
Collaborative Ordinal Regression

Shipeng Yu1,2, Kai Yu 2, Volker Tresp2

1Institute for Computer Science, University of Munich, Munich 80538, Germany
2Siemens Corporate Technology, Munich 81739, Germany

spyu@dbs.ifi.lmu.de
kai.yu@siemens.com, volker.tresp@siemens.com

Abstract

Ordinal regression has become an effective way of learning user prefer-
ences, but most of research only focuses on single regression problem.
In this paper we introducecollaborative ordinal regression, where mul-
tiple ordinal regression tasks need to be handled simultaneously. Rather
than modelling each task individually, we build a hierarchical Bayesian
model and assign a common Gaussian Process (GP) prior to all indi-
vidual latent functions. This very general model allows us to formally
model the inter-dependencies between regression functions. We derive a
very general learning scheme for this type of models, and in particular we
evaluate two example models with collaborative effect. Empirical studies
show that collaborative model outperforms the individual counterpart.

1 Introduction

Recent years have seen many works on preference learning, which aims to learn a prefer-
ence model for the user and make predictions for newly arriving items. This is in general
called ordinal regression in the literature [5]. In this paper we are interested in probabilistic
conditional models for rankings (preference labels), for which we need to define some gen-
erative process for ranking data. Some recent work in this direction include [3] in which
Chu and Ghahramani applied Gaussian Processes (GP) to ordinal regression, and [2] where
Burges et al. derived a generative model for pairs of objects and trained the model using
neural networks.

Up to now most of the research in ordinal regression focuses on a single regression prob-
lem, but in reality many ranking applications have multiple regression tasks. For instance,
in user preference prediction, one user can be modelled as an ordinal regression problem,
but in many cases we need to predict user preferences for many users at the same time.
Intuitively, we should not model each user individually, but model all the usersjointly to
uncover the dependency between them. We call this problemcollaborative ordinal regres-
sion, since it is more general than the well-known collaborative filtering problem. Another
example of multiple regression is in web page ranking, where each query can be taken as
an ordinal regression function (with possibly more than 2 labels) on all the web pages. The
problem here is how to rank the web pages for a new query.

In this paper we propose a very general Bayesian framework for collaborative ordinal re-
gression. The preference labels for one regression task are assumed to be generated from

a latent function, and all the latent functions share a common GP prior to account for the
inter-dependencies. Learning in this model is via an EM-like algorithm, where the E-step
is an Expectation-Propagation (EP) [6] iteration in the general case. The model is shown
to cover many existing models in the literature, and we empirically compare two of them
in a collaborative manner. The collaborative models are shown to give better performance
than the individual models.

The rest of the paper is organized as follows. In Section 2 we formally introduce the
collaborative framework and give some example models. Then in Section 3 we derive a
learning algorithm for collaborative ordinal regression. Some empirical results are shown
in Section 4, followed by Section 5 with some discussions and future directions.

2 Model Formulation

In this section we use the language of collaborative filtering to explain the model. We
assume we have an item set ofm items, with theith item denoted asxi ∈ Rd. Each user
gives a preference labely to each item, which is an integer between 1 (lowest preference)
andr (highest preference).

2.1 Ordinal Regression for Single User

In the single user case, the data consist of pairs{(xi, yi)}m
i=1, whereyi gives the preference

label for itemxi. One natural assumption is that there is an unobserved latent function
f(·) : Rd → R which maps items into a real line, and the ranking outputs are then generated
from the latent valuesf(x1), . . . , f(xm). More formally, letX = [x1, . . . ,xm]>, y =
[y1, . . . , ym] andf = [f(x1), . . . , f(xm)], the likelihood of preference labels is written as

P (y|X, f, θ) = P (y|f(x1), . . . , f(xm), θ) = P (y|f , θ),

whereθ is some model parameter.

To complete the Bayesian formulation, we assign a Gaussian prior to the functionf ,
f ∼ N (f ;h,Σ), which leads to a GP model for preference learning (see [3] for more
explanations).h is theprior function for f , andΣ is thekernel matrixwhich is generated
from acovariance functionκ(·, ·) (also known askernel function). The(i, k)-th entry in the
kernelΣ is calculated asκ(xi,xk), which measures the covariance between the functions
corresponding to inputsxi andxk. The final conditional likelihood is written as

P (y|X, θ, φ) =
∫

P (y|X, f, θ)P (f |φ) df,

whereφ ≡ {h,Σ} denote all the parameters for prior off .

2.2 Collaborative Ordinal Regression

In the multiple user case, we haven users, and userj has preference labelsyj . Follow-
ing the notation in previous subsection, we can model each userj as an ordinal regression
modelP (yj |f j , θj). However if we model them separately, label prediction for one user
will only depend on preference labels of this particular user, which means we will lose the
collaborative effectbetween users. To cope with this user dependency, we follow recent
works for multi-task learning [7, 8] and assign acommonGaussian Process priorφ to all
the functionsfj ’s in the GP model. In this nonparametric hierarchical Bayesian framework,
different users are constrained to have similar preference patterns on the items. In partic-
ular, the prior functionh defines the mean preference of these users, and kernel matrixΣ
constrains the smoothness of these functions over all items. To better reflect the “common

interest” between users, bothh andΣ can be adapted to the training data. The conditional
likelihood for the whole observationsD ≡ {y1, . . . ,yn} is then written as

P (D|X,Θ, φ) =
n∏

j=1

P (yj |X, θj , φ) =
n∏

j=1

∫
P (yj |X, fj , θj)P (fj |φ) dfj . (1)

To be more Bayesian, one can assign priors forθj ’s and forφ, which results in a more flex-
ible yet more complicated model. In particular, we can assign a Normal-Inverse-Wishart
prior for φ, as done in [7, 8]. For MAP estimate ofφ, this corresponds to a smooth term in
the learning process. In this paper we do not consider this prior for simplicity.

2.3 Example Models

In the literature, different ranking models differ in defining the likelihood termP (y|f , θ).
In this paper we discuss and compare two models, in which the likelihood term can be
factorized with respect to items, i.e.,P (y|f , θ) =

∏m
i=1 P (yi|f(xi), θ). Other forms of

likelihood is discussed briefly in Section 5.

Gaussian Process Regression (GPR)This model grants the problem simply as a GP
regression problem. The ranking labelyi is assumed sampled from a Gaussian with mean
f(xi) and some varianceσ2, i.e., (θ ≡ σ2)

P (yi|f(xi), θ) = N (yi; f(xi), σ2).

Gaussian Process Ordinal Regression (GPOR)This model is discussed in [3] and as-
sumes there are some “pins”b0, b1, . . . , br on the real line. Each labelyi is assigned ac-
cording to which area a disturbed valuezi ∼ N (zi; f(xi), σ2) is in:

P (yi|f(xi), θ) =
∫ byi

byi−1

N (zi; f(xi), σ2) dzi = Φ
(

byi − f(xi)
σ

)
−Φ

(
byi−1 − f(xi)

σ

)
.

We can defineb0 = −∞, br = +∞, and the model parameterθ ≡ {b1, . . . , br−1, σ}.
Both of these models can be generalized to collaborative models. In the following we call
the collaborative versions of them as CGPR and CGPOR, respectively.

3 Learning

In this section we derive a very general framework for learning in collaborative ordinal
regression model, where in principal we could use any likelihood function forP (y|f , θ).
Since for collaborative filtering it is very likely to have missing data in they’s, we also
consider this situation in the learning procedure. Starting from the likelihood function (1),
we apply Jensen’s inequality and obtain

log P (D|X,Θ, φ) =
n∑

j=1

log
∫

P (yj |X, fj , θj)P (fj |φ) dfj

≥
n∑

j=1

∫
Q(fj) log

P (yj |X, fj , θj)P (fj |φ)
Q(fj)

dfj , (2)

whereQ(fj) is some function offj . Therefore an EM-like learning procedure can be
derived by iteratively maximizing this lower bound (2) with respect toQ(fj) and model
parametersΘ andφ. In the E-step, we approximateQ(fj) to thea posterioridistribution
of fj , and we take a Gaussian form forQ, i.e., Q(fj) = N (fj ; f̂j , Σ̂j). While directly

maximizing the lower bound with respect toQ is difficult and may be intractable1, we can
apply Expectation-Propagation (EP) [6] to do this approximation, sinceP (yj |X, fj , θj)
takes a factorized form for eachj (see Appendix for details). This corresponds to Assumed
Density Filtering (ADF) as an approximation to the posterior. In the M-step, new model pa-
rameters are obtained by directly maximizing the lower bound (2) withQ(fj) known from
E-step. It is seen thatθj ’s andφ are not coupled in this optimization problem. Forθj we
need to solvêθj = arg minθj

∫
Q(fj) log P (yj |X, fj , θ) dfj analytically or numerically.

The update forφ can be easily obtained as

ĥ =
1
n

∑
j

f̂j , Σ̂ =
1
n

∑
j

[
(f̂j − ĥ)(f̂j − ĥ)> + Σ̂j

]
, (3)

which can be intuitively understood as an average over all the functions. We emphasize
that this update isindependentof the likelihood function form, and that different users are
connected and influencedonly via this update. Note here that we can learn both the mean
functionh and the (non-stationary) kernel matrixΣ, because we have multiple samples of
fj ’s from the GP prior (see [8] for a detailed discussion). This is in contrast to model fitting
in [3] where only a parameter for a stationary kernel is updated.

3.1 Learning in CGPR

In CGPR model, since the likelihood termP (yj |X, fj , θj) already takes a Gaussian form,
the approximation in the E-step is exact. Denotemj the length ofyj , the E-step turns out
to be

f̂j = Σm,j(Σj,j + σ2I)−1(yj − hj) + h, Σ̂j = Σ−Σn,j(Σj,j + σ2I)−1Σ>n,j ,

wherehj is the length-mj sub-vector ofh, andΣm,j andΣj,j denote them × mj and
mj × mj sub-matrix ofΣ, respectively. The M-step forθ is given analytically aŝσ2 =

1∑
j nj

∑
j

(
‖yj − f̂j‖2 + tr[Σ̂j]

)
. The whole algorithm turns out to be the same as in

[7] and [8], if we assign a Normal-Inverse-Wishart hyperprior toφ and consider MAP
estimates forφ.

3.2 Learning in CGPOR

The learning algorithm for CGPOR model is a natural extension of the EP algorithm given
in [3]. In the E-step, we fit a GaussianQ(fj) for thea posterioridistribution of each func-
tion fj . Since there may be items without labels, we only need to consider the likelihood
terms for labelled items. But after EP learning, the obtained GaussianQ(fj) is defined not
on labelled items, but onall the items (see Appendix). These Gaussian parameters will be
used to update priorφ in the M-step as given in (3), and we update “pins” for each user
separately via the same gradient method as in [3].

4 Empirical Study

We report some preliminary results on the EachMovie data set, which is popular for col-
laborative filtering research. For preprocessing we remove movies that are rated less than
50 times, and users who give less than 20 ratings. Then we end up with 809 movies, 4842
users and 334251 ratings. Since we don’t have a feature representation for each movie, we
select the 100 users with the most ratings as the true “users” in our model (i.e., regression
functions), and treat the other users as features for each movie. A correlation kernel [1] is

1This is known as variational EM in the literature.

Training Items GPR CGPR GPOR CGPOR
100 1.1971 1.1763 1.2366 1.2225
200 1.1283 1.1260 1.2126 1.1711
300 1.1042 1.1005 1.0907 1.0557
400 1.0970 1.0923 1.0454 1.0203

Table 1: Mean absolute errors for all the four models.

Training Items GPR CGPR GPOR CGPOR
100 0.7432 0.7372 0.6239 0.6168
200 0.7224 0.7213 0.6087 0.5999
300 0.7155 0.7142 0.5862 0.5782
400 0.7125 0.7085 0.5760 0.5723

Table 2: Mean zero-one errors for all the four models.

defined for movies and used as the priorΣ, in which we subtract the user mean and cal-
culate cosine distance between two movie vectors. All the missing values for features are
filled in as the corresponding user means. For the target values, about 60% of the entries
are missing.

For learning the 100 functions (for the 100 users), we randomly select a subset of
{100, 200, 300, 400} movies for training, and prediction performance over the rest movies
is averaged over all the users. Two comparison metrics are used:mean absolute erroris the
average deviation of the prediction from the target;mean zero-one errorgives an error 1 to
every incorrect prediction and then averages over all predictions. Prior functionh is set to
zero function initially.σ is initialized as 0.1 for GPR models and 1 for GPOR models. Ta-
ble 1&2 give the performance for each approach. It can be seen that both the collaborative
models outperform the corresponding individual models (in which we learn a GP model
for each user separately). This means ranking can be improved if we model all the tasks
jointly. If the prior kernelΣ is worse (e.g., calculated with less users), the differences will
be larger. GPOR models are in general better than GPR models, except for mean absolute
error with small training sets. This may be because of poor model fitting due to lack of
data.

5 Discussion

This paper goes beyond ordinal regression for a single function and introduces a very gen-
eral framework for modelling collaborative ordinal regression. A generative process of all
the ordinal entries is presented, and learning can be done via a mixed EM and EP algorithm.
Single-output ordinal regression is a special case of the proposed model.

The proposed EP algorithm allows any factorized form for the likelihood term
P (y|X, f, θ). Recently Burges et al. proposed a neural network learner called RankNet
[2], in which a logistic function is used to map pairwise outputs to probabilities. If we cast
RankNet model into a Bayesian framework, it actually factorizes likelihoodP (y|f , θ) with
respect to pairs, i.e.,P (y|f , θ) =

∏
yiByk

P (yi Byk|f(xi), f(xk), θ) =
∏

i,k Pik(oik, θ).2

Hereyi B yk means “itemi is preferred than itemk”, and oik ≡ f(xi) − f(xk). Pik is
simply the logistic functionPik(oik, θ) = exp(oik)

1+exp(oik) . Note that we have an empty set for
θ. This model is also ready to generalize to collaborative case, and the only difficulty for
learning is that in E-step we need to calculate the first and second moments of the distri-

2This correspondence can be seen if we thinkmaxθ L(θ) = minθ(− logL(θ)).

butionz ∼ exp(z)
1+exp(z)N (z;µz, σ

2
z). This involves one-dimensional integral and can be done

via sampling method. One may argue that this is not a proper generative model since all
the pairs should not be independent, but the experimental results in [2] somehow validate
the model (with a neural network learner). An interesting future work is to investigate how
this model behaves in a collaborative manner.

This paper focuses on atransductive settingof rank prediction, i.e., all the test items are
known a priori. We just take their targets as missing data and come up with predicted
means and variances after learning. For induction on previously unseen items, we need to
map the learned kernel back using a similar approach as in [8]. It’s interesting to empirically
evaluate this approach.

Appendix: EP Learning

We describe EP learning for E-step. In the following we ignore the subindexj since we
need to do EP for all the functionsfj ’s. To approximate thea posterioridistribution of
f as a GaussianQ(f), in EP learning we take a factorized form for the likelihood term,
i.e., P (y|X, f, θ) =

∏
k tk(f), and approximate each termtk(f) as a Gaussian sequen-

tially [6]. Gaussian EP has been carefully investigated recently in [4], and it turns out that
the critical terms for calculating EP approximation areZk(u,C) ≡

∫
tk(f)N (f ;u,C) df

and its gradientsgk(u,C) ≡ ∂ log Zk(u,C)/∂u andGk(u,C) ≡ ∂ log Zk(u,C)/∂C.
A careful manipulation shows that

gk(u,C) = C−1(〈f〉 − u),Gk(u,C) =
1

2
C−1

(
〈ff>〉 − u〈f〉> − 〈f〉u> + uu> −C

)
C−1,

where〈·〉 denotes the expectation under distributionf ∼ tk(f)N (f ;u,C)/Zk(u,C). Cal-
culation of these moments may be problematic for arbitrary termtk(f), but in this paper all
these terms are one-dimensional, therefore we can at least use numerical integration method
(e.g. Simpson quadrature) to calculate them. In some special cases, however, we can solve
these integrals analytically. For instance in CGPR model,tk(f) are already Gaussian, so
all the moments can be very easily calculated and the approximation is exact. For CGPOR
model, the moments can be obtained through special properties of the error function (see
[3] or [4]).

References

[1] J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In
ICML, pages 65–72, 2004.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullen-
der. Learning to rank using gradient descent. InICML, pages 89–96, 2005.

[3] W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression.Journal of
Machine Learning Research, 6:1019–1041, 2005.

[4] R. Herbrich. On Gaussian expectation propagation. 2005.

[5] P. McCullagh. Regression models for ordinal data.Journal of the Royal Statistical
Society B, 42(2):109–142, 1980.

[6] T. P. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,
Massachusetts Institute of Technology, 2001.

[7] A. Schwaighofer, V. Tresp, and K. Yu. Hierarchical bayesian modelling with gaussian
processes. InAdvances in Neural Information Processing Systems 17. MIT Press,
2005.

[8] K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaussian processes from multiple
tasks. InICML, pages 1017–1024, 2005.

