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Learning Machine: The Linear Model / ADALINE

• As with the Perceptron we start with

an activation functions that is a linearly

weighted sum of the inputs

h(x) =
M∑
j=0

wjxj

(Note: x0 = 1 is a constant input, so

that w0 is the bias)

• The activation is the output (no thresh-

olding)

ŷ = fw(x) = h(x)

• Regression: the target function can take

on real values
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Effect of a Single Binary Input

• Consider only binary inputs with xi,j ∈ {0,1}

• When xi,j switches from 0 to 1 and the other inputs remain fixed (intervention),

the j-th input adds to the output the quantity wj, independent of context, i.e.,

independent of the other inputs! (the average causal effect is identical to the individual

causal effect)

• Recall that for the perceptron, the effect of an input on the output does critically

depend on context: When xi,j switches from 0 to 1 and the other inputs remain

fixed (intervention), dependent on the other inputs, the output might stay as is, or

changes from 1 to −1 or from −1 to 1
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Method of Least Squares

• Squared-loss cost function:

cost(w) =
N∑

i=1

(yi − fw(xi))
2

• The parameters that minimize the cost function are called least squares (LS) estimators

wls = argmin
w

cost(w)

• For visualization, we take M = 1 (although linear regression is often applied to

high-dimensional inputs)
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Least-squares Estimator for Regression

One-dimensional regression:

fw(x) = w0 + w1x

w = (w0, w1)
T

Squared error:

cost(w) =
N∑

i=1

(yi − fw(xi))
2

Goal:

wls = argmin
w

cost(w) w0 = 1, w1 = 2, var(ϵ) = 1
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Least-squares Estimator in Several Dimensions

General Model:

ŷi = fw(xi) = w0 +
M∑
j=1

wjxi,j

= xTi w

w = (w0, w1, . . . wM)T

xi = (1, xi,1, . . . , xi,M)T
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Linear Regression with Several Inputs

7



Contribution to the Cost Function of one Data Point
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Predictions as Matrix-vector product

The vector of all predictions at the training data is

ŷ =


ŷ1
ŷ2
. . .
ŷN

 = Xw
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Gradient Descent Learning

• Initialize parameters (typically using small random numbers)

• Adapt the parameters in the direction of the negative gradient

• With fw(xi) =
∑M

j=0wjxi,j

cost(w) =
N∑

i=1

(yi − fw(xi))
2

• The parameter gradient is (Example: wj)

∂cost

∂wj
= −2

N∑
i=1

(yi − fw(xi))xi,j

• A sensible learning rule is

wj ←− wj + η

N∑
i=1

(yi − fw(xi))xi,j
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ADALINE-Learning Rule

• ADALINE: ADAptive LINear Element

• The ADALINE uses stochastic gradient descent (SGD)

• Let xt and yt be the training pattern in iteration t. The we adapt, t = 1,2, . . .

wj ←− wj + η(yt − ŷt)xt,j j = 0,1,2, . . . ,M

• η > 0 is the learning rate, typically 0 < η << 0.1

• Depending again on the difference (“delta”) (yt− ŷt), this is again called a delta rule

• This is identical to the Perceptron learning rule (see Appendix in the lecture on the

Perceptron). But, for the Perceptron yt ∈ {−1,1}, and ŷt ∈ {−1,1}
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Analytic Solution

• The ADALINE is optimized by SGD

• Online Adaptation: a physical system constantly produces new data: the ADALINE

(SGD in general) can even track changes in the system

• With a fixed training data set the least-squares solution can be calculated analytically

in one step (least-squares regression)
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Cost Function in Matrix Form

cost(w) =
N∑

i=1

(yi − fw(xi))
2

= (y −Xw)T (y −Xw)

y = (y1, . . . , yN)T

X =

 x1,0 . . . x1,M
. . . . . . . . .
xN,0 . . . xN,M


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Necessary Condition for an Optimum

• A necessary condition for an optimum is that

∂cost(w)

∂w

∣∣∣∣
w=wopt

= 0
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One Parameter: Explicit

• fw(x1) = x1w1 and cost(w1) =
∑N

i=1(yi − xi,1w1)
2

• (chain rule: inner derivative times outer derivative)

∂cost(w1)

∂w1
=

N∑
i=1

∂(yi − xi,1w1)

∂w1
2(yi − xi,1w1)

= −2
N∑

i=1

xi,1(yi − xi,1w1) = −2
N∑

i=1

xi,1yi +2w1

N∑
i=1

xi,1xi,1

• Thus

w1,ls =

 N∑
i=1

xi,1xi,1

−1 N∑
i=1

xi,1yi
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General Case

• fw(x) = xTw and cost(w) = (y −Xw)T (y −Xw)

• (chain rule: inner derivative times outer derivative)

∂cost(w)

∂w
=

∂(y −Xw)

∂w
2(y −Xw)

= −2XT (y −Xw) = −2XTy+2XTXw

• Thus

wls =
(
XTX

)−1
XTy
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Setting First Derivative to Zero

wls = (XTX)−1XTy

Complexity (linear in N):

O(M3
p +NM2

p )

ŵ0 = 0.75, ŵ1 = 2.13
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Derivatives of Vector Products

• We have used

∂

∂w
Xw = XT ∂

∂w
wTw = 2w

∂

∂w
wTXw = (X+XT )w

• Comment: one also finds the conventions,

∂

∂w
Xw = X

∂

∂w
wTw = 2wT ∂

∂w
wTXw = wT (X+XT )
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Machine Learning as an Inverse Problem

• The map w 7→ y = Xw is the forward model

• The map y 7→ w = (XTX)−1XTy is the inverse model

• X+ = (XTX)−1XT is called the Moore-Penrose pseudo inverse (generalized in-

verse); (Roger Penrose won the 2020 Nobel Prize in Physics)

• Machine learning is an“inverse”problem
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Stability of the Solution

• When N >> Mp, the LS solution is stable (small changes in the data lead to small

changes in the parameter estimates)

• When N < Mp then there are many solutions which all produce zero training error

• Of all these solutions, one selects the one that minimizes
∑M

j=0w
2
j = wTw (reg-

ularised solution)

• Even with N > Mp it is advantageous to regularize the solution, in particular with

noise on the target
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Linear Regression and Regularisation

• Regularised cost function (Penalized Least Squares (PLS), Ridge Regression, Weight

Decay): the influence of a single data point should be small

costpen(w) =
N∑

i=1

(yi − fw(xi))
2 + λ

M∑
j=0

w2
j

ŵpen =
(
XTX+ λI

)−1
XTy

Derivation:

∂costpen(w)

∂w
= −2XT (y −Xw) + 2λw = 2[−XTy+ (XTX+ λI)w]
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ADALINE-Learning Rule with Weight Decay

• Let xt and yt be the training pattern in iteration t. Then we adapt, t = 1,2, . . .

wj ←− wj + η[(yt − ŷt)xt,j −
λ

N
wj] j = 0,1,2, . . . ,M
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Toy Example

• We generated N = 100 data points with M = 3 inputs (w0 = 0 is known)

• x1 and x2 are highly correlated (x2 is generated from x1)

• x3 is independent of all the other variables: x1, x2, and y

• We generate output data with y = x1 + ϵ, where ϵ stands for independent noise

with standard deviation 0.2 and thus variance of 0.04.

• Thus the true parameters are wtrue = (1,0,0)T ; Note that, y causally only

depends on x1

• Thus the true function is

y = 1× x1 +0× x2 +0× x3 + ϵ

• Thus, wtrue = (1,0,0)T (without w0)

• All variables x1, x2, x3, y are normalized to zero mean and variance 1
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Toy Example: One-dimensional Model

• In one-dimensional models, with only one input, the weights are identical to the sample

Pearson correlation coefficients (here: ŵj = r̂j =
∑

i yixi,j/N) between the

output and the input

• I obtain r̂1 = ŵ1 = 0.99, r̂2 = ŵ2 = 0.96, r̂3 = ŵ3 = −0.21

• Explicitly, the three one-dimensional models are

ŷ = 0.99x1 ŷ = 0.96x2 ŷ = −0.21x3

The expected Pearson correlation coefficient is defines as (for zero mean variables)

rx,y = covxy/(varxvary)
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Toy Example: One-dimensional Model (cont’d)

• A deeper analysis reveals that the estimate (E: expected value; stdev : standard

deviation)

E(ŵ1) = 1 stdev(ŵ1) = 0.02

w1 reflects the causal dependency of y on x1

• The second coefficient, r̂2 = 0.96, does not reflect a causal effect, but reflects the

fact that x1 and x2 are highly correlated, and thus also y and x2 (correlation does

not imply causality).

E(ŵ2) = 1 stdev(ŵ2) = 0.02

• The third value w3 is correctly closer to 0, but not really small in magnitude.

E(ŵ3) = 0 stdev(ŵ3) = 0.1
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Toy Example: Least Squares Regression

• We get:

XTX =

 100 98 −18
98 100 −16
−18 −16 100


Approximately Ncov(x); we see the strong correlation between x1 and x2

(XTX)−1 =

 0.255 −0.249 0.007
−0.249 0.253 −0.005
0.007 −0.005 0.010


Finally,

XTy = (99,97,−20)T

This is N × (r̂1, r̂2, r̂3)
T ! We see the strong correlation between both x1 and x2

with y
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Toy Example: Least Squares Regression (cont’d)

• We get

ŵls = (XTX)−1XTy = (1.137,−0.150,−0.018)T

• Interestingly, linear regression pretty much identifies the correct causality, with ŵ1 ≈
1 and ŵ2 ≈ 0 !

E(ŵ1) = 1 stdev(ŵ1) = 0.1

So the estimator is unbiased but the uncertainty is larger then in the unit dimensional

analysis

E(ŵ2) = 0 stdev(ŵ2) = 0.1

Note the dramatic shift to 0!
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Toy Example: Least Squares Regression (cont’d)

• ŵ3 = −0.018 is much closer to 0, compared to the sample Pearson correlation

coefficient r̂3 = −0.21

E(ŵ3) = 0 stdev(ŵ3) = 0.02

Here it is important to see that the standard deviation of the spurious input is largely

reduced!

• Overall, in regression, the causal influence of x1 stands out much more clearly!

• Both the influence of the correlated (non-causal) input x2 and the noise input x3 are

largely reduced
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The Power of Supervised Learning

• In regression: an input only has to model, what the other inputs could not model

• In a one-dimensional analysis: each input on its own tries to model the dependency

to y as well as possible!
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Toy Example: Penalized Least Squares Regression

• We get with λ = 0.6:

XTX+ λI =

 100.6 98 −19
98 100.6 −17
−19 −17 100.6



(XTX+ λI)−1 =

 0.197 −0.191 0.005
−0.191 0.195 −0.003
0.005 −0.003 0.010



XTy = (99,97,−20)T

ŵpen = (XTX+ λI)−1XTy = (0.990,−0.005,−0.021)T

• Note that ŵ2 is even closer to ground truth!
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Toy Example: Penalized Least Squares Regression (cont’d)

• With independent inputs (cov(x) ≈ X⊤X/N is a diagonal matrix)

E(ŵpen,j) =
N

N + λ
E(ŵls,j)

and E(ŵls,j) = E(rxj,y)

• The relative shrinkage is identical to all parameters, but the absolute shrinkage

E(ŵls,j)− E(ŵpen,j) =
λ

λ+N
E(ŵls,j)

is larger in magnitude for larger weights
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Application to Healthcare

• Assume same data

• Consider that x2 is a treatment (medication) and y the outcome (healthy=1, after

treatment).

• If I do a one-dimensional analysis, I would see a strong positive influence of x2 on y

• I might conclude that the treatment works

• Only if I include the so-called confounder x1 in the regression model, it becomes

clear that the confounder x1 is the cause and not the treatment x2

• I conclude that the treatment has no significant effect!

• Recipe: Do a multidimensional regression model and include all relevant inputs!
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Application to Healthcare (cont’d)

• Example: Only patients without any other disease (x1 = 1) get the treatment, but

they get healthy (y = 1), independent of treatment (x2) (since their bodies can

focus on the disease of interest); still, this results in a correlation between treatment

(x2) and outcome (y)

• Fisher’s hypothesis (epidemiology): A certain gene variant (x1 = 1) causes lung

cancer, but also makes you want to smoke (x2 = 1), but smoking itself has no effect

on lung cancer y; still, this results in a correlation between smoking (x2) and outcome

(y)

• Now that we can measure genetic variance: Fisher’s hypothesis is (mostly) wrong
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Remarks: Correlation versus Regression

• The Pearson correlation coefficients is independent of context, objective. Karl Pearson:

“I interpreted that sentence of Francis Galton (1822-1911) [his advisor] to mean that

there was a category broader than causation, namely correlation, of which causation

was only the limit, and that this new conception of correlation brought psychology,

anthropology, medicine, and sociology in large parts into the field of mathematical

treatment.”

• But the Pearson correlation coefficient does not reflect causality (dependencies)

• The regression coefficients display causal behavior, much more closely: causality anal-

ysis based on observed data requires complete models

• “Gold standard”: prospective randomized controlled trial (RCT): assign patients ran-

domly to the treatment group

• In epidemiological studies RCTs are often not ethical: you cannot just tell people

to start smoking; here one often needs to rely on (carefully analysed) retrospective

observational studies



Remarks: Regularization

• If one is only interested in prediction accuracy: adding inputs liberally in regression

can be beneficial if regularization is used (in ad placements and ad bidding, hundreds

or thousands of features are used)

• The weight parameters of useless (noisy) features become close to zero with regular-

ization (ill-conditioned parameters)

• Regularization is especially important when N ≈Mp, or when N < Mp

• If parameter interpretation is essential or if, for computational reasons, one wants to

keep the number of inputs small:

– Forward selection; start with the empty model; at each step add the input that

reduces the error most

– Backward selection (pruning); start with the full model; at each step remove the

input that increases the error the least
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• But no guarantee, that one finds the best subset of inputs or that one finds the true

inputs



Experiments with Real World Data: Data from Prostate Cancer
Patients

8 Inputs, 97 data points; y: Prostate-specific antigen

10-times cross validation error
LS 0.586

Best Subset (3) 0.574
Ridge (Penalized) 0.540
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Examples where High-dimensional Linear Systems are Used

• Ranking in search engines (relevance of a web page to a query)

• Ad placements: where to put which advertizement on a web page, for a user with a

given user profile
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Appendix: Penalized Least Squares Regression (Advanced)

• Assume that all inputs have zero mean and a standard deviation of one (standard

preprocessing); but inputs might be correlated

• I can change the coordinate system (no rescaling) with z = VTx, such that the

components of z are uncorrelated which means that cov(z) is a diagonal matrix

with cov(z)j,j = d2j

• In this new coordinate system we still have zero mean, but potentially unequal standard

deviations

• In this new coordinate system,

E(ŵz
pen,j) =

N

N + λ/d2j
E(ŵz

ls,j)

• This means that weights in dimensions with a small d2j are relatively (not absolutely)

shrunk more
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• With Var(ŵz
ls,j) = σ2/(Nd2j ), we get more shrinkage for weights which are un-

certain

• In Hastie et al.,“The Elements of Statistical Learning”, it is shown that this shrinkage

also occurs in the original coordinate system, without a diagonalization as preprocess-

ing


