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Abstract

Most current multi-task learning frameworks
ignore the robustness issue, which means that
the presence of “outlier” tasks may greatly
reduce overall system performance. We intro-
duce a robust framework for Bayesian multi-
task learning, t-processes (TP), which are
a generalization of Gaussian processes (GP)
for multi-task learning. TP allows the sys-
tem to effectively distinguish good tasks from
noisy or outlier tasks. Experiments show that
TP not only improves overall system perfor-
mance, but can also serve as an indicator for
the “informativeness” of different tasks.

1. Introduction

Multi-task learning is based on the assumption that
multiple tasks share certain structures, e.g., hidden
units in neural networks (Caruana, 1997), common
feature mappings (Ando & Zhang, 2005; Zhang et al.,
2005; Argyriou et al., 2006), regularizations (Evgeniou
& Pontil, 2004), or covariance structure in a hierarchi-
cal Bayesian perspective (Bakker & Heskes, 2003; Yu
et al., 2005). Therefore, tasks can mutually benefit
from these shared structures.

Most multi-task learning systems implicitly or explic-
itly assume that all the tasks are equally important, for
instance, by equally weighting them in a regularization
framework. This assumption does not hold for many
real world problems, due to different measurement
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noises, different task functionalities or intentions. One
example is in movie rating systems where the goal is to
predict a user’s preferences for a set of movies. Multi-
task learning is well-suited for this scenario because
users often share interests (cf. Yu et al., 2006). How-
ever,“malicious” or “careless” users who intentionally
or unintentionally rate movies poorly may contami-
nate the system to such an extent that the overall
performance is degraded. Therefore, it is important
to distinguish good tasks from noisy or outlier tasks
(the malicious or careless users) and thus improve the
robustness of multi-task learning system. We call this
the robust multi-task learning problem.

In this paper we introduce t-processes (TP), a general-
ization of Gaussian processes (GP), for robust multi-
task learning. TP defines a nonparametric Bayesian
prior over functions, and extends GP in the sense that
given any fixed number of data points, the function
values are sampled not from a Gaussian, but from a
multivariate t distribution. It is well-known that mul-
tivariate t is implicitly an infinite Gaussian mixture
and is more robust than the Gaussian. We study some
basic properties of TP in Section 2. We show that
TP is a robust version of GP for multi-task learning
(Section 3), and that learning and inference can be
done effectively using variational Bayes (Section 4).
After further discussions (Section 5), we present em-
pirical results on synthetic data and two real world
problems (movie rating and temperature prediction)
in which TP outperforms GP for robust multi-task
learning and also recovers “informativeness” of each
task (Section 6).

2. The t-Processes

We begin by reviewing the multivariate Gaussian, t
distributions and the Gaussian processes.
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Figure 1. P.d.f. (left) and c.d.f. (right) of one dimensional
t distribution t1(0, 1), t3(0, 1) and N (0, 1) = t+∞(0, 1).

2.1. Multivariate Gaussian and t Distributions

A random variable x ∈ Rd is said to follow a multi-
variate Gaussian distribution N (µ,Σ) if the p.d.f. is

P (x) = (2π)−
d
2 |Σ|− 1

2 exp
(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

Here µ ∈ Rd is the mean vector, and Σ ∈ Rd×d is
the positive definite covariance matrix. A well-known
limitation of a Gaussian distribution is that it is not
robust, since if the observations are contaminated by
outliers, the accuracy of estimated µ and Σ can sig-
nificantly be compromised (see, e.g., Gelman et al.,
1996). A more robust alternative is the multivariate t
distribution, with the p.d.f. defined as

π−
d
2 |Σ|− 1

2 ν
ν
2
Γ(ν+d

2 )
Γ(ν

2 )

(
ν + (x−µ)>Σ−1(x−µ)

)− ν+d
2
,

where Γ(·) is the Gamma function. We conventionally
write x ∼ tν(µ,Σ), with ν > 0 being the degrees of
freedom. The univariate Student-t is a special case
with d = 1 and µ = 0. The t distribution is known to
have “heavy tails” in its p.d.f. compared to a Gaussian
distribution (see Figure 1).

It is well-known that samples from tν(µ,Σ) can be
obtained by repeatedly sampling the latent variable τ
and x following

x ∼ N (µ, 1
τ Σ), τ ∼ Gamma(ν

2 ,
ν
2 ),

where Gamma(α, β) is the Gamma distribution with
density βατα−1 exp(−βτ)/Γ(α). This indicates that
multivariate t can be realized as an infinite mixture of
Gaussians, where all the Gaussian components have
the same mean but different scales of the covariance.

The following propositions summarize some useful re-
sults for the multivariate t distribution. These can be
easily proved using the latent variable interpretation
(see Liu & Rubin, 1995; Kotz & Nadarajah, 2004).

Proposition 2.1. limν→+∞ tν(µ,Σ) = N (µ,Σ).

Proposition 2.2. If w ∈ Rd ∼ tν(µw,Σw), then for
any matrix X ∈ Rn×d, Xw ∼ tν(Xµw,XΣwX>).
Proposition 2.3. Let x ∼ tν(µ,Σ), and let x =

(
x1
x2

)
,

µ =
(
µ1
µ2

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
be the [d1, d − d1] par-

tition of corresponding vectors and matrix. Then x1

and x2|x1 are independently distributed, with

x1 ∼ tν(µ1,Σ11), x2|x1 ∼ tν+d1(µx2|x1
,Σx2|x1),

where

µx2|x1
= Σ21Σ−1

11 (x1 − µ1) + µ2,

Σx2|x1 = ν+(x1−µ1)
>Σ−1

11 (x1−µ1)
ν+d1

(
Σ22 −Σ21Σ−1

11 Σ12

)
.

2.2. Gaussian Processes

A Gaussian process (GP) is a stochastic process
that defines a nonparametric prior over functions in
Bayesian statistics (Rasmussen & Williams, 2006). A
random real-valued function f : Rd → R follows a GP,
denoted by GP(h, κ), if for every finite number of data
points x1, . . . ,xn ∈ Rd, f = {f(xi)}n

i=1 follows a mul-
tivariate Gaussian N (h,K) with mean h = {h(xi)}n

i=1

and covariance K = {κ(xi,xj)}n
i,j=1. h(·) and κ(·, ·)

are called the mean function and the covariance func-
tion, respectively, and κ needs to satisfy the Mercer’s
condition and is also called the kernel (Schölkopf &
Smola, 2002). GP is widely applied to many learn-
ing problems. Please refer to (Rasmussen & Williams,
2006) for a comprehensive overview of GP models.

A GP framework for multi-task learning was intro-
duced in (Schwaighofer et al., 2005; Yu et al., 2005).
Each task is fully specified by a latent function f (with
corrupted Gaussian noises), and all these functions
share a common GP prior in the hierarchical Bayesian
framework. In this way the multiple tasks can collab-
orate with each other. An EM algorithm was derived
for learning the GP prior h and K.

2.3. t-Processes

As shown, Gaussian is not robust and can suffer from
“outlier” samples. Extending this to the functional
space, GP for multi-task learning may also lack ro-
bustness if there are “outlier” tasks. We now define
t-processes that improve the robustness of GP.
Definition 2.4 (t-Process). A random, real-valued
function f : Rd → R is said to follow a t-process (TP)
with degrees of freedom ν > 0, mean function h(·) and
covariance function κ(·, ·), if for any positive integer n
and any x1, . . . ,xn ∈ Rd,

f = [f(x1), . . . , f(xn)]> ∼ tν(h,K),

with h = [h(x1), . . . , h(xn)]>, K = {κ(xi,xj)}n
i,j=1.
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Figure 2. Five samples (blue solid) from GP(h, κ) (left)
and T Pν(h, κ) (right), with h(x) = cos(x) (red dashed),
κ(xi, xj) = 0.01 exp(−20(xi − xj)

2) and ν = 5.

This definition needs some justification, since it im-
plicitly assumes that multivariate t distributions keep
marginals, i.e., any marginal distribution of tν(h,K) is
still multivariate t, with the same degrees of freedom ν
and the corresponding part of h and K as mean and co-
variance. This is non-trivial for general distributions,
but can be proved for multivariate t (see Prop. 2.3).
We denote a sample from a TP as f ∼ T Pν(h, κ).

The following results show some basic properties of TP
and follow easily from Prop. 2.1 to 2.3.

Proposition 2.5 (Mixture Interpretation). Sampling
f ∼ T Pν(h, κ) is equivalent to two-step sampling

f ∼ GP(h, 1
τ κ), τ ∼ Gamma(ν

2 ,
ν
2 ).

And moreover, limν→+∞ T Pν(h, κ) = GP(h, κ).

Proposition 2.6 (Linear Interpretation). In a linear
system f(x) = w>x, if w ∼ tν(µw,Σw), then f ∼
T Pν(h, κ) with h(x) = µ>wx, κ(xi,xj) = x>i Σwxj.

Proposition 2.7 (Posterior Process). If the prior pro-
cess f ∼ T Pν(h, κ), then conditioned on a length-n
vector fn = [f(x1), . . . , f(xn)]>, the posterior process
f∗|fn ∼ T Pν+n(h∗, κ∗), where

h∗(x) = k>x K−1
n (fn − hn) + h(x)

κ∗(xi,xj) = ν+(fn−hn)>K−1
n (fn−hn)

ν+n

(
κij − k>xi

K−1
n kxj

)
with hn = [h(x1), . . . , h(xn)]>, Kn = {κ(xs,xt)}n

s,t=1,
kx = [κ(x,x1), . . . , κ(x,xn)]>, and κij = κ(xi,xj).

Given a mean function h and a covariance function κ,
T Pν(h, κ) defines a set of robust processes, in which
each process has a desired robustness level denoted by
the (inverse of) degrees of freedom ν. In general the
bigger the ν, the smaller the robustness control of the
process. Prop. 2.5 shows that TP defines an infinite
mixture of GPs, and also converges to a GP as ν goes
to infinity. This also means that GP is a special case
of TP without any robustness control. If the Gamma

variable τ happens to be small, the sampled function
will look “noisy” (see examples in Figure 2).

Similar to the linear interpretation of GP, Prop. 2.6
shows that a linear predictive model has a TP in-
terpretation if its linear weights follow a multivari-
ate t prior. Another important result is given in
Prop. 2.7, which says the posterior process of a TP
is another TP. Note that the new TP has not only
new mean and covariance functions, but also new de-
grees of freedom ν + n which depend on the sample
size n. It is easy to check that when ν goes to infinity,
Prop. 2.7 recovers the posterior process of GP(h, κ).
It provides additional insights to compare the poste-
rior process of T Pν(h, κ) and that of GP(h, κ). They
have the same posterior mean, but the posterior co-
variance of TP is a rescaling of that of the corre-
sponding GP. The square of the Mahalanobis distance,
d2
Kn

(fn,hn) = (fn−hn)>K−1
n (fn−hn), measures the

explainability of current parameter (h, κ) to the obser-
vation fn. The scale of the posterior covariance de-
creases with decreasing Mahalanobis distance. ν acts
as a smoothing factor for this adjustment. As more ob-
servations are available, the posterior degrees of free-
dom increase, and the posterior process tends to have
less robustness control. So when observations are suf-
ficient, the posterior covariance is able to reflect the
uncertainty and no robustness control is necessary.

2.4. t-Processes with Noisy Observations

In real world applications, we normally cannot observe
the function values f(xi) directly, but only yi which
introduces additional noise or transformation. Since
TP only replaces the nonparametric prior for f , all
noise models for GP can be potentially used for TP.
For instance, in regression tasks we can assume f(xi)
is corrupted with Gaussian noise, i.e., P (yi|f(xi)) ∼
N (f(xi), σ2); in binary classification tasks we can take
any sigmoid function λ(·) such that P (yi|f(xi)) =
λ(yif(xi)). See Section 5 for more discussions on this.

3. Multi-Task Learning with TP

We follow the notations in (Yu et al., 2005) to describe
our robust multi-task learning with TP. For simplicity
we only consider regression tasks with Gaussian noise,
but the entire framework is easily extended to other
noise models. Let there be m tasks, and task ` has
outputs/labels y` on an item set X` of size n`. Let
X = {x1, . . . ,xn} ⊃

⋃m
`=1 X` be the total item set,

and Y = {y1, . . . ,ym} be the outputs of all tasks.
The indices of X that X` contains are denoted in I`.
Suppose there is a latent function f` underlying each
task `, which generates the label y` independent of
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Figure 3. Graphical models for TP multi-task learning
(left) and the infinite mixture interpretation (right).

other tasks. To allow that the multiple tasks share
some information with each other, we assume all these
m latent functions share the same TP prior T Pν(h, κ).
The sampling process is as follows:

y`|f `, σ
2 ind∼ N (f `, σ

2I), ` = 1, . . . ,m;

f `|ν, h, κ
iid∼ tν(h`,K`,`).

Here we denote f ` = {f`(xi)}i∈I`
, h` = {h(xi)}i∈I`

,
K`,` = {κ(xi,xj)}i,j∈I`

, and I the identity matrix.
Since multivariate t has an interpretation of infinite
Gaussian mixture, the equivalent sampling process is:

y`|f `, σ
2 ind∼ N (f `, σ

2I), ` = 1, . . . ,m;

f `|τ`, h, κ
ind∼ N (h`,

1
τ`

K`,`), τ`|ν
iid∼ Gamma(ν

2 ,
ν
2 ).

This formulation turns out to be useful in later sections
for learning and inference. Let h = {h(xi)}n

i=1, K =
{κ(xi,xj)}n

i,j=1, then the conditional log-likelihood of
the data can be written as

logP (Y|X) =
∑

`

log
∫
PN (y`|f `, σ

2)Pt(f `|ν,h,K) df `

with

Pt(f `|ν,h,K) =
∫
PN

(
f `

∣∣∣h, 1
τ`

K
)
PG

(
τ`

∣∣ ν
2 ,

ν
2

)
dτ`.

Here PN , Pt and PG denote Gaussian, multivariate t
and Gamma distributions, respectively. Note that we
write h, K instead of h`, K`,` for the `-th task since
all the tasks share the same TP parameters.

A standard way of fitting h and κ is to assume h ≡ 0
and fit a parametric form for κ (e.g., Gaussian ker-
nel), but as pointed out by (Yu et al., 2005), pa-
rameterizing kernel in this way limits the flexibility of
multi-task learning, and the learned kernel may not be
able to reflect the covariance structure shared among

all the tasks. Therefore, we instead assign a conju-
gate prior to the (finite) TP prior (h,K), which takes
a Normal-Inverse-Wishart distribution: P (h,K) =
N (h;h0,

1
πK) IW(K; η,K0), where the parameters h0

and K0 are respectively the prior mean and base ker-
nel, and π, η correspond to the equivalent sample sizes
before we observe any data (Schwaighofer et al., 2005;
Yu et al., 2005). For the maximum a posteriori (MAP)
estimate of h and K, they correspond to a smooth term
in the learning process (cf. Section 4). The final graph-
ical model is shown in Figure 3, with model parameters
Θ = {σ2, ν,h,K} and hyperparameters {h0,K0, π, η}.

4. Learning and Inference

Learning a multi-task TP is more complicated than
learning a multi-task GP due to the multivariate t
prior for each latent function f `. To simplify learn-
ing we treat both f ` and τ` as latent variables and
apply variational Bayes (VB) learning (Jordan et al.,
1999). In the following we first discuss learning with-
out missing labels (i.e., y` is fully labeled for each task
`, n` = n), and then turn to the general (and more re-
alistic) case with missing labels.

4.1. Learning without Missing Labels

Given input data X, fully observed labels Y and model
parameters Θ, the joint posterior P ({f `, τ`}) is

1
Z

∏
`

PN (y`|f `, σ
2)PN

(
f `

∣∣∣h, 1
τ`

K
)
PG

(
τ`

∣∣ν
2 ,

ν
2

)
which is intractable due to the intractability of the nor-
malization term Z. In the VB setting, we approximate
this posterior with a factorized form

Q({f `, τ`}) =
∏

`

PN (f `|µ`,C`)PG(τ`|α`, β`) (1)

in which {µ`,C`, α`, β`} are variational parameters,
with µ` ∈ Rn` , C` ∈ Rn`×n` , α`, β` > 0. Then in the
E-step of the VB learning, we minimize the Kullback-
Leibler (KL) divergence of Q and P ,

∫
Q log Q

P df ` dτ`,
w.r.t. these variational parameters by setting the cor-
responding derivatives to 0. This is equivalent to max-
imizing a lower bound of the data log-likelihood. This
leads to the following iterative updates:

µ` = C`

(
1

σ2 y` + α`

β`
K−1h

)
, C` =

(
1

σ2 I + α`

β`
K−1

)−1

α` = ν+n
2 , β` = ν+(µ`−h)>K−1(µ`−h)+tr(K−1C`)

2

where tr(·) denotes matrix trace. In the M-step, the
KL divergence is minimized w.r.t. model parameters
Θ. Here we fix the degrees of freedom ν (see Section 5
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for numerical update and discussions), and update σ2

with ML estimate and h, K with MAP estimates. The
update equations are as follows:

h = 1

π+
∑

`

α`

β`

(
πh0 +

∑
`

α`

β`
µ`

)
, (2)

K = 1
η+m

(
π(h− h0)(h− h0)> + ηK0

+
∑

`
α`

β`

[
C` + (µ` − h)(µ` − h)>

])
, (3)

σ2 = 1
mn

∑
`[‖y` − µ`‖2 + tr(C`)], (4)

where ‖ · ‖ denote vector 2-norm. The whole VB algo-
rithm iterates E-step and M-step until convergence.

These update equations are similar to those for multi-
task GP model (cf. Yu et al., 2005), but the differences
provide additional insights to TP multi-task learning:

• In E-step, updates for µ` and C` take into account
the weight α`

β`
which is the expected scale variable

τ` for the `-th task.

• The expected τ`, i.e., α`

β`
, gets smaller if the `-th

task is poorly explained by the shared common
structure h and K, i.e., if (µ` − h)>K−1(µ` − h)
is big (the task mean is “far away” from shared
mean) or tr(K−1C`) is big (the task covariance is
“far away” from shared covariance) or both. This
means outlier tasks are automatically penalized.

• ν acts as a smoothing term for updates of τ`. The
bigger the ν, the smaller the penalties for outlier
tasks.

• In M-step, the shared mean h and covariance K
are weighted averages (with weights given in α`

β`
)

of all tasks and the hyperprior.

• With ν → +∞, all the update equations reduce to
those for multi-task GP model (Yu et al., 2005).

4.2. Learning with Missing Labels

When there are missing labels, standard VB solution
is to treat them as missing data and estimate them as
well in the E-step. This leads to:

µ` = Kn,`R`(y` − h`) + h,

C` = β`

α`

(
K−Kn,`R`K>

n,`

)
, (5)

α` = ν+n`

2 , β` = ν+(y`−µ`)
>R`K`,`R`(y`−µ`)+σ2 tr(R`)

2

with R` = (K`,` + σ2 α`

β`
I)−1 and Kn,` = K(:, I`) the

n × n` sub-matrix of K. Note that we only need to
inverse an n` × n` matrix for the `-th task. In the

Algorithm 1 Robust Multi-Task Learning
Require: A size-n item set with input features X ∈ Rn×d.
Require: m tasks of partial labels Y = {y1, . . . ,ym}, in

which task ` labels a subset of n` ≤ n items.
1: Choose prior mean h0 (e.g., zero function), base kernel

K0 (e.g., a Gaussian kernel), degrees of freedom ν > 0,
noise level σ2 > 0, and hyperparameter π > 0, η > 0.

2: Initialize h = h0 and K = K0.
3: repeat
4: for ` = 1, . . . , m do
5: Iterate (5) to obtain µ`, C`, α`, β` for `-th task.
6: end for
7: Update shared parameter h, K, σ2 via (2), (3), (6).
8: until the improvement is smaller than a threshold.

M-step h and K are updated as before, and the noise
level is now

σ2 =
1

m
∑

` n`

∑
`

[
‖y` − µ`(I`)‖2 + tr(C`(I`, I`))

]
. (6)

Only the sub-vector µ`(I`) and sub-matrix C`(I`, I`)
enter the calculation here since only these n` labels
are observed in y`. The final algorithm is shown in
Algorithm 1. The time complexity is O(m(nn̂2 + n̂3))
where n̂ = max{n`}, similar to that of a GP model.

4.3. Label Prediction

For label prediction, we wish to infer for a test point x∗

the probability of its label y∗` for the `-th task. After
observing training data D = {X,Y}, we have

P (y∗` |D,Θ) =
∫
P (y∗` |f∗` ,Θ)P (f∗` |D,Θ) df∗` (7)

with f∗` = f`(x∗). Here P (y∗` |f∗` ,Θ) is the noise model
N (f∗` , σ

2), and P (f∗` |D,Θ) can be calculated as

P (f∗` |D,Θ) =
∫
P (f∗` |f `,Θ)P (f `|D,Θ) df `. (8)

Prop. 2.3 says that P (f∗` |f `,Θ) is tν+n`
(µ∗` , σ

∗2
` ), with

µ∗` = k>K−1
`,` (f ` − h`) + h(x∗),

σ∗2` =
ν+(f`−h`)

>K−1
`,` (f`−h`)

ν+n`
[κ(x∗,x∗)− k>K−1

`,` k].

The problems are: (i) integral (8) is difficult to calcu-
late; (ii) h(x∗) and κ(x∗,x∗) might not be available for
test data x∗, since we are learning a finite TP poste-
rior (h,K) which could be substantially different from
the prior (h, κ).

To address the first problem, we can rewrite (7) as a
mixture of GP regression problems, with the help of
latent variable τ`:

P (y∗` |D,Θ) =
∫
P (τ`|D,Θ)P (y∗` |τ`,D,Θ) dτ`. (9)
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(a) 20 samples from a TP (b) Kernel of the TP (c) The base kernel (d) Learned h from GP

(e) Learned K from GP (f ) Learned h from TP (g) Learned K from TP (h) Function weights in TP

Figure 4. Multi-task learning on a 1D toy data using GP (d,e) and TP (f,g). See descriptions in Section 6.

Conditioned on τ`, P (y∗` |τ`,D,Θ) here is simply a GP
regression problem with mean h and kernel 1

τ`
K, which

is a Gaussian N (µ̂∗` , σ̂
∗2
` ) with

µ̂∗` = k>(K`,` + σ2τ`I)−1(y` − h`) + h(x∗),

σ̂∗2` = 1
τ`

[
κ(x∗,x∗)− k>(K`,` + σ2τ`I)−1k

]
.

P (τ`|D,Θ) is our posterior belief of τ`, for which
we can use the variational posterior Gamma(α`, β`).
When the number of labeled data n` is large, the pos-
terior Gamma will peak at mean α`

β`
with small vari-

ance α`

β2
`
, and it suffices to use the mode α`−1

β for τ` and
remove the integral in (9). Otherwise one may need to
compute a one-dimensional integral numerically.

For the second problem, we distinguish two settings.
In transductive setting where all the test data are avail-
able before learning, we can put them all into the
training item set X and obtain h(x∗) and κ(x∗,x∗)
directly. In inductive setting where test data are un-
known at learning phase or if there are too many such
that the previous solution is unfeasible, Yu et al., 2005,
Theorem 5.2 suggests that we can define α̂` = K−1

0 f `

and assign a hyperprior to α̂` instead of to f ` in the
multi-task GP framework. In this way we can still re-
cover h(x∗) and κ(x∗,x∗) by means of the posterior
structure of α̂`. This whole solution can be seamlessly
transferred into the proposed TP framework, and we
refer interested readers to (Yu et al., 2005) for details.

5. Discussion

Learning the Degrees of Freedom ν: In this pa-
per we suggest fixing the degrees of freedom ν in the

learning process, due to possible pitfalls of empirically
estimating ν reported in (Fernandez & Steel, 1999).
However if an empirical estimate of ν is desired, one
can set the derivative of the log-likelihood w.r.t. ν to
0 in M-step and numerically solve for ν the equation

1
m

∑
`

(
ln α`

β`
− α`

β`
+ ψ(α`)− lnα`

)
−ψ(ν

2 )+ln ν
2+1 = 0

with ψ(·) the digamma function. Empirically we found
estimating ν in this way leads to small ν (less than 1) in
first VB steps and normally leads to bad local minima.

TP for Robust Linear Function Learning: Some-
times the functions we are interested are linear func-
tions, i.e., f`(x) = w>

` x with w` ∈ Rd. Prop. 2.6
allows us to easily adapt the TP framework for linear
functions. A similar VB algorithm can be derived for
learning with time complexity O(m(nd2 + d3)).

Double Robustness Control: We mainly discuss
TP with Gaussian noise in this paper, but it is straight-
forward to consider other noise models. An interesting
case is the t noise model, where P (y`|f `) also follows
a multivariate t distribution. This is the canonical ro-
bust regression for each function f`. Therefore, having
a TP with a t noise model achieves double robustness
control, in both task level and item level. Take a movie
rating system as an example. The t noise model helps
to uncover the “outlier” movies, which have large pre-
diction variances w.r.t. a certain user; the TP helps to
find the “outlier” users, who (intentionally or uninten-
tionally) give ratings far away from the majorities and
are not helpful to others. Empirically evaluating this
joint model will be part of the future work.
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6. Empirical Study

In Figure 4 we show a toy multi-task learning prob-
lem with TP on a 1D data set of 315 points (0 to π
with 0.01 space). 15 “good” functions and 5 “noisy”
functions are sampled from a given TP, with ν = 5,
mean h(x) = cos(x) (thick black line in (a)) and ker-
nel K shown in (b). Gaussian noise model is used with
σ = 0.01. This kernel is non-stationary such that every
sampled function has a highly non-smooth part in the
middle. For multi-task learning, we assume only 20%
randomly selected data points are observed for each
function, and our goal is to learn the common struc-
ture h and K for better prediction. A Gaussian kernel
(c) is chosen as the base kernel, and the learned h and
K are shown in (d), (e) for GP multi-task learning and
(f), (g) for TP multi-task learning, respectively. It is
seen that TP does a good job of recovering both h and
K, but GP is clearly biased by the noisy functions. In
(h) we show the learned expected weight τ` for each
function `. Noisy functions 16 to 20 have lower weights
compared to the others as expected.

6.1. Robust Collaborative Filtering

We apply TP on the MovieLens data set for robust
collaborative filtering.1 MovieLens contains 100,000
ratings for 1682 movies from 943 users, and as a pre-
processing we select the 500 users with the most rat-
ings (i.e., more likely to be “good” users) and end up
with 927 movies by removing those rated less than 20
times. The “genres” information of the movies is used
as features, from which a linear kernel is computed as
the base kernel. Since we do not know which users
are “noisy” users, we manually create 50 such users
and see if TP can uncover them. In collaborative fil-
tering a user can be “noisy” in many ways, and we
tested the following three well-known possibilities: 1)
He rates movies totally randomly (i.e., he is an un-
informative user); 2) He intentionally rates a subset
of movies high or low (i.e., he tries to increase or de-
crease the popularity of some movies); 3) He always
gives high or low ratings (i.e., he is always satisfied or
critical). TP can uncover all three types of users, and
due to lack of space we only show results for the sec-
ond scenario. Figure 5 (left) shows the learned weights
τ (with 50 randomly sampled movie ratings observed
for each user and TP parameter ν = 5, π = 1, η = 1,
σ = 0.1) for all users, and it is clear that the weights
for users 501 ∼ 550 are low compared to the others.
Some of the 500 users also have low weights, and we
suspect they are also “noisy”. A user ranking based on
this weight might also be interesting for certain appli-

1The data is available at http://www.grouplens.org/.

Figure 5. The learned user weights on MovieLens (left) in-
cluding “noisy” users 501∼550, and rating prediction for
GP and TP (right). The metrics are RMSE (root mean-
square error), MAE (mean absolute error) and MZOE
(mean zero-one error). All improvements are statistically
significant (p-value 0.01 in Wilcoxon rank sum test).

cations. Figure 5 (right) shows the rating prediction
performance for the rest of ratings each user makes,
and TP outperforms GP in all the evaluation metrics
(averaged over 20 independent repeats).

6.2. Indoor Temperature Prediction

We also apply TP to a sensor network problem. Sup-
pose a fixed number of sensors are placed at fixed in-
door locations, and the temperature is read at a certain
time interval for each of these sensors. The problem
is to predict the temperature at certain sensors from
the other sensor readings. This can be regarded as a
multi-task learning problem, where each “data point”
is a sensor and each “task” is a time stamp.

It is well-known that the temperature correlation w.r.t.
these sensor locations plays a crucial role for tempera-
ture prediction. This can be represented via the kernel
K in the multi-task learning view, where a GP with
covariance matrix K is used to model the temperature
readings. In reality, however, there might be certain
time stamps at which temperature readings are noisy,
due to abnormal weather conditions, unexpected hu-
man activities, mistakes by careless readers, etc. We
need a robust model which can automatically penalize
these “noisy” time-stamp readings and learn a clean
kernel K. The TP model is ideal for this purpose.

We consider the temperature data collected in Berke-
ley since 00:58:15, Feb. 28, 2004.2 There were 54 sen-
sors in the building, and temperature measurements
were read at 30 seconds intervals. We use the data
in the first 24 hours and end up with 46 sensors with
1730 time stamps after removing bad sensors and ig-
noring those time stamps with less than 30 readings.
The first 1200 time stamps are used for training the

2The data and the description are available at
http://www.cs.cmu.edu/∼guestrin/Research/Data/.
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(a) Learned kernel from TP (b) RMSE vs no. training sensors k (c) RMSE vs ν with k = 10 (d) Expected τ for training tasks

Figure 6. Indoor temperature prediction results using TP models.

kernel K, and the last 530 time stamps are left out
for prediction. The learned kernel K (with ν = 10,
h0 = 0, K0 = I, π = 1, η = 1 and σ = 0.1) is shown
in Figure 6(a), in which strong correlations are found
for sensors 1 ∼ 10, 15 ∼ 35 and 36 ∼ 46. We then fix
the kernel and randomly pick k = [10, 15, 20, 25] sensor
readings as observations and predict the readings for
each of the remaining 530 time stamps. (b) shows the
performance measured in RMSE over 50 trials, with
kernels trained using different degrees of freedom ν.
TP kernels yield significantly smaller errors than the
kernel trained with GP. In (c) we fix k = 10 and draw
RMSE versus ν in log scale with error bars. TP er-
ror is much lower for small ν, and it goes down but
then increases and approaches the GP error as ν goes
from 1 to +∞. Thus a good trade-off for ν can yield
the best performance, and the prediction error is not
sensitive w.r.t. degrees of freedom ν.

Finally (d) shows the expected weights of the training
time stamps. We note that the time stamps in the mid-
dle have much lower weights than the others, namely
from 7:15 a.m. to 3:15 p.m. While a final explana-
tion is still missing, one reason might be that there
were human activities (e.g., 8 hours regular working
time) within the building which made the measure-
ments noisy. Alternately, sensor correlation during
day time might be quite different from that at night,
which happens to be the correlation TP is learning.
In this case TP suggests how to learn correlations us-
ing separated time stamps (or using a mixture of GPs)
and provides a hint on how to separate the tasks. We
also note that a time stamp (683) has a tiny weight
(0.0001), and upon examination this may be due to
reading errors (some sensors read 40, whereas the av-
erage temperature is 20). This indicates that TP can
indeed detect outlier tasks.
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