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Classification

• Classification is the central task of pattern recognition

• Sensors supply information about an object: to which class does the object belong

(dog, cat, ...)?
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Overlapping Classes

• The beauty of Machine Learning is that a few model classes (neural networks, kernel

approaches, ...) can be applied to almost any supervised learning task

• This hides a bit that the data settings can be quite different

• There are problems where class boundaries are well defined but maybe quite complex;

an example is OCR; here Deep Neural Networks, manifold learning and kernel systems

are quite effective; this concerns often our Cases I and II

• In other applications there is little structure in the data and classes overlap; this the

situation encountered in many healthcare applications (biomedicine); this concerns

often our Cases III and IV

• Often, the problem is not as much to separate classes, but to show that there is a

signal at all; the question might be if there is a detectable positive effect of the new

medication!
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Linear Classifiers

• Linear classifiers separate classes by a linear hyperplane

• In high dimensions a linear classifier often can separate the classes

• Linear classifiers cannot solve the exclusive-or problem

• In combination with basis functions, kernels or a neural network, linear classifiers can

form nonlinear class boundaries
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Hard and Soft (sigmoid) Transfer Functions

• First, the activation function of the neu-

rons in the hidden layer are calculated as

the weighted sum of the inputs xi as

h(x) =
M∑
j=0

wjxj

(note: x0 = 1 is a constant input, so

that w0 corresponds to the bias)

• The sigmoid neuron has a soft (sigmoid)

transfer function

Perceptron : ŷ = sign(h(x))

Sigmoid function: ŷ = sig(h(x))
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Binary Classification Problems

• We will focus first on binary classification where the task is to assign binary class labels

yi = 1 and yi = 0 (or yi = 1 and yi = −1 )

• We already know the Perceptron. Now we learn about additional approaches

– I. Generative models for classification

– II. Logistic regression

– III. Classification via regression
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Two Linearly Separable Classes
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Two Classes that Cannot be Separated Linearly
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The Classical Example not two Classes that cannot be
Separated Linearly: XOR
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Separability is not a Goal in Itself. With Overlapping Classes
the Goal is the Best Possible Hyperplane
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I. Generative Model for Classification

• In a generative model one assumes a probabilistic data generating process (likelihood

model). Often generative models are complex and contain unobserved (latent, hidden)

variables

• Here we consider a simple example: data is generated from class-specific Gaussian

distributions

• First we have a model how classes are generated P (y). y = 1 could stand for a

good customer and y = 0 could stand for a bad customer.

11



Generative Model for Classification (cont’d)

• Then we have a model how attributes are generated, given the classes P (x̃|y). This
could stand for

– Income, age, occupation (x̃) given a customer is a good customer (y = 1)

– Income, age, occupation (x̃) given a customer is not a good customer (y = 0)

• Using Bayes formula, we then derive P (y|x̃): the probability that a given customer is
a good customer y = 1 or bad customer y = 0, given that we know the customer’s

income, age and occupation
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How is Data Generated?

• We assume that the observed classes yi are generated with probability

P (yi = 1) = κ1 P (yi = 0) = κ0 = 1− κ1

with 0 ≤ κ1 ≤ 1.

• In a next step, a data point x̃i has been generated from P (x̃i|yi)

• (Note, that x̃i = (xi,1, . . . , xi,M)T , which means that x̃i does not contain the

bias xi,0)

• We now have a complete model: P (yi)P (x̃i|yi)
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Bayes’ Theorem

• To classify a data point x̃i, i.e. to determine the yi, we apply Bayes theorem and get

P (yi|x̃i) =
P (x̃i|yi)P (yi)

P (x̃i)

P (x̃i) = P (x̃i|yi = 1)P (yi = 1)+ P (x̃i|yi = 0)P (yi = 0)
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Birches versus Ashes

• The last figure also nicely exemplifies the problem of overlapping classes

• Given brightness level as input, one cannot separate the classes and this problem

cannot be solved by a more powerful classifier!

• The only way to solve this issue is to use more features (inputs, sensors); for example

one might measure spectral amplitudes at different frequencies, including infrared

• Another problem might be that the brightness detector is unreliable (“noisy labels”)
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Class-specific Distributions

• To model P (x̃i|yi) one can chose an application specific distribution

• A popular choice is a Gaussian distribution (normal discriminant analysis)

P (x̃i|yi = l) = N (x̃i; µ⃗
(l),Σ)

with

N
(
x̃i; µ⃗

(l),Σ
)
=

1

(2π)M/2
√
|Σ|

exp

(
−
1

2

(
x̃i − µ⃗(l)

)T
Σ−1

(
x̃i − µ⃗(l)

))
• Note, that both Gaussian distributions have different modes (centers) but the same

covariance matrices. This has been shown to often work well
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Maximum-likelihood Estimators for Modes and Covariances

• One obtains a maximum likelihood estimators for the modes

ˆ⃗µ
(l)

=
1

Nl

∑
i:yi=l

x̃i

• One obtains as unbiased estimators for the covariance matrix

Σ̂ =
1

N −M

1∑
l=0

∑
i:yi=l

(x̃i − ˆ⃗µ
(l)

)(x̃i − ˆ⃗µ
(l)

)T
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Expanding the Quadratic Terms in the Exponent

• Note that

−
1

2

(
x̃i − µ⃗(l)

)T
Σ−1

(
x̃i − µ⃗(l)

)
= −

1

2
x̃Ti Σ

−1x̃i −
1

2
µ⃗(l)

T
Σ−1µ⃗(l) + µ⃗(l)

T
Σ−1x̃i
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The Difference of the Quadratic

• Now we calculate the difference of the quadratic terms of the two Gaussians

−
1

2

(
x̃i − µ⃗(0)

)T
Σ−1

(
x̃i − µ⃗(0)

)
+

1

2

(
x̃i − µ⃗(1)

)T
Σ−1

(
x̃i − µ⃗(1)

)
= −

1

2
x̃Ti Σ

−1x̃i −
1

2
µ⃗(0)

T
Σ−1µ⃗(0) + µ⃗(0)

T
Σ−1x̃i

+
1

2
x̃Ti Σ

−1x̃i +
1

2
µ⃗(1)

T
Σ−1µ⃗(1) − µ⃗(1)

T
Σ−1x̃i

• .... since two terms cancel,

=
(
µ⃗(0) − µ⃗(1)

)T
Σ−1x̃i −

1

2
µ⃗(0)

T
Σ−1µ⃗(0) +

1

2
µ⃗(1)

T
Σ−1µ⃗(1)
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A Posteriori Distribution

• It follows that

P (yi = 1|x̃i) =
P (x̃i|yi = 1)P (yi = 1)

P (x̃i|yi = 1)P (yi = 1)+ P (x̃i|yi = 0)P (yi = 0)

=
1

1+ P (x̃i|yi=0)P (yi=0)
P (x̃i|yi=1)P (yi=1)

=
1

1+ κ0
κ1

exp
(
(µ⃗(0) − µ⃗(1))TΣ−1x̃i − 1

2 µ⃗(0)
T
Σ−1µ⃗(0) + 1

2 µ⃗(1)
T
Σ−1µ⃗(1)

)

= sig
(
w0 + x̃Ti w̃

)
= sig

w0 +
M∑
j=1

xi,jwj


20



Weights

• We get (w̃ is without w0)

w̃ = Σ−1
(
µ⃗(1) − µ⃗(0)

)
• Note that w̃ is independent of κ1 and κ0 and is thus independent of the class

proportions in the training data! This is important, e.g., for case-control studies

• Recall: sig(arg) = 1/(1 + exp(−arg))
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Bias Term

• We get,

w0 = logκ1/κ0 +
1

2
µ⃗(0)

T
Σ−1µ⃗(0) −

1

2
µ⃗(1)

T
Σ−1µ⃗(1)

• w0 clearly reflects the class proportions
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Comments

• This specific generative model leads to linear class boundaries

• But we do not only get class boundaries, we get probabilities

• Although we have used Bayes formula, the analysis was frequentist. A Bayesian anal-

ysis with a prior distribution on the parameters is also possible
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Comments (cont’d)

• If the two class-specific Gaussians have different covariance matrices (Σ(0),Σ(1))

the approach is still feasible but one would need to estimate two covariance matrices

and the decision boundaries are not linear anymore; still, one can simply apply Bayes

rule to obtain posterior probabilities

• The generalization to multiple classes is straightforward: simply estimate a different

Gaussian for each class (with shared covariances or not) and apply Bayes rule

• Generative-Discriminative pair : (1) Gaussian Analysis (as a generative model) and (2)

logistic regression as a discriminant model

• Generalization to basis functions is straight forward: x is replaced by ϕ⃗(x)

• With an explicit P (x̃i|yi = l) = N (x̃i; µ⃗
(l),Σ), we can apply Bayes formula for

a posteriori class estimation

• This is not easy, or even impossible, e.g., for GANs, which are able to generate samples

but where the likelihood is not easily evaluated (likelihood free methods)
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Special Case: Naive Bayes

• With diagonal covariances matrices, one obtains a Naive-Bayes classifier

P (x̃i|yi = l) =
M∏
j=1

N (xi,j;µ
(l)
j , σ2j )

• The naive Bayes classifier has considerable fewer parameters but completely ignores

class-specific correlations between features; this is sometimes considered to be naive

• Even more naive (all Gaussian have identical variance):

P (x̃i|yi = l) =
M∏
j=1

N (xi,j;µ
(l)
j , σ2)
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Logistic Regression from Naive Bayes

• We have parameters, for the latter case,

wj =
1

σ2

(
µj

(1) − µj
(0)
)

w0 = logκ1/κ0 +
1

2σ2

∑
j

(
µ
(0)
j

)2
−
(
µ
(1)
j

)2
• Note that wj is completely independent of other inputs; adding or removing other

inputs does not change wj;

• In contrast w0 depends on all dimensions

• The smaller σ2, the sharper the transition
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Special Case: Bernoulli Naive Bayes

• Naive Bayes classifiers are popular in text analysis with often more than 10000 features

(key words). For example, the classes might be SPAM and no-SPAM and the features

are keywords in the texts

• Instead of a Gaussian distribution, a Bernoulli distribution is employed

• P (wordj = 1|SPAM) = γj,s is the probability of observing word wordj in the

document for SPAM documents (Bernoulli distribution)
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Special Case: Bernoulli Naive Bayes

• We also consider the other cases

• P (wordj = 0|SPAM) = 1 − γj,s is the probability of not observing word wordj
in the document for SPAM documents

• P (wordj = 1|no-SPAM) = γj,n is the probability of observing word wordj in the

document for non-SPAM documents

• P (wordj = 0|no-SPAM) = 1−γj,n is the probability of not observing word wordj
in the document for non-SPAM documents

• Note that there are two parameters per dimension: γj,s and γj,n
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Special Case: Bernoulli Naive Bayes (cont’d)

• Then

P (SPAM|doc) =

κs
∏

j γ
wordj
j,s (1− γj,s)

1−wordj

κs
∏

j γ
wordj
j,s (1− γj,s)

1−wordj + κn
∏

j γ
wordj
j,n (1− γj,n)

1−wordj

• Simple ML estimates are γj,s = Nj,s/Ns and γj,n = Nj,n/Nn

(Ns is the number of SPAM documents in the training set, Nj,s is the number of

SPAM documents in the training set where wordj is present)

(Nn is the number of no-SPAM documents in the training set, Nj,n is the number

of no-SPAM documents in the training set where wordj is present)
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Special Case: Bernoulli Naive Bayes (cont’d)

• Note, that we can also write

P (SPAM|doc) = sig(w0 +
∑
j

wjwordj)

with

wj = [log γj,s − log γj,n]− [log(1− γj,s)− log(1− γj,n)]

w0 = logκs/κn +
∑
j

log(1− γj,s)− log(1− γj,n)

• Generative-Discriminative pair: (1) Bernoulli naive Bayes classifier and (2) logistic

regression
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Probabilistic Mixture Models

• With K classes, we obtain the joint distribution P (Y = k)P (x̃|Y = k), where

k = 1, . . . ,K

• Consider the generative models just discussed but assume that the class labels are

unknown during training

• Then we achieve probabilistic mixture models: Mixture of Gaussians, Mixture of Multi-

nomials, Mixture of Bernoullis, ...

• One discovers hidden classes or clusters: For example, the centres of the Gaussians

after training can be interpreted as cluster representatives

• At the same time, we obtain a model for the data distribution

P (x̃) =
∑K

k=1 P (x̃|Y = k)P (Y = k)

• Training can be done using the Expectation Maximization (EM) algorithm
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II. Logistic Regression

• In I. (Generative models for classification) we first defined a generative model for

P (x, y); from this model we then derived P (y|x) = P (y)P (x|y) which models

x given y (generative modelling)

• Here, we model the reverse P (y|x) (standard supervised learning)

• With logistic regression as the discriminant version, we model discriminatively

ŷi = P (y = 1|xi) = sig
(
xTi w

)
(now we include the bias xTi = (xi,0 = 1, xi,1, . . . , xi,M−1)

T ). sig() as defined

before (logistic function).

• One now optimizes the likelihood of the conditional model

L(w) =
N∏

i=1

sig
(
xTi w

)yi (
1− sig

(
xTi w

))1−yi
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Log-Likelihood Function is the Negative Cross Entropy

• Log-likelihood function

l =
N∑

i=1

yi log
(
sig
(
xTi w

))
+ (1− yi) log

(
1− sig

(
xTi w

))
• Cross-entropy cost function (negative log-likelihood)

l = −

 N∑
i=1

yi log
(
sig
(
xTi w

))
+ (1− yi) log

(
1− sig

(
xTi w

))
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Log-Likelihood

• Log-likelihood function

l =
N∑

i=1

yi log
(
sig
(
xTi w

))
+ (1− yi) log

(
1− sig

(
xTi w

))

l =
N∑

i=1

yi log

(
1

1+ exp(−xTi w)

)
+ (1− yi) log

(
1

1+ exp(xTi w)

)

= −
N∑

i=1

yi log(1 + exp(−xTi w)) + (1− yi) log(1 + exp(xTi w))
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Adaption

• The derivatives of the log-likelihood with respect to the parameters

∂l

∂w
=

N∑
i=1

yi
xi exp(−xTi w)

1 + exp(−xTi w)
− (1− yi)

xi exp(x
T
i w)

1 + exp(xTi w)

=
N∑

i=1

yixi(1− sig(xTi w))− (1− yi)xisig(x
T
i w)

=
N∑

i=1

(yi − sig(xTi w))xi =
N∑

i=1

(yi − ŷi)xi

• A gradient-based optimization of the parameters to maximize the log-likelihood

w←− w+ η
∂l

∂w

• Typically one uses a Newton-Raphson optimization procedure
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Logistic Regression as a Generalized Linear Models (GLM)

• Consider a Bernoulli distribution with P (y = 1) = θ and P (y = 0) = 1 − θ,

with 0 ≤ θ ≤ 1

• In the theory of the exponential family of distributions, one sets

θ = sig(η)

Now we get valid probabilities for any η ∈ R!

• η is called the natural parameter and sig(·) the inverse parameter mapping for the

Bernoulli distribution
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Logistic Regression as a Generalized Linear Models (GLM)
(cont’d)

• This is convenient if we make η a linear function of the inputs and one obtains a

Generalized Linear Model (GLM)

P (yi = 1|xi,w) = sig(xTi w)

• Thus logistic regression is the GLM for the Bernoulli likelihood model
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Application to Neural Networks and other Systems

• Logistic regression essentially defines a new cost function

• It can be applied as well to neural networks, as we have done before,

P (yi = 1|xi,w) = sig(NN(xi))

or systems of basis functions or kernel systems
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Multiple Classes and Softmax

• Consider a multinomial distribution with P (y = c) = θc, with θc ≥ 0 and∑C
c=1 θc = 1. c is the class index and C is the number of classes

• We reparameterize (exponential family of distributions)

θc =
exp(ηc)∑C

c′=1 exp(ηc′)

• The ηc are unconstrained; softmax notation: θc = softmaxc(η⃗c)
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Multiple Classes and Softmax: GLM

• In GLM, we set ηc = xTwc and

ŷc = P (y = c|x) =
exp(xTwc)∑C

c′=1 exp(x
Twc′)
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Multiple Classes and Softmax (cont’d)

• The negative log-likelihood (softmax cross entropy) becomes

−l = −
N∑

i=1

 C∑
c=1

yi,cx
T
i wc − log

C∑
c=1

exp(xTi wc)


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Multiple Classes and Softmax (cont’d)

• The gradient becomes

−
∂l

∂wj,c
= −

∑
i

(
yi,c xi,j −

xi,j exp(x
T
i wc)∑C

c=1 exp(x
T
i wc)

)
and SGD becomes

wj,c ← wj,c + ηxi,j(yi,c − ŷi,c)
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III. Classification via Regression

• Linear Regression:

f(xi,w) = w0 +
M−1∑
j=1

wjxi,j

= xTi w

• We define as target yi = 1 if the pattern xi belongs to class 1 and yi = 0 (or

yi = −1 ) if pattern xi belongs to class 0

• We calculate weights wLS = (XTX)−1XTy as LS solution, exactly as in linear

regression

• For a new pattern x we calculate f(x) = xTwLS and assign the pattern to class 1

if f(x) > 1/2 (or f(x) > 0 ) ; otherwise we assign the pattern to class 0
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Bias

• Asymptotically, a LS-solution converges to the posterior class probabilities, although

a linear functions is typically not able to represent P (c = 1|x). The resulting class

boundary can still be sensible

• One can expect good class boundaries in high dimensions and/or in combination with

basis functions, kernels and neural networks; in high dimensions sometimes consistency

can be achieved. In essence it is necessary that the linear model can model the expected

probability P (c = 1|x)
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Classification via Regression with Linear Functions
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Classification via Regression with Radial Basis Functions
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Causal Effect

• Assume that all relevant inputs are considered in the model (no other confounders)

and that we use“Classification via Regression”

• The causal effect is independent of the individual, and can be estimated as

P (Y = 1|xi,1 = 1, xi,2, . . . , xi,M)−P (Y = 1|xi,1 = 0, xi,2, . . . , xi,M) = w1

• x1 = 1 means that the individual has received the treatment, and x1 = 0 means

that the individual has not received the treatment,

• Y = 1 means that the patient is healthy after the treatment
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Performance

• Although the approach might seem simplistic, the performance can be excellent (in

particular in high dimensions and/or in combination with basis functions, kernels and

neural networks). The calculation of the optimal parameters can be very fast!

• Regression is commonly used in treatment effect prediction in medicine if the influence

of the treatment is small, on average
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Logistic Regression in Medical
Statistics
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Logistic Regression in Medical Statistics

• Logistic regression has become one of the the most important tools in medical statistics

to analyse the outcome of treatments, e.g., a new medication, and to evaluate the

effect of preconditions (gender, age, smoking, environmental effects)

• An important task is to distinguish between correlation and causation
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Epidemiology

• In epidemiology, the output y = 1 means that the patient has the disease

• x1 = 1 might represent the fact that the patient was exposed (e.g., by a genetic

variant, smoking, or an environmental factor) and x1 = 0 might mean that the

patient was not exposed; the other inputs are often typical confounders (age, sex, ...)

P (yi = 1|xi,w) = sig

 M∑
j=0

wjxj


• Thus, w1 is the quantity of interest! If w1 is significantly larger than zero, then the

exposure was harmful!

• For model fitting we need data from individuals, which were randomly chosen out off

the population; for rare diseases, his can be a problem (see later discussion on the

logs-odds ratio)
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Treatment Evaluation

• All individuals in the population have the disease

• In treatment evaluation, x1 = 1 means that the patient received the treatment,

and x1 = 0 means that the patient did not receive the treatment

• The output represents the outcome after treatment; e.g., y = 1 can mean that the

patient is cured by the treatment

P (yi = 1|xi,w) = sig

 M∑
j=0

wjxj


• Of course, of great interest is if w1 is significantly nonzero
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Causal Effect Depends on the Individual

• In the model, the causal effect depends on the individual,

P (y = 1|xi,1 = 1, xi,2, . . . , xi,M)− P (y = 1|xi,1 = 0, xi,2, . . . , xi,M)

= sig(xi,1 = 1, xi,2, . . . , xi,M)− sig(xi,1 = 0, xi,2, . . . , xi,M)

• We can calculate the average causal effect, e.g., on subgroups (stratification))

• Maybe we can also find an interpretation of w1, which we analyse next
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Odds

• The odds for a patient with properties xi is defined as

Odds(xi) =
P (yi = 1|xi)
P (yi = 0|xi)
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Log-Odds for Logistic Regression

• In medical statistics, one is interested in the interpretation of the terms in logistic

regression

• For logistic regression, the log odds (= logit) is

LogOdds = log
P (yi = 1|xi)
P (yi = 0|xi)

= log
1

1+ exp(−xTi w)

1 + exp(−xTi w)

exp(−xTi w)

= log
1

exp(−xTi w)
= xTi w

• Thus the log odds of the outcome is h = xTi w, which is the net input, also called

the logit (with y = sig(x), x = sig−1(y) = log(y)− log(1− y))

• Thus logistic regression is linear in predicting the log odds
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(Log) Odds Ratio

• The odds ratio is defined as

OR =
Odds(xi,1 = 1, xi,2, . . . , xi,M)

Odds(xi,1 = 0, xi,2, . . . , xi,M)

• The log odds ratio evaluates the effect of the treatment

log(OR) = logOdds(xi,1 = 1, xi,2, . . . , xi,M)−logOdds(xi,1 = 0, xi,2, . . . , xi,M)
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The Log Odds Ratio for Logistic Regression

• In logistic regression, the log odds ratio is identical to w1, since

(w0 + w1 +
M∑
j=2

xi,j)− (w0 +0+
M∑
j=2

xi,j) = w1

• If w1 is significantly nonzero, then the exposure/treatment has an effect

• Thus, in logistic regression, the causal effect might be different for each individual,
the log odds ratio is the same; w1 ≥ 0 is the increase in the log odds of a patient
that obtains the treatment, independent of the confounders xi,2, . . . , xi,M)

• If possible, confounders (xi,2, . . . , xi,M ) should be inputs to the logistic regression
(e.g., age, gender) trained on the population; this is called: “controlling for the con-
founders”or“controlling confounding effects”

• Alternatively, one forms subgroups of patients with the same values of the confounders
(same age group, same gender) and calculates the log odds ratio separately for each
subgroup (stratification) (so the logistic regression input is only xi,1)
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Case Control Studies and Imbalanced Classes

• Consider a rare disease that only affects one in a million; then if I would collect data

from 1 million random individuals I might only have one individual with the disease

• Applying Bayes formula, the odds ratio can also be written as

OR =
P (xi,1 = 1|yi = 1, xi,2, . . . , xi,M)

P (xi,1 = 0|yi = 1, xi,2, . . . , xi,M)

P (xi,1 = 0|yi = 0, xi,2, . . . , xi,M)

P (xi,1 = 1|yi = 0, xi,2, . . . , xi,M)

• To obtain these conditional probabilities we can select patients according to their

disease status and any other attributes (but then not according to the fact if they got

exposed or not)

• It is the quite realistic to collect let’s say 1000 individuals who have the disease (e.g.,

breast cancer) and 1000 who do not have the disease, and then predict if they were

exposed or not!

• In a model that predicts treatment from outcome where x1 is the outcome, w1 again

is the log odds ratio
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Odds Ration and Relative Risk

• The relative risk (= risk ratio) (RR) is considered more intuitive (see English Wikipedia

page on“odds ratio”), but is does not possess this insensitivity to sampling

RR =
P (yi = 1|xi,1 = 1, xi,2, . . . , xi,M)

P (yi = 1|xi,1 = 0, xi,2, . . . , xi,M)

• For rare diseases (outcomes) RR and OR are very similar
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Causality

• Confounders are variables that influence both the output y and x1

• For example R. A. Fisher argued that there might be a genetic variant which makes

you want to smoke and which gives you lung cancer; thus you would get lung cancer

independently if you smoked

• This turned out to be (mostly) untrue

• By far the most apparent paradoxes result from unmodelled confounders (Simpson’s

paradox)
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Linear Regression versus Logistic Regression

• If I apply linear regression, the causal effect (CE ) is independent of the individual,

and can be estimated as

w
linear regression
1 = CE

= P (Y = 1|xi,1 = 1, xi,2, . . . , xi,M)−P (Y = 1|xi,1 = 0, xi,2, . . . , xi,M)

• If I apply logistic regression,

w
logistic regression
1 = logOR

• Relative risk:

logRR =

logP (Y = 1|xi,1 = 1, xi,2, . . . , xi,M)−logP (Y = 1|xi,1 = 0, xi,2, . . . , xi,M)
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Rare Diseases: Random Sample

Random individuals from the population

Disease 2 3
No Disease 100 100

not exposed exposed

• ORy|x = (3/103)/(100/103)× (100/102)/(2/102) = 1.5

• CE = 3/(3 + 100)− 2/(2 + 100) = 0.0095

• RR = 3/(3 + 100)/(2/(2 + 100)) = 0.149

• ORx|y = (3/5)/(2/5)× (100/200)/(100/200) = 1.5
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Rare Diseases: Balanced

(Disease / No disease) balance

Disease 80 120
No Disease 100 100

not exposed exposed

• ORy|x = (120/220)/(100/220)× (100/180)/(80/180) = 1.5

• CE = 120/(120+ 100)− 80/(80 + 100) = 0.101

• RR = 120/(120+ 100)/(80/(80 + 100)) = 1.227

• ORx|y = (120/200)/(80/200)× (100/200)/(100/200) = 1.5

• ORy|x and ORx|y remain at 1.5, but can be estimated with greater accuracy
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The Rubin causal model (RCM),

• Select a patient i who has received the treatment x1,i = 1

• Find a twin who did not receive the treatment: Select another patient c(i) who is as

identical as possible to the first patient, according to the values of the confounders

x2,i, . . . , xM,i, but who is in the control group, i.e., who did not receive the treatment

(x1,c(i) = 0)

• Repeat this for all N patients who received the treatment

• This is a counterfactual analysis; the causal effect is estimated as

CE =
1

N

N∑
i=1

(yi − yc(i)) =
1

N

N∑
i=1

yi −
1

N

N∑
i=1

yc(i)
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Personalized Medicine

• A linear model assumes that the effect of an input on the output is independent of

the other inputs

• A log-linear model assumes that the effect of an input on the log-odds of the output

is independent of the other inputs

• The idea behind personalized medicine is that a given medication only works for a

subclass of the population

• Thus one either tries to identify as good as possible the group (strata) for which the

medication works or one includes nonlinear interactions between the inputs

• If many factors might contribute to the effectiveness of a drug, one might try multi-

variate nonlinear models, e.g., neural networks
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