Noisy Feature Space

• The feature map might include some noise,

x = featureMap(hnat) + ϵ⃗

where ϵ⃗ is a noise vectors; then the data might only be exactly on the manifold

• One would want that ge(featureMap(hnat) + ϵ⃗) ≈ ge(featureMap(hnat))

such that the encoder is noise insensitive; this is enforced by the denoising autoen-

coder

16

Denoising Autoencoder (DAE)

• Denoising autoencoder,

xi ← gd(ge(xi + ϵi))

where ϵi is random noise added to the input!

• This also prevents an autoencoder from learning an identity function

17

Learning a Generator

18

Learning a Decoder (Generator)

• Requirement 1: No manifold in h-space: for any random h1, . . . , hMhidd
,

x = gd(h1, . . . , hMhidd
)

generates a high-quality face image

• Requirement 2: Disentanglement: h1, . . . , hMhidd
can be interpreted

• Requirement 3: Conditional (attribute specific) models

x = gd(h1, . . . , hMhidd
,m1, . . . ,mMm)

The generated image has real features m1, . . . ,mMm; do I want a smiling face, do

I want a beard, glasses, sunglasses, ...?

19

Factor Analysis

• The generator generates valid images out of random noise, i.e., a random h!

• We can consider the attributes m1, . . . ,mMm to correspond to a subset of dimen-

sions of h; thus the manifold stays the same, but we only generate images with the

desired attributes; thus only Mr = Mhidd −Mm dimensions are random

• The generator is

x = gd(h1, . . . , hMr,m1, . . . ,mMm)

h1, . . . , hMr are independent, e.g., independent zero-mean unit-variance Gaussians

• The encoder is the also conditioned on m1, . . . ,mMm

h = ge(x,m1, . . . ,mMm)

20

Variational Autoencoder

21

Learning a Decoder (Generator)

• If I knew for each data point h and x, I could learn a generator gd(·) simply by

supervised training

• Unfortunately, h is unknown

• How about I assume that h comes from a Gaussian distribution with unit variance

P (h) = N (h; 0, I) (each dimension is independently Gaussian distributed, with

unit variance)

• Goal: any sample h from this Gaussian distribution should generate a valid x (this

was not enforced in the normal autoencoder)

• This is the idea behind the Variational Autoencoder (VAE)

22

Generating Data from the VAE

• After training, we generate a new x by first generating a sample hs from N (0, I);

then

x = gd(hs,v)

Here, v are parameters of the generator gd(·)

• Thus generating a new h is trivial, but how do I learn the gd(·)?

• This is a bit involved and is described in the Appendix

23

Convolutional Variational Autoencoders

• The convolutional variational autoencoder uses convolutional layers

24

Generative Adversarial Networks
(GANs)

25

Generative Adversarial Networks (GANs)

• Can we train a decoder (generator) without without an encoder?

• Let’s assume we have a larger number of generators available; let’s assume that

each generator generates a data set; which one is the best generator?

• The best generator might be the one where a discriminator (i.e., a binary neural

network classifier) trained to separate training data and the data from a particular

generator, cannot separate the two classes; if this is the case, one might say that

Ptrain(x) ≈ P gen(x)

• In GAN models, there is only one generator and one discriminator and both are trained

jointly

26

Cost Function

• Discriminator: Given a set of training data and a set of generated data: the weights

w in the discriminator are updated to maximize the negative cross entropy cost

function (i.e., the log-likelihood); the targets for the training data are 1 and for

the generated data 0 (this is the same as minimizing the cross entropy, i.e. the

discriminator is trained to be the best classifier possible)

• Generator: With a given discriminator and a set of latent samples: update the

weights v in the generator, such that the generated data get closer to the classification

decision boundary: the generator is trained to minimize the negative cross entropy

cost function, where backpropagation is performed through the discriminator (this is

the same as maximizing the cross entropy)

27

Parameter Learning

• Optimal parameters are

(w,v) = argmin
v

argmax
w

cost(w,v)

where

cost(w,v) =
∑

i:xi∈train
log gdis(xi,w)+

∑
i′:xi′∈gen

log[1−gdis(ggen(hi′,v),w)]

• The left sum says: all actual images should be classified by the discriminator with

label 1

• The right sum says: all generated images should be classified by the discriminator with

label 0

• From the perspective of the generator, the cost is a log-likelihood (to be maximized)

and not a negative log-likelihood

• ggen(hi′,v) is a generated image with a random hi′

28

Minimax

• This can be related to game theory: The solution for a zero-sum game is called a

minimax solution, where the goal is to minimize the maximum cost for the player,

here the generator. The generator wants to find the lowest cost, without knowing

the actions of the discriminator (in two-player zero-sum games, the minimax solution

is the same as the Nash equilibrium)

29

Illustration

• Consider the following figure; h is one-dimensional Gaussian distributed: P (h) =

N (h; 0,1), Mhidd = 1

• The generator is x = hv, where M = 2; the data points are on a 1-D manifold in

2-D space; here: v1 = 0.2, v2 = 0.98

• The training data are generated similarly, but with x = hw and w1 = 0.98,

w2 = 0.2

• The discriminator is y = sig(|x1|w1+|x2|w2), withw1 = 0.71, w2 = −0.71

• After updating the generator, we might get v1 = 0.39, v2 = 0.92

• After updating the discriminator, we might get w1 = 0.67, w2 = −0.74

30

Applications

• For discriminant machine learning: Outputs of the convolutional layers of the discrim-

inator can be used as a feature extractor, with simple linear models fitted on top of

these features using a modest quantity of (image-label) pairs

• For discriminant machine learning: When labelled training data is in limited supply,

adversarial training may also be used to synthesize more training samples

31

DCGAN

• If the data consists of images, the discriminator is a binary image classifier and the

generator needs to generate images

• Deep Convolutional GAN (DCGAN): the generator and the discriminator contain con-

volutional layers and transposed convolution layers

• The transposed convolution layer is sometimes (incorrectly) called deconvolution layer

(a deconvolution is really something different)

• The generation of sharp, photo realistic images with sharp edges and smooth regions

is nontrivial!

• Radford et al. (shown below). Mhidd = 100; samples drawn from a uniform

distribution (we refer to these as a code, or latent variables) and outputs an image (in

this case 64× 64× 3 images (3 RGB channels)

32

Convolution and Transposed Convolution

• With linear neurons, and the first hidden layer is

h = WTx

• If W is orthonormal, then x = (W):,k will only activate hidden unit k

• Similarly, if we only activate hidden unit k, and propagate towards the inputs, we will

get again the same pattern, x = (W):,k

• In a real convolutional NN, W is defined by the kernels and is not orthonormal; prop-

agating back is known as a transposed convolution (which is also a convolution)

• Transposed convolution generates the characteristic input pattern of the hidden neu-

rons, i.e. for hidden unit k, x = (W):,k

• If W is not orthonormal, the transposed convolution is not a deconvolution; the latter

would implement the inverse of the convolution and would require a very different

connection matrix

33

cGAN

• Consider that class/attribute labels are available; in a normal GAN, one would ig-

nore them; another extreme approach would be to train a different GAN model for

each class; cGAN and InfoGans are compromizes (related to the idea of Conditional

Variational Autoencoders)

• Conditional GAN (cGAN): An additional input to the generator and the discriminator

is the class/attribute label

34

cGAN Applications

• The attributes can be quite rich, e.g., images, sketches of images

• cGANs: GAN architecture to synthesize images from text descriptions, which

one might describe as reverse captioning. For example, given a text caption of a bird

such as “white with some black on its head and wings and a long orange beak”, the

trained GAN can generate several plausible images that match the description

• cGANs not only allow us to synthesize novel samples with specific attributes, they also

allow us to develop tools for intuitively editing images - for example editing the

hair style of a person in an image, making them wear glasses or making them look

younger

• cGANs are well suited for translating an input image into an output image,

which is a recurring theme in computer graphics, image processing, and computer

vision

35

Unpaired Image-to-Image Translation

• Example task: turn horses in images into zebras

• One could train a generator Generator A2B with horse images as inputs and the

corresponding zebra images as output; this would not work, since we do not have

matching zebra images

• But consider that we train a second generator Generator B2A which has zebra images

as inputs and generates horse images

• Now we can train two autoencoders

x̂horse = gB2A(gA2B(xhorse))

x̂zebra = gA2B(gB2A(xzebra))

• These constraints are enforced using the cycle consistency loss, ∥xhorse− x̂horse∥2

and ∥xzebra − x̂zebra∥2

36

CycleGAN

• CycleGAN does exactly that

• CycleGAN adds two discriminators, trained with the adversarial loss

• discriminatorA tries to discriminate real horses from generated horses

• discriminatorB tries to discriminate real zebras from generated zebras

• If the generated horses and zebras are perfect, both fail to discriminate

• Both the cycle consistency loss and the adversarial loss are used in training

• Note that the random seeds here are the images!

37

Why Not Use Classical Approaches?

• Classically, one would start with a probabilistic model P (x;w) and determine pa-

rameter values that provide a good fit (maximum likelihood)

• Examples for continuous data: Gaussian distribution, mixture of Gaussian distributions

• These models permit the specification of the probability density for a new data point

and one can sample from these distributions (typically by transforming samples for a

normal or uniform distribution; this would be the generator here)

• These approaches typically work well for low dimensional distributions, but not for

image distributions with 256×256 pixels and where data is essentially on a manifold

38

Related Approaches and Applications

• The GAN generator generates data x but we cannot easily evaluate P (x)

• In many applications it is possible to generate data but one cannot generate a likelihood

function (likelihood free methods)

• Moment matching is one approach to evaluate the quality of the simulation

• Optimization: in physics and other fields it is sometimes easy to evaluate the cost

(e.g., energy) of a solution and the problem is to find good proposal solutions x with

a low cost(x) (combinatorical optimization)

39

A First Look at DALLE and
Diffusion Models

40

DALLE-2: Basic Idea

• Conditional (attribute specific) models

x = gd(h1, . . . , hMhidd
,m1, . . . ,mMm)

• m1, . . . ,mMm is the output representation layer of a language encoder, e.g., BERT

• Challenge: m1, . . . ,mMm should be understood by the generator

• Example text input: “a corgi playing a flame throwing trumpet” (there is no training

image even close)

• Hierarchical Text-Conditional Image Generation with CLIP Latents. Aditya Ramesh,

Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen (DALLE-2-Paper; OpenAI)

41

Contrastive Pretraining

• DALLE-2 is pretrained using contrastive learning in CLIP

42

Contrastive Pretraining Using Clip

• The BERT model is pretrained on image annotations from the web; Contrastive learn-

ing enforces similar embeddings for matching text-image pairs

• Cost function, e.g.,

softmax((htext
i)Thimage

i)

htext
i is the text embedding vector generated from BERT and himage

i is the image

embedding vector generated, e.g., from a vision transformer (ViT)

• Often cosine distance is used instead of inner product

• Use embedding vector pairs (image-text) and mismatches of texts and mismatches of

images (Batch size for the softmax: e.g., 2000)

43

Contrastive Pretraining for Learning Embeddings in Object
Recognition

• Pretraining of embeddings using unlabelled data

• We select a training image i and, temporarily, z = h(xi) is its current embedding

(last hidden layer of a DNN)

• We disturb image xi (rotation, scaling, adding noise,...) and generate image x̃i; we

temporarily replace image i with this generated imagein the training data, and in

particular, hi ← h(x̃i)

• The cost function for image i then is

− log
exp hTi z∑
j exp hTj z

• Thus, the embedding of the original image i, i.e., z, should be close to its disturbed

version, i.e., hi, (they show the same items), but distant to the embeddings of all

other images

44

