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ABSTRACT
Recently there have been several 2D or higher-order PCA-
style dimensionality reduction algorithms, but they mostly
lack probabilistic interpretations and are difficult to apply
with, e.g., incomplete data. We propose a probabilistic
framework to better understand the 2D and higher-order
PCA-style algorithms, and show that it takes several exist-
ing algorithms as its (non-probabilistic) special cases. Ef-
ficient learning algorithms are proposed, and the station-
ary points are theoretically analyzed. Empirical studies on
several benchmark data and real-world cardiac ultrasound
images demonstrate the strength of this framework.

General Terms
Algorithms, Theory, Performance

Keywords
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1. INTRODUCTION
Principal component analysis (PCA) is a well-known di-

mensionality reduction method for 1D data and has been
extensively applied in machine learning and pattern recogni-
tion [4]. Let {x1, . . . , xN} denote a set of N (column) vectors
of input data, PCA computes the eigen-decomposition of the
sample covariance matrix of the data, 1

N

∑

i(xi−x̄)(xi−x̄)⊤

(with x̄ being the mean vector), and outputs an orthog-
onal transformation which contains the eigenvector(s) cor-
responding to the largest eigenvalue(s). It is known that
PCA captures the largest variance direction(s) of the data,
and achieves the minimum reconstruction error (in vector
2-norm) among all projection directions with the same re-
duced dimensionality.

In recent years there are massive applications which gen-
erate higher-order data (multiway arrays, tensors), such as
images (order 2) in face recognition and videos (order 3)
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from surveillance cameras. Each order-O datum is repre-
sented as X ∈ R

I1×I2×···IO , and an order-2 datum (e.g., an
image) can be conveniently represented as a matrix X. Di-
mensionality reduction for this type of data is an active re-
search area and has strong connections to low-rank tensor
approximations. One can certainly convert every datum Xi

into a (column) vector and then apply traditional PCA, but
such tensor-to-vector conversion may lead to loss of spatial
locality information inherent in the data, and it also leads
to very high dimensional representation of the data which
is not feasible for PCA. Several 2D and higher-order algo-
rithms have been proposed such as PCA-style unsupervised
methods (e.g., [11, 12, 7]) and multiway data analysis (see
a recent survey [6]). However, so far there lack probabilistic
interpretations to these algorithms, and thus it is difficult to
apply them incrementally (with new data), locally (for sub-
regions), robustly (with outliers) and with missing entries.

Another important motivation of this work is the noise
model which is explicitly or implicitly assumed by most of
the previous deterministic work, i.e., they assume the noise
or the reconstruct error is homogeneous in all the matrix
entries. Therefore, the algorithm tries to reconstruct each
entry with the same effort (or the reconstruction error of
each entry contributes equally to the total loss). But in
many matrix factorization problems, we know that some re-
gions of the images are easy to contain higher noise than
other parts of the images (e.g., a certain medical scanner
might obtain high noise in a certain region of the scanned
image due to orientation and light angles), or some regions
are more important for the purpose of matrix reconstruction
(e.g., the face part in a face image). Other examples include
that sometimes the images might be annotated by some peo-
ple who consistently mark in a specific region. In terms of
reconstruction, these regions are likely to have higher noises.

In this paper we introduce a family of probabilistic mod-
els for 2D (and higher-order) data called the probabilistic
higher-order PCA (PHOPCA), and show that they recover
the optimal solutions of several PCA-style algorithms under
mild conditions (Section 3). These models for the first time
explicitly specify the generative process of higher-order ob-
jects, and take the probabilistic PCA [10, 8] as its 1D special
case. Efficient EM-type algorithms are derived for learn-
ing, with less time complexity than the non-probabilistic
counterparts (Section 4). Several extensions of PHOPCA
are also discussed (Section 5). Some empirical results are
shown using face images, USPS handwritten digits and a
real application in cardiac view recognition of echocardio-
gram (Section 6).



2. RELATED WORK

2.1 2D/Higher-Order PCA-style Algorithms
For 2D data like images, in [11] a one-sided linear trans-

formation, i.e., XiR, is applied to each image Xi. Let each
image Xi be of size m × n. With an orthonormal mapping
matrix R of size n× c (c < n), it projects each image from
space R

m×n to R
m×c. The analytical solution for R contains

the leading eigenvector(s) of the right one-sided sample co-

variance matrix, 1
N

∑N

i=1(Xi−X̄)⊤(Xi−X̄), where X̄ is the
mean image. Later GLRAM [12] considers two-sided trans-
formation, L⊤XiR, to project each image Xi from space
R

m×n to R
r×c, where the left-sided mapping matrix L(m×r)

and right-sided mapping matrix R(n×c) are both orthonor-
mal (r < m, c < n). GLRAM minimizes the average matrix
reconstruction errors of all images,

1

N

N
∑

i=1

‖Xi − LZiR
⊤‖2F ,

with respect to both the reduced images Zi and the mapping
matrices L and R. It is shown in [12] that GLRAM works
by iteratively computing the leading eigenvectors of the left
and right one-sided sample covariance matrices as follows
until convergence:

R← top c eigenvectors of
∑

i

X⊤

i LL⊤Xi with L fixed;

L← top r eigenvectors of
∑

i

XiRR⊤X⊤

i with R fixed.

GLRAM is further extended to higher-order multilinear PCA
in [7], where we consider tensor product

Xi ×1 U⊤

1 × · · · ×O U⊤

O

to map each datum from space R
I1×···×IO to R

P1×···×PO .
Here Xi ×j U⊤

j is the jth-mode product of tensor Xi by

(transpose of) the orthonormal mapping matrix Uj ∈ R
Ij×Pj

(Pj < Ij). Minimizing the reconstruction error leads to a
similar eigen-decomposition algorithm to iteratively find Uj

with other mapping matrices fixed (j = 1, . . . , O).
These higher-order methods are able to capture the spa-

tial locality and are in general more efficient and memory-
cheaper than standard PCA (after tensor-to-vector unfold-
ing). But in terms of reconstruction error, standard PCA is
shown to be however superior if the same effective projection
dimensions are used (see, e.g., [12]). So far it is still not well
understood how these algorithms relate to standard PCA.
Several other variants of PCA-style algorithms include [1,
3].

These methods are strongly related to the multiway data
analysis [6], where matrix singular value decomposition (SVD)
is extended to higher-order tensors using, e.g., Tucker and
PARAFAC models. The main difference is that the PCA-
style algorithms consider i.i.d. tensor samples, whereas mul-
tiway data analysis factorizes one big tensor. Our proposed
probabilistic models only interpret the former.

2.2 Probabilistic PCA
Probabilistic PCA (PPCA) emerges from the statistics

community and brings probabilistic explanations to PCA
[10, 8]. For input data x ∈ R

d, PPCA defines a genera-
tive model as x = Wz + µ + ǫ, with z ∈ R

k the latent

variables, W(d × k) the factor loadings, µ ∈ R
d the mean

vector, and ǫ a noise process which follows a normal dis-
tribution ǫ ∼ N (0, σ2Id). We also follow the convention
to assume z ∼ N (0, Ik). To see its connection to PCA,
we get the a posteriori distribution of z given x using the
Bayes’ rule, which is also a normal distribution. When
σ2 → 0, the distribution collapses to a single mass at the
mean (W⊤W)−1W⊤(x− µ), which turns out to be equiv-
alent to PCA up to a scaling and rotation factor [10]. This
indicates that the principal subspace obtained from PPCA
is the same as that in PCA.

With a set of observations {xi}Ni=1, the maximum likeli-
hood (ML) estimate of W can be obtained by eigen-decomposing
the sample covariance matrix. There also exists an expectation-
maximization (EM) algorithm for W, which is more effi-
cient, memory-cheaper, and allows us to principally handle
missing data and PPCA mixtures [10].

3. PROBABILISTIC HIGHER-ORDER PCA
We introduce the PHOPCA models in this section. For

simplicity we mainly focus on second-order data (we call
them“images”hereafter), and briefly mention the extensions
to higher-order data in Section 3.3.

We start with some notations. For any matrices A(m ×
n) = (aij) and B(p×q) = (bkl), we define vec(A) = (a11, a21,
. . . , am1, a12, . . . , am2, . . . , amn)⊤ ∈ R

mn the vectorization of
A, and A ⊗ B = (aijB) ∈ R

mp×nq the Kronecker product
of A and B. Recall that vec(ABC) = (C⊤ ⊗ A) vec(B)
holds for any matrices A, B and C with proper dimensions.
Finally we denote Σ ≻ 0 if square matrix Σ is positive def-
inite.

3.1 Preliminaries
Matrix-variate distributions, such as matrix-variate nor-

mal and Wishart, are widely used in statistics [2]. They are
in general the 2D extensions of some multi-variate distribu-
tions and show interesting characteristics. Among them the
matrix-variate normal is the most basic one.

Definition 1 (See [2]). Random matrix X(m × n) is
said to follow a matrix-variate normal distribution with mean
matrix M(m × n) and covariance matrices Σ(m ×m) ≻ 0
and Φ(n×n) ≻ 0, if vec(X⊤) ∼ N (vec(M⊤),Σ⊗Φ). This
is denoted as X ∼ N (M,Σ,Φ).1

Matrix-variate normal is defined through a normal distri-
bution on the vectorized form of the matrix, with a special
Kronecker covariance structure. It is not hard to see that
the p.d.f. of X ∼ N (M, Σ, Φ) is

1

(2π)
1
2

mn|Σ| 12 n|Φ| 12 m
etr
[

− 1
2
Σ−1(X−M)Φ−1(X−M)⊤

]

,

with etr(·) = exp(tr(·)) and tr(·) the matrix trace. Sim-
ple properties of matrix-variate normal include: 1) X⊤, the
transpose of X, follows N (M⊤, Φ,Σ); 2) The rows and/or
columns of X are independent if Σ and/or Φ are diagonal;
3) With m = 1 or n = 1, matrix-variate normal reduces to
multi-variate normal.

Following this definition we can also define a similar nor-
mal distribution for higher-order (O > 2) tensors, with a

1For simplicity we overload symbol N to denote both multi-
variate normal (with 2 parameters) and matrix-variate nor-
mal (with 3 parameters).



special Kronecker covariance Σ1⊗ · · · ⊗ΣO for the “vector-
ized” or “unfolded” form of tensor X. Note that the vector
unfolding should happen from order O back to order 1.

3.2 Probabilistic Second-Order PCA
Let each image X be a m×n matrix. To directly model the

spatial locality of the data, the second-order PHOPCA (or
PSOPCA) is based on the matrix-variate normal assumption
and assumes the following two-sided latent variable model :

X = LZR⊤ + M + Υ, (1)

where L(m× r) and R(n× c) are the row and column load-
ing matrices, and Z(r × c) is the latent variable core of X,
with r ≤ m, c ≤ n the row and column PCA dimensions,
respectively. M(m × n) is the mean matrix, and Υ is a
matrix-variate noise process. In this probabilistic frame-
work, we assume matrix-variate normal for both Z and Υ:
Z ∼ N (0, Ir, Ic), and Υ ∼ N (0, σIm, σIn) with noise level
σ > 0. This noise model will be further discussed in Sec-
tion 5.

From (1) we see that each 2D image X is generated by
sampling a (smaller) latent variable core Z, applying the row
and column loadings, and adding a mean and some noise to
every entry. With fixed dimensions (r, c), all the parameters
in PSOPCA are {L,R,M, σ}. When m = 1 or n = 1, L or
R is a (positive) scalar, and PSOPCA reduces to standard
PPCA. Therefore, PSOPCA is a 2D extension of PPCA. If
r = m or c = n, projection happens only on one side of the
image, and we call it one-mode PSOPCA.

The definition (1) indicates that the image X follows a
matrix-variate normal conditioned on the core Z. But un-
like in PPCA, if we integrate Z out, X in general does
not follow a matrix-variate normal. The a posteriori dis-
tribution of Z given X is also in general not matrix-variate
normal, but for one-mode PSOPCA it is. For instance if
L = Im, the a posteriori distribution of the core Z give im-
age X is N (B, Im,S), with B = (X−M)R(R⊤R+σ2I)−1,
S = σ2(R⊤R + σ2I)−1.

Another strong connection between PSOPCA and PPCA
is revealed via the following proposition (we put all the
proofs into Appendix for clarity).

Proposition 1. In the vectorized form, PSOPCA (1) is
a PPCA model x = Wz + µ + ǫ, with x = vec(X⊤), z =
vec(Z⊤), µ = vec(M⊤), W = L⊗R, and ǫ = vec(Υ⊤). In
this PPCA model z ∼ N (0, Irc) and ǫ ∼ N (0, σ2Imn).

This proposition states that PSOPCA is a special PPCA
model (in its vectorized form) and enforces a Kronecker
structure to the factor loadings W. This Kronecker struc-
ture is the key why PSOPCA is able to take into account
the row-wise and column-wise correlations in the images.
PSOPCA also has much less free parameters compared to a
standard PPCA model on the vectorized form of X.

3.3 Probabilistic Higher-Order PCA
We can easily extend PSOPCA to PHOPCA by realizing

that matrix product LZR⊤ in (1) is simply the first and
second-mode product of Z with L and R in the tensor form,
i.e., Z ×1 L ×2 R. For an order-O tensor X ∈ R

I1×···×IO ,
PHOPCA assumes the order-O latent variable model as:

X = Z ×1 U1 ×2 U2 × · · · ×O UO + M + Υ,

with Uj ∈ R
Ij×Pj the jth-mode factor loadings (Pj ≤ Ij),

and Z ∈ R
P1×···×PO the latent variable core of X. M is

the mean tensor, and Υ is an order-O noise process. A ten-
sor extension of matrix-variate normal distribution can be
assigned to Z and Υ, similar to that in PSOPCA. Propo-
sition 1 also holds for PHOPCA with a proper tensor-to-
vector unfolding and the special Kronecker factor loadings
W = U1⊗ · · ·⊗UO. When projection happens only on one
mode of the tensor (i.e., Pj < Ij , Pk = Ik when k 6= j), we
call it one-mode PHOPCA.

4. LEARNING IN PHOPCA MODELS
For simplicity we again start with PSOPCA, the second-

order PHOPCA, and then extend to general PHOPCA mod-
els. Given N images {Xi}Ni=1 which we assume are sam-
ples from the PSOPCA model (1), we focus on learning
the loading matrices L and R (with fixed PCA dimensions)
mainly using EM type algorithms. We will show that there
is in general no analytical ML solutions for PSOPCA (and
PHOPCA) projections, but for one-mode PSOPCA (and
one-mode PHOPCA) there is a global optimal solution (up
to a scaling and rotation factor). These learning algorithms
provide insights and probabilistic explanations to existing
PCA-style algorithms, and can be easily extended to handle
missing data, mixture models and other noise models.

By definition (1) we see that M is the mean of the matrix-
variate normal, and an easy derivation shows that its ML
estimate is M = 1

N

∑

i
Xi. Therefore for simplicity we drop

M in the following and assume M is subtracted from each
image Xi before learning.

4.1 Learning in One-mode PSOPCA
Without loss of generosity, we consider right one-mode

PSOPCA model Xi = ZiR
⊤+Υ, in which Zi(m×c) has the

same number of rows as Xi(m×n). As shown in Section 3.2,
the a posteriori distribution of Zi given Xi is a matrix-
variate normal N (Bi, Im,S), with

Bi = XiR(R⊤R + σ2I)−1, S = σ2(R⊤R + σ2I)−1. (2)

Treating Zi as the latent variable, we can derive a stan-
dard EM algorithm to learn R and σ iteratively. In the
E-step we calculate the a posteriori distribution of Zi which
gives the sufficient statistics (2), and then in the M-step we
maximize the expected log-likelihood of the images with re-
spect to R and σ, which is: − 1

2σ2

∑

i
E
(

‖Xi − ZiR
⊤‖2F

)

−
1
2

∑

i E
(

‖Zi‖2F
)

−Nmn log σ2. Here all the expectations E(·)
are with respect to Zi ∼ N (Bi, Im,S). A page of mathe-
matics leads to the following update equations:

R =

[

1

N

∑

i

X⊤

i Bi

] [

1

N

∑

i

B⊤

i Bi + mS

]−1

, (3)

σ2 =
1

mn

(

1

N

∑

i

‖Xi −BiR
⊤‖2F + m tr(R⊤RS)

)

. (4)

Finally we run (2), (3) and (4) until convergence. An im-
portant fact about this EM algorithm is that it leads to the
global optimal projection subspace for one-mode PSOPCA,
as summarized in the following theorem.

Theorem 2. Let G = 1
N

∑

i
X⊤

i Xi, and λ1 ≥ . . . ≥ λn

be its eigenvalues with eigenvectors u1, . . . ,un. The EM al-
gorithm for one-mode PSOPCA leads to the following ML



solutions for R and σ2:

R = Uc

(

1
m

Λc − σ2I
)

1
2 V, σ2 = 1

m(n−c)

n
∑

j=c+1

λj ,

where Λc = diag(λ1, . . . , λc), Uc = [u1, . . . ,uc], and V is
an arbitrary c× c orthogonal matrix.

This theorem generalizes the optimal solution of PPCA [10]
for which m = 1. It is seen that the ML estimate of noise
level σ2 is the average of the rest n − c eigenvalues divided
by the number of rows m. A similar result exists for L if
we do the left one-mode PSOPCA with R = In. If the
arbitrary rotation matrix V needs to be identified, one can
eigen-decompose R⊤R to recover it.

For a test image X∗, (the distribution of) its PSOPCA
projection is calculated as in (2), which is a point mass

B∗ = X∗Uc

√
mΛ

−
1
2

c V when σ → 0. Note that matrix G in
Theorem 2 is precisely the right one-sided sample covariance
used in [11], thus we have:

Corollary 3. The (right) one-mode PSOPCA algorithm
recovers the 2D PCA-style solution [11] when σ → 0, up to
a scaling and rotation factor.

Corollary 3 indicates that one-mode PSOPCA provides a
probabilistic explanation to the algorithm in [11]. The EM
algorithm provides another way of calculating those projec-
tion directions.

4.2 Learning in General PSOPCA
In the general PSOPCA model, we encounter some dif-

ficulty since the a posteriori distribution of Zi given Xi,
P (Zi|Xi,L,R) ∝ P (Xi|Zi,L,R)P (Zi), is in general not
matrix-variate normal. In this subsection we solve this op-
timization problem using the variational EM [5], in which
we maximize a lower bound of the data log-likelihood with
respect to some variational parameters in the E-step, and
with respect to L and R in the M-step. Refer to [5] for
more details on this type of algorithms.

In variational EM we need to choose a variational distribu-
tion Q(Zi) to approximate the true posterior, which is here
P (Zi|Xi,L,R). In the following we use a matrix-variate

normal, Q , N (Bi,T,S), with mean Bi(r × c) and covari-
ances T(r×r) ≻ 0, S(c×c) ≻ 0 being variational parameters.
Then the lower-bound to be maximized is

∑

i

∫

Q log P
Q

dZi,
i.e., the sum of the KL-divergence between Q and P for each
image i. Another (longer) page of mathematics leads to the
update equations in the following.

In the variational E-step, the lower bound is maximized
with respect to the variational parameters Bi, T and S. It
turns out that:

T = c σ2
[

tr(R⊤RS)L⊤L + σ2 tr(S) Ir

]−1
, (5)

S = r σ2[ tr(L⊤LT)R⊤R + σ2 tr(T) Ic

]−1
, (6)

and each Bi needs to satisfy L⊤LBiR
⊤R+σ2Bi = L⊤XiR.

To solve this we need to make a vectorization on both sides
and solve a (big) linear equation
[

(R⊤R)⊗ (L⊤L) + σIc ⊗ σIr

]

vec(Bi) = vec(L⊤XiR)

with respect to vec(Bi), and then reshape it back to get Bi.
When σ is small (e.g., < 0.001), however, the σ term in the
equation corresponds to a small add-on (σ2) to the diagonal

entries of matrix (R⊤R) ⊗ (L⊤L). In this case we might
safely ignore the σ term and yield

Bi = (L⊤L)−1L⊤XiR(R⊤R)−1 = L+XiR
+⊤ (7)

to remove the computational burden. The entry-wise differ-
ence is at most O(σ2). Here L+ (R+) denote the pseudo-
inverse of L (R).

In the variational M-step, we maximize the lower bound
with respect to factor loadings L and R to get:

L =

[

1

N

∑

i

XiRB⊤

i

] [

1

N

∑

i

BiR
⊤RB⊤

i + tr(R⊤RS)T

]−1

(8)

R =

[

1

N

∑

i

X⊤

i LBi

] [

1

N

∑

i

B⊤

i L⊤LBi + tr(L⊤LT)S

]−1

(9)

Finally we iterate (5)∼(9) until convergence. Note that up-
dates for T and S are coupled (so as for L and R). σ can
also be optimized if desired. It is easy to check that these
equations lead to one-mode PSOPCA updates when we fix
L = Im (or R = In).

Unlike one-mode PSOPCA, the general PSOPCA does
not have an analytical global solution. When σ → 0, the
variational parameters T and S tend to be zero matrices,
and the variational posterior of Zi tend to decouple to a
single mass (7) (this is also how to calculate the PSOPCA
projection for a test image X∗). In this case the iterative
updates (7), (8) and (9) lead to the following important
result:

Theorem 4. Let G(L) = 1
N

∑

i
X⊤

i LL+Xi and H(R) =
1
N

∑

i
XiRR+X⊤

i be two matrix-valued functions with input
matrix L(m× r) and R(n× c). Let Uc(L) and Vr(R) con-
tain eigenvectors of G(L) and H(R) with leading c and r
eigenvalues, respectively. Then the stationary point of zero-
noise, general PSOPCA algorithm (7)∼(9) satisfies:

RR+ = Uc(L)Uc(L)⊤, LL+ = Vr(R)Vr(R)⊤. (10)

Theorem 4 builds an important connection between general
PSOPCA models and the GLRAM [12]. If we write

G(L) =
1

N

∑

i

X⊤

i Vr(R)Vr(R)⊤Xi

and

H(R) =
1

N

∑

i

XiUc(L)Uc(L)⊤X⊤

i

by plugging in (10) at the stationary point of PSOPCA, this
is exactly the stationary point of repeatedly calculating the
SVD of G(L) and H(R) in GLRAM (cf. Section 2.1, also
see [12]). Therefore, we see GLRAM can be viewed as a
special case of general PSOPCA models when σ → 0, which
is summarized as follows:

Corollary 5. Zero-noise PSOPCA models and the GLRAM
[12] have the same stationary point.

Combined with Proposition 1, we see that GLRAM (in its
vectorized form) is indeed a PCA model. Actually when
both L and R are constrained to be column orthonormal
(as in GLRAM), the two-sided factorization X = LZR⊤



has vectorized form vec(X⊤) = (L ⊗ R) vec(Z⊤), which is
indeed a PCA model since L⊗R is also orthonormal. Thus
GLRAM defines a PCA-style factorization of the vectorized
images, and constrains that the orthonormal mapping ma-
trix in PCA is a Kronecker product of two smaller-sized or-
thonormal matrices. This explains why: 1) GLRAM has
less space requirement than PCA in the vectorized space;
2) GLRAM gets better reconstruction than the one-sided
algorithm [11]; and 3) GLRAM cannot yield better recon-
struction than PCA with the same effective dimensions (as
empirically verified in [12]). [12] also suggests applying a
PCA to vec(Z⊤) after GLRAM, and it’s clear from here
that GLRAM + PCA is still a PCA model.

4.3 Learning in PHOPCA
The learning algorithms for PSOPCA can be extended to

learning in PHOPCA. For one-mode PHOPCA where pro-
jection only happens at the jth-mode, we can “unfold” the
other modes to yield a big matrix

X
(j)
i ∈ R

Ij×(Ij+1Ij+2...IOI1I2...Ij−1)

for each tensor Xi, and apply the algorithm in Section 4.1. A
similar theorem like Theorem 2 exists, and after convergence
we find the globally optimal projection subspace in mode
j. For general PHOPCA where we need to project in at
least two modes, no global optimum exists and we can turn
to variational EM algorithms similar to those described in
Section 4.2. In the most interesting case where the noise
level σ → 0, the E-step (7) is extended to get the core Bi as
the all-mode product:

Bi = Xi ×1 U+⊤

1 ×2 U+⊤

2 × · · · ×O U+⊤

O , (11)

and the M-step to update the factor loadings is now

Uj =

[

∑

i

X
(j)
i ·E(j)⊤

i

] [

∑

i

E
(j)
i · E(j)⊤

i

]−1

,

where Ei = Bi×1U1×· · ·×j−1Uj−1×j+1Uj+1×· · ·×OUO ∈
R

I1...Ij−1PjIj+1...IO is the tensor product of Bi with all-mode
factor loadings except Uj . A similar result like Theorem 4
can also be proved for PHOPCA, which indicates that this
iterative algorithm yields the same stationary point as the
higher-order multilinear PCA [7]. A corollary is that after
tensor-to-vector unfolding, multilinear PCA is still a PCA
model with Kronecker-type factor loading matrix. For a test
tensor X

∗
, the PHOPCA projection can be calculated using

(11).

5. DISCUSSIONS AND EXTENSIONS
The proposed PHOPCA framework extends PPCA to model

random higher-order objects, and is shown to take several
2D and higher-order PCA-style algorithms as (determinis-
tic) special cases. The probabilistic interpretations provide
additional insights to various algorithms (e.g., show that
they are special PCA models after unfolding).

PHOPCA also enjoys less time complexity than the deter-
ministic counterparts, and less space complexity than PPCA
(after unfolding). The general PSOPCA has time complex-
ity O(tNmn max(r, c)) and space complexity O(mn). The
higher-order PHOPCA has O(tN

∏

j
Ij maxj{Pj}) as the

time complexity. Here t is the number of EM iterations.
As of PPCA to PCA, PHOPCA provides additional ben-

efits to the higher-order PCA-style algorithms:

• Incremental learning with newly obtained images
is easy via the EM algorithm (which is crucial for real
applications of higher-order PCA-style algorithms).

• Missing data can now be handled nicely with an ad-
ditional E-step (to estimate these missing values).

• Other noise models can be introduced for or against
certain projection dimensions (or factors).

• Mixture of PHOPCA models can be easily derived
(similar to [9]) for higher-order object clustering and
(local) projections.

• Robust higher-order PCA projections can be in-
troduced (via, e.g., a student’t model instead of nor-
mal) when there are “outlier” tensor objects.

We only briefly go into two of these extensions, with some
empirical results shown in the next section.

5.1 Higher-Order Factor Analysis
In PHOPCA the noise level σ is fixed for all input dimen-

sions. If we allow them to differ, we are more in the family
of factor analysis (FA) models for higher-order data. Take
PSOPCA as an example. If we change the noise model for
Υ to be Υ ∼ N (0,Σ0,Φ0), where Σ0(k, k) = σkk > 0 and
Φ0(ℓ, ℓ) = φℓℓ > 0, then the noise level at a specific entry
(k, ℓ) in the image can be computed as σkkφℓℓ. Therefore
by choosing (or adapting) different (σkk) and (φℓℓ), we can
make PHOPCA for or against certain regions in the images
(in, e.g., applications where we want to focus on the facial
area and ignore the background, or where we know a higher
noise was introduced from a certain medical scanner). The
learning algorithms for higher-order FA-type noise model
can be easily derived (with the noise model fixed). The de-
tails are in the Appendix.

5.2 Mixture of Higher-Order Projections
PHOPCA allows us to consider MPHOPCA, a mixture

of higher-order projections, where for each datum we sam-
ple one PHOPCA model from a pool of, say, K candidate
models, and then sample the datum from that PHOPCA
model. This leads to a clustering structure of the data, and
following the same discussions in [9] we can show that it is
actually a Gaussian mixture model (after tensor-to-vector
unfolding) with a specific covariance structure. Learning
in MPHOPCA is basically (a weighted) PHOPCA learning
with an additional E-step estimating the (soft) weights that
each datum belongs to these component models. The details
are omitted here.

6. EMPIRICAL STUDY

6.1 Benchmark Image Data
Here we mainly illustrate the results of second-order PHOPCA,

i.e., PSOPCA, since it’s easier to show and compare. We
first test on several image benchmark data sets (face image
data sets ORL, AR and the USPS handwritten digit images).
ORL is a well-known data set for face recognition. It con-
tains the face images of 40 persons, for a total of 400 images
(size 92 × 112). AR is a large face image dataset, of which
we use a subset containing 1638 face images of 126 persons
(size 101× 88 after cropping and subsampling). USPS is an



Figure 1: Reconstructions of some ORL face im-
ages. row1: original images; row2: using general
PSOPCA; row3: using (right) one-mode PSOPCA;
row4: using PSOPCA with FA noise model. row5:
Mixture of PSOPCA with 5 components. The pro-
jection dimensions are r = c = 15.

image data set consisting of 9298 handwritten digits of “0”
through “9”. We use a subset of USPS (image size 16× 16).

For all the experiments we run 20 EM iterations (a typical
learning curve is shown in Figure 2 left). We first illustrate
some reconstructed images in Figure 1 from ORL. As ex-
pected, the general PSOPCA is better than the (right) one-
mode PSOPCA, and both the FA-type noise model (row 4)
and mixture of PSOPCAs (row 5) yield even better recon-
structed images. For the FA-type noise model suppose we
want to focus on the facial region (rows 12 to 80 and columns
40 to 100), and assume low noise level (0.0001) to the di-
agonals in focused rows and columns whereas putting high
noise level (0.001) to the other diagonals. For the mixture
model, 5 components are used with random initialization.

A thorough comparison of reconstruction errors are shown
in Figure 2, where projection dimensions are (r, c) for gen-
eral PSOPCA and ⌈rc/m⌉ for right one-mode PSOPCA.
Note that we choose the projection dimension for one-mode
PSOPCA such that the compressed images have the same
overall dimensionality as that in the general PSOPCA (i.e.,
they have the same compression ratio). The metric is the
root mean square error which is the square root of the mean
reconstruction error. As suggested in [12], we just show the
results with r = c. As expected, general PSOPCA com-
pletely recovers the GLRAM results, and clearly outper-
forms one-mode PSOPCA. The mixture model yields better
performance, but mainly in the region of smaller projec-
tion dimensions. PPCA was also tried on these data (with
r× c = 225 projection dimensions) and yielded the smallest
reconstruction error (as expected).

6.2 Automatic Cardiac View Recognition

Ultrasound images of the heart are usually taken as 2D
slice of the 3D heart from standardized 15 different angles.
Diagnostic analysis of these images requires, as the first step,
recognizing the pose of the heart so that spatial cardiac
structures can be identified. Cardia views are imaged from
4 windows: the parasternal, apical, subcostal and supraster-
nal windows, which leads up to 15 basic views. Automatic
view recognition is the problem of automatically classifying
cardiac ultrasound images with respect to their views. We
collected patient data with various image quality from St.
Francis Hospital at New York which contain largely 4 views
(Figure 3 shows two of the views).

Figure 3: Two views of the heart: left, apical 4
chamber (a4c); right, parasternal short axis (psax).

Ultrasound videos of 100 patients were collected where
some patients had multiple images for one view or certain
views missing, resulting in 87 a4c and 83 psax clips of 480×
640 image frames. PCA can be employed to extract features
useful for discrimination from raw images or evaluated im-
age features. We illustrate the potentials of PSOPCA by
distinguishing psax clips from a4c clips. These images were
randomly split into the training set (44 a4c vs. 42 psax)
and test set (43 a4c vs. 41 psax) One-mode PSOPCA,
general PSOPCA and mixture PSOPCA were applied to
the psax clips to produce the projection matrices L and R.
Then features for each clip were generated by projecting the
first frame of the clip along the projection matrices. PPCA
simply could not run on 480 × 640 images so we had to
down-sample the images to 200× 200, which resulted in in-
ferior classification accuracy. Moreover, PSOPCA with a
focus area ([150, 350] × [250, 450]), where noise level is 1e-
6 in contrast to 1e-4 in the remaining area, was also used
to emphasize the area that is the most discriminative for
the psax view. The projection dimension of PSOPCA was
(r, c) = (10, 10), equivalent to 100 features, which generated
acceptable accuracy as in Figure 4. For one-mode PSOPCA,
we used c = 1 which generates a lot more features 480× 1.

Any suitable classification methods can be then utilized
to construct a classifier using these features. In our ex-
periments, we used least squares support vector machine
(LSSVM) with a tuning parameter, the regularization fac-
tor µ, which was optimized to 800 according to a 3-fold
cross-validation on training data. As shown in Figure 4,
mixture PSOPCA and PSOPCA with a focus area outper-
formed other approaches.

7. CONCLUSION
A family of PHOPCA models were proposed which pro-

vide probabilistic interpretations to many existing PCA-
style algorithms. Several extensions were discussed, and
some remain for future work.
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Figure 2: Typical learning curve for PSOPCA (left), and RMSE comparisons on ORL, AR and USPS (right).
As expected, GLRAM yields completely the same results as General PSOPCA.
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Figure 4: Test classification ROC curves of LSSVM.
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Appendix
Proof of Proposition 1. The reformulation from (1)

to PPCA is done by applying the formula vec(ABC) =
(C⊤ ⊗ A) vec(B) to the matrix transpose of both sides of
(1). Note that by definition the matrix-variate normal in
MVPP for Z and Υ leads to the multi-variate normal in
this PPCA for z and ǫ.

Proof of Theorem 2. We give a sketch here. We plug
(2) into (3) to find the stationary point of the EM up-
dates. At convergence we have R = σ2GRS(SR⊤GRS +
σ4mS)−1. Let R = UDV be its SVD, we have S = σ2V⊤(D2+
σ2I)−1V. Then after some mathematics we obtain U⊤GU =
m(D2 + σ2I), which means U contains the eigenvectors of

G. Let G = UΛU⊤ be its SVD, we have D = ( 1
m

Λ−σ2I)
1
2 .

Finally a similar study as that in [10] shows that D corre-
sponds to the largest c eigenvalues. This gives R. Plug this
into (4) leads to the solution for σ2.

Proof of Theorem 4. We give a sketch here. When
σ = 0, S and T are zero matrices. With L fixed, plugging (7)

into (9) yields R = GR
[

R⊤GR
]−1

R⊤R at the stationary

point. Let R = EDF⊤ be its SVD, we have EE⊤GE = GE.
To get E we eigendecompose E⊤GE = PΨP⊤ and obtain
EPΨ = GEP. This indicates EP is the eigenvector of G,
and the only stable stationary solution is EP = Uc. Then
we have RR+ = EE⊤ = UcU

⊤
c . Similarly we can obtain

LL+ with R fixed.

EM updates for general PSOPCA with FA noise model:

T = c

[

tr(R⊤
Φ

−1

0 RS)L⊤
Σ

−1

0 L + tr(S) Ir

]

−1

S = r

[

tr(L⊤
Σ

−1

0 LT) R
⊤
Φ

−1

0 R + tr(T) Ic

]

−1

Solve Bi from L
⊤
Σ

−1

0 LBiR
⊤
Φ

−1

0 R + Bi = L
⊤
Σ

−1

0 XiΦ
−1

0 R

R =

[

∑

i

X
⊤

i Σ
−1

0 LBi

] [

∑

i

B
⊤

i L
⊤
Σ

−1

0 LBi + N tr(L⊤
Σ

−1

0 LT)S

]

−1

L =

[

∑

i

XiΦ
−1

0 RB
⊤

i

] [

∑

i

BiR
⊤
Φ

−1

0 RB
⊤

i + N tr(R⊤
Φ

−1

0 RS)T

]

−1


