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Abstract

This paper describes nonparametric Bayesian
treatments for analyzing records containing
occurrences of items. The introduced model
retains the strength of previous approaches
that explore the latent factors of each record
(e.g. topics of documents), and further uncov-
ers the clustering structure of records, which
reflects the statistical dependencies of the la-
tent factors. The nonparametric model in-
duced by a Dirichlet process (DP) flexibly
adapts model complexity to reveal the clus-
tering structure of the data. To avoid the
problems of dealing with infinite dimensions,
we further replace the DP prior by a simpler
alternative, namely Dirichlet-multinomial al-
location (DMA), which maintains the main
modelling properties of the DP. Instead of re-
lying on Markov chain Monte Carlo (MCMC)
for inference, this paper applies efficient vari-
ational inference based on DMA. The pro-
posed approach yields encouraging empirical
results on both a toy problem and text data.
The results show that the proposed algorithm
uncovers not only the latent factors, but also
the clustering structure.

1 Introduction

We consider the problem of modelling a large corpus of
high-dimensional discrete records. Our assumption is
that a record can be modelled by latent factors which
account for the co-occurrence of items in a record. To
ground the discussion, in the following we will iden-
tify records with documents, latent factors with (la-
tent) topics and items with words. Probabilistic la-
tent semantic indexing (PLSI) [7] was one of the first
approaches that provided a probabilistic approach to-
wards modelling text documents as being composed

of latent topics. Latent Dirichlet allocation (LDA) [3]
generalizes PLSI by treating the topic mixture param-
eters (i.e. a multinomial over topics) as variables drawn
from a Dirichlet distribution. Its Bayesian treatment
avoids overfitting and the model is generalizable to
new data (the latter is problematic for PLSI). How-
ever, the parametric Dirichlet distribution can be a
limitation in applications which exhibit a richer struc-
ture. As an illustration, consider Fig. 1 (a) that shows
the empirical distribution of three topics. We see that
the probability that all three topics are present in a
document (corresponding to the center of the plot) is
near zero. In contrast, a Dirichlet distribution fitted to
the data (Fig. 1 (b)) would predict the highest proba-
bility density for exactly that case. The reason is the
limiting expressiveness of a simple Dirichlet distribu-
tion.

This paper employs a more general nonparametric
Bayesian approach to explore not only latent topics
and their probabilities, but also complex dependen-
cies between latent topics which might, for example,
be expressed as a complex clustering structure. The
key innovation is to replace the parametric Dirichlet
prior distribution in LDA by a flexible nonparamet-
ric distribution G(·) that is a sample generated from
a Dirichlet process (DP) or its finite approximation,
Dirichlet-multinomial allocation (DMA). The Dirich-
let distribution of LDA becomes the base distribution
for the Dirichlet process. In this Dirichlet enhanced
model, the posterior distribution of the topic mixture
for a new document converges to a flexible mixture
model in which both mixture weights and mixture pa-
rameters can be learned from the data. Thus the a
posteriori distribution is able to represent the distribu-
tion of topics more truthfully. After convergence of the
learning procedure, typically only a few components
with non-negligible weights remain; thus the model is
able to naturally output clusters of documents.

Nonparametric Bayesian modelling has attracted con-
siderable attentions from the learning community
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Figure 1: Consider a 2-dimensional simplex represent-
ing 3 topics (recall that the probabilities have to sum
to one): (a) We see the probability distribution of
topics in documents which forms a ring-like distribu-
tion. Dark color indicates low density; (b) The 3-
dimensional Dirichlet distribution that maximizes the
likelihood of samples.

(e.g. [1, 13, 2, 15, 17]). A potential problem with
this class of models is that inference typically relies on
MCMC approximations, which might be prohibitively
slow in dealing with the large collection of documents
in our setting. Instead, we tackle the problem by a
less expensive variational mean-field inference based
on the DMA model. The resultant updates turn out to
be quite interpretable. Finally we observed very good
empirical performance of the proposed algorithm in
both toy data and textual document, especially in the
latter case, where meaningful clusters are discovered.

This paper is organized as follows. The next section
introduces Dirichlet enhanced latent semantic analy-
sis. In Section 3 we present inference and learning
algorithms based on a variational approximation. Sec-
tion 4 presents experimental results using a toy data
set and two document data sets. In Section 5 we
present conclusions.

2 Dirichlet Enhanced Latent Semantic
Analysis

Following the notation in [3], we consider a corpus
D containing D documents. Each document d is
a sequence of Nd words that is denoted by wd =
{wd,1, . . . , wd,Nd

}, where wd,n is a variable for the n-th
word in wd and denotes the index of the corresponding
word in a vocabulary V . Note that a same word may
occur several times in the sequence wd.

2.1 The Proposed Model

We assume that each document is a mixture of k latent
topics and words in each document are generated by
repeatedly sampling topics and words using the distri-

butions

wd,n|zd,n;β ∼ Mult(zd,n, β) (1)
zd,n|θd ∼ Mult(θd). (2)

wd,n is generated given its latent topic zd,n, which
takes value {1, . . . , k}. β is a k × |V | multinomial pa-
rameter matrix,

∑
j βi,j = 1, where βz,wd,n

specifies
the probability of generating word wd,n given topic
z. θd denotes the parameters of a multinomial distri-
bution of document d over topics for wd, satisfying
θd,i ≥ 0,

∑k
i=1 θd,i = 1.

In the LDA model, θd is generated from a k-
dimensional Dirichlet distribution G0(θ) = Dir(θ|λ)
with parameter λ ∈ Rk×1. In our Dirichlet enhanced
model, we assume that θd is generated from distribu-
tion G(θ), which itself is a random sample generated
from a Dirichlet process (DP) [5]

G|G0, α0 ∼ DP(G0, α0), (3)

where nonnegative scalar α0 is the precision parame-
ter, and G0(θ) is the base distribution, which is identi-
cal to the Dirichlet distribution. It turns out that the
distribution G(θ) sampled from a DP can be written
as

G(·) =
∞∑

l=1

πlδθ∗l (·) (4)

where πl ≥ 0,
∑∞

l πl = 1, δθ(·) are point mass distri-
butions concentrated at θ, and θ∗l are countably infi-
nite variables i.i.d. sampled from G0 [14]. The proba-
bility weights πl are solely depending on α0 via a stick-
breaking process, which is defined in the next subsec-
tion. The generative model summarized by Fig. 2(a)
is conditioned on (k × |V |+ k + 1) parameters, i.e. β,
λ and α0.

Finally the likelihood of the collection D is given by

LDP(D|α0, λ, β) =
∫

G

{
p(G;α0, λ)

D∏
d=1

∫
θd

[
p(θd|G)

Nd∏
n=1

k∑
zd,n=1

p(wd,n|zd,n;β)p(zd,n|θd)
]
dθd

}
dG.

(5)

In short, G is sampled once for the whole corpus D, θd

is sampled once for each document d, and topic zd,n

sampled once for the n-th word wd,n in d.

2.2 Stick Breaking and Dirichlet Enhancing

The representation of a sample from the DP-prior in
Eq. (4) is generated in the stick breaking process in
which infinite number of pairs (πl, θ

∗
l ) are generated.



(a) (b) (c)

Figure 2: Plate models for latent semantic analysis. (a) Latent semantic analysis with DP prior; (b) An equivalent
representation, where cd is the indicator variable saying which cluster document d takes on out of the infinite
clusters induced by DP; (c) Latent semantic analysis with a finite approximation of DP (see Sec. 2.3).

θ∗l is sampled independently from G0 and πl is defined
as

π1 = B1, πl = Bl

l−1∏
j=1

(1−Bj),

where Bl are i.i.d. sampled from Beta distribution
Beta(1, α0). Thus, with a small α0, the first “sticks”
πl will be large with little left for the remaining sticks.
Conversely, if α0 is large, the first sticks πl and all
subsequent sticks will be small and the πl will be more
evenly distributed. In conclusion, the base distribu-
tion determines the locations of the point masses and
α0 determines the distribution of probability weights.
The distribution is nonzero at an infinite number of
discrete points. If α0 is selected to be small the am-
plitudes of only a small number of discrete points will
be significant. Note, that both locations and weights
are not fixed but take on new values each time a new
sample of G is generated. Since E(G) = G0, initially,
the prior corresponds to the prior used in LDA. With
many documents in the training data set, locations θ∗l
which agree with the data will obtain a large weight.
If a small α0 is chosen, parameters will form clusters
whereas if a large α0, many representative parameters
will result. Thus Dirichlet enhancement serves two
purposes: it increases the flexibility in representing
the posterior distribution of mixing weights and en-
courages a clustered solution leading to insights into
the document corpus.

The DP prior offers two advantages against usual doc-
ument clustering methods. First, there is no need to
specify the number of clusters. The finally resulting
clustering structure is constrained by the DP prior,
but also adapted to the empirical observations. Sec-
ond, the number of clusters is not fixed. Although
the parameter α0 is a control parameter to tune the
tendency for forming clusters, the DP prior allows the
creation of new clusters if the current model cannot

explain upcoming data very well, which is particularly
suitable for our setting where dictionary is fixed while
documents can be growing.

By applying the stick breaking representation, our
model obtains the equivalent representation in
Fig. 2(b). An infinite number of θ∗l are generated from
the base distribution and the new indicator variable cd
indicates which θ∗l is assigned to document d. If more
than one document is assigned to the same θ∗l , cluster-
ing occurs. π = {π1, . . . , π∞} is a vector of probability
weights generated from the stick breaking process.

2.3 Dirichlet-Multinomial Allocation (DMA)

Since infinite number of pairs (πl, θ
∗
l ) are generated in

the stick breaking process, it is usually very difficult to
deal with the unknown distribution G. For inference
there exist Markov chain Monte Carlo (MCMC) meth-
ods like Gibbs samplers which directly sample θd using
Pólya urn scheme and avoid the difficulty of sampling
the infinite-dimensional G [4]; in practice, the sam-
pling procedure is very slow and thus impractical for
high dimensional data like text. In Bayesian statistics,
the Dirichlet-multinomial allocation DPN in [6] has of-
ten been applied as a finite approximation to DP (see
[6, 9]), which takes on the form

GN =
N∑

l=1

πlδθ∗l ,

where π = {π1, . . . , πN} is an N -vector of proba-
bility weights sampled once from a Dirichlet prior
Dir(α0/N, . . . , α0/N), and θ∗l , l = 1, . . . , N , are
i.i.d. sampled from the base distribution G0. It has
been shown that the limiting case of DPN is DP
[6, 9, 12], and more importantly DPN demonstrates
similar stick breaking properties and leads to a simi-
lar clustering effect [6]. If N is sufficiently large with



respect to our sample size D, DPN gives a good ap-
proximation to DP.

Under the DPN model, the plate representation of our
model is illustrated in Fig. 2(c). The likelihood of the
whole collection D is

LDPN
(D|α0, λ, β) =

∫
π

∫
θ∗

D∏
d=1

[ N∑
cd=1

p(wd|θ∗, cd;β)

p(cd|π)
]
dP (θ∗;G0) dP (π;α0) (6)

where cd is the indicator variable saying which unique
value θ∗l document d takes on. The likelihood of doc-
ument d is therefore written as

p(wd|θ∗, cd;β) =
Nd∏
n=1

k∑
zd,n=1

p(wd,n|zd,n;β)p(zd,n|θ∗cd
).

2.4 Connections to PLSA and LDA

From the application point of view, PLSA and LDA
both aim to discover the latent dimensions of data
with the emphasis on indexing. The proposed Dirich-
let enhanced semantic analysis retains the strengths
of PLSA and LDA, and further explores the cluster-
ing structure of data. The model is a generalization
of LDA. If we let α0 →∞, the model becomes identi-
cal to LDA, since the sampled G becomes identical to
the finite Dirichlet base distribution G0. This extreme
case makes documents mutually independent givenG0,
since θd are i.i.d. sampled from G0. If G0 itself is not
sufficiently expressive, the model is not able to cap-
ture the dependency between documents. The Dirich-
let enhancement elegantly solves this problem. With
a moderate α0, the model allows G to deviate away
from G0, giving modelling flexibilities to explore the
richer structure of data. The exchangeability may not
exist within the whole collection, but between groups
of documents with respective atoms θ∗l sampled from
G0. On the other hand, the increased flexibility does
not lead to overfitting, because inference and learn-
ing are done in a Bayesian setting, averaging over the
number of mixture components and the states of the
latent variables.

3 Inference and Learning

In this section we consider model inference and
learning based on the DPN model. As seen
from Fig. 2(c), the inference needs to calculate the
a posteriori joint distribution of latent variables
p(π,θ∗, c, z|D, α0, λ, β), which requires to compute
Eq. (6). This integral is however analytically infeasi-
ble. A straightforward Gibbs sampling method can be

derived, but it turns out to be very slow and inappli-
cable to high dimensional data like text, since for each
word we have to sample a latent variable z. Therefore
in this section we suggest efficient variational infer-
ence.

3.1 Variational Inference

The idea of variational mean-field inference is to
propose a joint distribution Q(π,θ∗, c, z) condi-
tioned on some free parameters, and then en-
force Q to approximate the a posteriori distribu-
tions of interests by minimizing the KL-divergence
DKL(Q‖p(π,θ∗, c, z|D, α0, λ, β)) with respect to those
free parameters. We propose a variational distribution
Q over latent variables as the following

Q(π,θ∗, c, z|η,γ,ϕ,φ) = Q(π|η)·
N∏

l=1

Q(θ∗l |γl)
D∏

d=1

Q(cd|ϕd)
D∏

d=1

Nd∏
n=1

Q(zd,n|φd,n)

(7)

where η,γ,ϕ,φ are variational parameters, each tai-
loring the variational a posteriori distribution to each
latent variable. In particular, η specifies an N -
dimensional Dirichlet distribution for π, γl specifies
a k-dimensional Dirichlet distribution for distinct θ∗l ,
ϕd specifies an N -dimensional multinomial for the in-
dicator cd of document d, and φd,n specifies a k-
dimensional multinomial over latent topics for word
wd,n. It turns out that the minimization of the KL-
divergence is equivalent to the maximization of a
lower bound of the ln p(D|α0, λ, β) derived by apply-
ing Jensen’s inequality [10]. Please see the Appendix
for details of the derivation. The lower bound is then
given as

LQ(D) =
D∑

d=1

Nd∑
n=1

EQ[ln p(wd,n|zd,n, β)p(zd,n|θ∗, cd)]

+ EQ[ln p(π|α0)] +
D∑

d=1

EQ[ln p(cd|π)] (8)

+
N∑

l=1

EQ[ln p(θ∗l |G0)]− EQ[lnQ(π,θ∗, c, z)].

The optimum is found setting the partial derivatives
with respect to each variational parameter to be zero,



which gives rise to the following updates

φd,n,i ∝ βi,wd,n
exp

{ N∑
l=1

ϕd,l

[
Ψ(γl,i)−Ψ(

k∑
j=1

γl,j)
]}
(9)

ϕd,l ∝ exp
{ k∑

i=1

[(
Ψ(γl,i)−Ψ(

k∑
j=1

γl,j)
) Nd∑

n=1

φd,n,i

]

+ Ψ(ηl)−Ψ(
N∑

j=1

ηj)
}

(10)

γl,i =
D∑

d=1

Nd∑
n=1

ϕd,lφd,n,i + λi (11)

ηl =
D∑

d=1

ϕd,l +
α0

N
(12)

where Ψ(·) is the digamma function, the first deriva-
tive of the log Gamma function. Some details of the
derivation of these formula can be found in Appendix.
We find that the updates are quite interpretable. For
example, in Eq. (9) φd,n,i is the a posteriori probability
of latent topic i given one word wd,n. It is determined
both by the corresponding entry in the β matrix that
can be seen as a likelihood term, and by the possi-
bility that document d selects topic i, i.e., the prior
term. Here the prior is itself a weighted average of
different θ∗l s to which d is assigned. In Eq. (12) ηl

is the a posteriori weight of πl, and turns out to be
the tradeoff between empirical responses at θ∗l and the
prior specified by α0. Finally since the parameters are
coupled, the variational inference is done by iteratively
performing Eq. (9) to Eq. (12) until convergence.

3.2 Parameter Estimation

Following the empirical Bayesian framework, we can
estimate the hyper parameters α0, λ, and β by itera-
tively maximizing the lower bound LQ both with re-
spect to the variational parameters (as described by
Eq. (9)-Eq. (12)) and the model parameters, holding
the remaining parameters fixed. This iterative proce-
dure is also referred to as variational EM [10]. It is
easy to derive the update for β:

βi,j ∝
D∑

d=1

Nd∑
n=1

φd,n,iδj(wd,n) (13)

where δj(wd,n) = 1 if wd,n = j, and 0 otherwise. For
the remaining parameters, let’s first write down the

parts of L in Eq. (8) involving α0 and λ:

L[α0] = lnΓ(α0)−N ln Γ
(α0

N

)
+ (

α0

N
− 1)

N∑
l=1

[
Ψ(ηl)−Ψ(

N∑
j=1

ηj)
]
,

L[λ] =
N∑

l=1

{
ln Γ(

k∑
i=1

λi)−
k∑

i=1

ln Γ(λi)

+
k∑

i=1

(λi − 1)
[
Ψ(γl,i)−Ψ(

k∑
j=1

γl,j)
]}
.

Estimates for α0 and λ are found by maximization of
these objective functions using standard methods like
Newton-Raphson method as suggested in [3].

4 Empirical Study

4.1 Toy Data

We first apply the model on a toy problem with
k = 5 latent topics and a dictionary containing 200
words. The assumed probabilities of generating words
from topics, i.e. the parameters β, are illustrated in
Fig. 3(d), in which each colored line corresponds to a
topic and assigns non-zero probabilities to a subset of
words. For each run we generate data with the follow-
ing steps: (1) one cluster number M is chosen between
5 and 12; (2) generate M document clusters, each of
which is defined by a combination of topics; (3) gener-
ate each document d, d = 1, . . . , 100, by first randomly
selecting a cluster and then generating 40 words ac-
cording to the corresponding topic combinations. For
DPN we select N = 100 and we aim to examine the
performance for discovering the latent topics and the
document clustering structure.

In Fig. 3(a)-(c) we illustrate the process of clustering
documents over EM iterations with a run containing
6 document clusters. In Fig. 3(a), we show the initial
random assignment ϕd,l of each document d to a clus-
ter l. After one EM step documents begin to accumu-
late to a reduced number of clusters (Fig. 3(b)), and
converge to exactly 6 clusters after 5 steps (Fig. 3(c)).
The learned word distribution of topics β is shown in
Fig. 3(e) and is very similar to the true distribution.

By varying M , the true number of document clusters,
we examine if our model can find the correctM . To de-
termine the number of clusters, we run the variational
inference and obtain for each document a weight vector
ϕd,l of clusters. Then each document takes the cluster
with largest weight as its assignment, and we calculate
the cluster number as the number of non-empty clus-
ters. For each setting of M from 5 to 12, we randomize
the data for 20 trials and obtain the curve in Fig. 3(f)
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Figure 3: Experimental results for the toy problem. (a)-(c) show the document-cluster assignments ϕd,l over the
variational inference for a run with 6 document clusters: (a) Initial random assignments; (b) Assignments after
one iteration; (c) Assignments after five iterations (final). The multinomial parameter matrix β of true values
and estimated values are given in (d) and (e), respectively. Each line gives the probabilities of generating the
200 words, with wave mountains for high probabilities. (f) shows the learned number of clusters with respect to
the true number with mean and error bar.

which shows the average performance and the vari-
ance. In 37% of the runs we get perfect results, and
in another 43% runs the learned values only deviate
from the truth by one. However, we also find that the
model tends to get slightly fewer thanM clusters when
M is large. The reason might be that, only 100 doc-
uments are not sufficient for learning a large number
M of clusters.

4.2 Document Modelling

We compare the proposed model with PLSI and LDA
on two text data sets. The first one is a subset of
the Reuters-21578 data set which contains 3000 docu-
ments and 20334 words. The second one is taken from
the 20-newsgroup data set and has 2000 documents
with 8014 words. The comparison metric is perplexity,
conventionally used in language modelling. For a test
document set, it is formally defined as

Perplexity(Dtest) = exp(− ln p(Dtest)/
∑

d

|wd|).

We follow the formula in [3] to calculate the perplexity
for PLSI. In our algorithm N is set to be the number
of training documents. Fig. 4(a) and (b) show the
comparison results with different number k of latent

topics. Our model outperforms LDA and PLSI in all
the runs, which indicates that the flexibility introduced
by DP enhancement does not produce overfitting and
results in a better generalization performance.

4.3 Clustering

In our last experiment we demonstrate that our ap-
proach is suitable to find relevant document clusters.
We select four categories, autos, motorcycles, baseball
and hockey from the 20-newsgroups data set with 446
documents in each topic. Fig. 4(c) illustrates one clus-
tering result, in which we set topic number k = 5 and
found 6 document clusters. In the figure the docu-
ments are indexed according to their true category
labels, so we can clearly see that the result is quite
meaningful. Documents from one category show sim-
ilar membership to the learned clusters, and different
categories can be distinguished very easily. The first
two categories are not clearly separated because they
are both talking about vehicles and share many terms,
while the rest of the categories, baseball and hockey,
are ideally detected.
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Figure 4: (a) and (b): Perplexity results on Reuters-21578 and 20-newsgroups for DELSA, PLSI and LDA; (c):
Clustering result on 20-newsgroups dataset.

5 Conclusions and Future Work

This paper proposes a Dirichlet enhanced latent se-
mantic analysis model for analyzing co-occurrence
data like text, which retains the strength of previous
approaches to find latent topics, and further introduces
additional modelling flexibilities to uncover the clus-
tering structure of data. For inference and learning, we
adopt a variational mean-field approximation based on
a finite alternative of DP. Experiments are performed
on a toy data set and two text data sets. The ex-
periments show that our model can discover both the
latent semantics and meaningful clustering structures.

In addition to our approach, alternative methods for
approximate inference in DP have been proposed us-
ing expectation propagation (EP) [11] or variational
methods [16, 2]. Our approach is most similar to the
work of Blei and Jordan [2] who applied mean-field ap-
proximation for the inference in DP based on a trun-
cated DP (TDP). Their approach was formulated in
context of general exponential-family mixture models
[2]. Conceptually, DPN appears to be simpler than
TDP in the sense that the a posteriori of G is a sym-
metric Dirichlet while TDP ends up with a generalized
Dirichlet (see [8]). In another sense, TDP seems to be
a tighter approximation to DP. Future work will in-
clude a comparison of the various DP approximations.
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Appendix

To simplify the notation, we denote Ξ for all the la-
tent variables {π,θ∗, c, z}. With the variational form
Eq. (7), we apply Jensen’s inequality to the likelihood
Eq. (6) and obtain

ln p(D|α0, λ, β)

= ln
∫

π

∫
θ∗

∑
c

∑
z

p(D,Ξ|α0, λ, β)dθ∗dπ

= ln
∫

π

∫
θ∗

∑
c

∑
z

Q(Ξ)p(D,Ξ|α0, λ, β)
Q(Ξ)

dθ∗dπ

≥
∫

π

∫
θ∗

∑
c

∑
z

Q(Ξ) ln p(D,Ξ|α0, λ, β)dθ∗dπ

−
∫

π

∫
θ∗

∑
c

∑
z

Q(Ξ) lnQ(Ξ)dθ∗dπ

= EQ[ln p(D,Ξ|α0, λ, β)]− EQ[lnQ(Ξ)],

which results in Eq. (8).

To write out each term in Eq. (8) explicitly, we have,
for the first term,

D∑
d=1

Nd∑
n=1

EQ[ln p(wd,n|zd,n, β)] =
D∑

d=1

Nd∑
n=1

k∑
i=1

φd,n,iβi,ν ,

where ν is the index of word wd,n.

The other terms can be derived as follows:

D∑
d=1

Nd∑
n=1

EQ[ln p(zd,n|θ∗, cd)] =

D∑
d=1

Nd∑
n=1

k∑
i=1

N∑
l=1

ψd,lφd,n,i

[
Ψ(γl,i)−Ψ(

k∑
j=1

γl,j)
]
,

EQ[ln p(π|α0)] = lnΓ(α0)−N ln Γ(
α0

N
)

+
(α0

N
− 1

) N∑
l=1

[
Ψ(ηl)−Ψ(

N∑
j=1

ηj)
]
,

D∑
d=1

EQ[ln p(cd|π)] =
D∑

d=1

N∑
l=1

ψd,l

[
Ψ(ηl)−Ψ(

N∑
j=1

ηj)
]
,

N∑
l=1

EQ[ln p(θ∗l |G0)] =
N∑

l=1

{
ln Γ(

k∑
i=1

λi)−
k∑

i=1

ln Γ(λi)

+
k∑

i=1

(λi − 1)
[
Ψ(γl,i)−Ψ(

k∑
j=1

γl,j)
]}
,

EQ[lnQ(π,θ∗, c, z)] = lnΓ(
N∑

l=1

ηl)−
N∑

l=1

ln Γ(ηl)

+
N∑

l=1

(ηl − 1)
[
Ψ(ηl)−Ψ(

N∑
j=1

ηj)
]

+
N∑

l=1

{
ln Γ(

k∑
i=1

γl,i)−
k∑

i=1

ln Γ(γl,i)

+
k∑

i=1

(γl,i − 1)
[
Ψ(γl,i)−Ψ(

k∑
j=1

γl,j)
]}

+
D∑

d=1

N∑
l=1

ψd,l lnψd,l +
D∑

d=1

Nd∑
n=1

k∑
i=1

φd,n,i lnφd,n,i.

Differentiating the lower bound with respect to dif-
ferent latent variables gives the variational E-step in
Eq. (9) to Eq. (12). M-step can also be obtained by
considering the lower bound with respect to β, λ and
α0.


