
Efficient Reverse k-Nearest Neighbor Search in Arbitrary
Metric Spaces

Elke Achtert, Christian Böhm, Peer Kröger, Peter Kunath, Matthias Renz, Alexey
Pryakhin

Institute for Computer Science
University of Munich

Oettingenstr. 67, 80538 Munich, Germany

{achtert,boehm,kroegerp,kunath,renz,pryakhin}@dbs.ifi.lmu.de

ABSTRACT
The reverse k-nearest neighbor (RkNN) problem, i.e. find-
ing all objects in a data set the k-nearest neighbors of which
include a specified query object, is a generalization of the
reverse 1-nearest neighbor problem which has received in-
creasing attention recently. Many industrial and scientific
applications call for solutions of the RkNN problem in arbi-
trary metric spaces where the data objects are not Euclidean
and only a metric distance function is given for specifying
object similarity. Usually, these applications need a solution
for the generalized problem where the value of k is not known
in advance and may change from query to query. However,
existing approaches, except one, are designed for the specific
R1NN problem. In addition — to the best of our knowledge
— all previously proposed methods, especially the one for
generalized RkNN search, are only applicable to Euclidean
vector data but not for general metric objects. In this pa-
per, we propose the first approach for efficient RkNN search
in arbitrary metric spaces where the value of k is specified
at query time. Our approach uses the advantages of exist-
ing metric index structures but proposes to use conservative
and progressive distance approximations in order to filter
out true drops and true hits. In particular, we approxi-
mate the k-nearest neighbor distance for each data object
by upper and lower bounds using two functions of only two
parameters each. Thus, our method does not generate any
considerable storage overhead. We show in a broad experi-
mental evaluation on real-world data the scalability and the
usability of our novel approach.

1. INTRODUCTION
A reverse k-nearest neighbor (RkNN) query returns the

data objects that have the query object in the set of their k-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006 June 27-29, 2006, Chicago, Illinois, USA
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

nearest neighbors. It is the complimentary problem to that
of finding the k-nearest neighbors (kNN) of a query object
and has been studied extensively in the past few years for
Euclidean data ([7], [10], [12], [9]). The goal of a reverse
k-nearest neighbor query is to identify the ”influence” of a
query object on the whole data set. For example, consider
a decision support system with the goal of choosing the lo-
cation for a new store. Given several choices for the new
location, the strategy is to pick the location that can at-
tract the most customers. A RkNN query would return the
customers who would be likely to use the new store because
of its geographical proximity. The RkNN problem appears
in many practical situations such as geographic information
systems (GIS), traffic networks, or molecular biology where
the database objects are general metric objects rather than
Euclidean vectors. In these application areas, the database
objects are polygons or sequences and an arbitrary met-
ric distance function is defined on these objects to evaluate
object similarity. For example, the increasing progress in
telecommunication techniques and location tracking systems
like GPS, extends significantly the scope for location based
service applications. Beside the nearest neighbor search, the
reverse nearest neighbor query is one of the most important
query types for location based services, e.g. in applications
where stationary or moving objects agree to provide some
kind of service to each other. Objects or individuals usually
want to request services from their nearest neighbors. Con-
versely, the objects or individuals which provide some ser-
vices may be interested in the number of expected service
requests, or which objects could be interesting candidates
to provide the services and maybe where they are actually
located. For example, all filling stations of one company in
a town want to provide their own advertisements to all cars
of which they are the nearest neighbor.

Another example consisting of pizza restaurants and po-
tential customers is depicted in Figure 1. To keep down
costs when carrying out an advertising campaign, it would
be profitable for a restaurant owner to send menu cards only
to those customers which have his restaurant as the nearest
pizza restaurant.

Usually, the objects are nodes in a traffic network. Instead
of the Euclidean distance, graph algorithms like Dijkstra
have to be applied. Another important application area of
RkNN search in general metric databases is molecular biol-

in Proc. ACM Int. Conf. on Management of Data (SIGMOD), Chicaco, IL, 2006

GIACOMOS

PIZZA

MARCOS

PIZZA

FRANCOS

PIZZA

CARLOS

PIZZA

GIUSEPES

PIZZA

PINOS

PIZZA

Figure 1: RkNN query example consisting of pizza
restaurants (large dots) and potential customers
(small dots).

ogy. Here, the detection of new sequences call for efficient so-
lutions of the general RkNN problem in sequence databases.
These databases usually contain a large number of biologi-
cal sequences. Researchers all over the world steadily detect
new biological sequences that need to be tested on original-
ity and interestingness. To decide about the originality of
a newly detected sequence, the RkNNs of this sequence are
computed and examined. Usually, in this context, the simi-
larity of biological sequences is defined in terms of a metric
distance function such as the edit distance or the Levenstein
distance. More details on this application of RkNN search
in metric databases can be found in [5].

Although the reverse k-nearest neighbor problem is the
complement of the k-nearest neighbor problem, the rela-
tionship between kNN and RkNN is not symmetric and the
number of the reverse k-nearest neighbors of a query object
is not known in advance. A naive solution of the RkNN
problem requires O(n2) time, as the k-nearest neighbors of
all of the n objects in the data set have to be found. Thus,
more efficient algorithms are required.

As we will discuss in Section 3 the well-known meth-
ods for reverse k-nearest neighbor search can be catego-
rized into two classes, the hypersphere-approaches and the
Voronoi-approaches. All these approaches are only designed
for Euclidean vector data but cannot be applied to gen-
eral metric objects. Hypersphere-approaches such as [12]
extend a multidimensional index structure to store each ob-
ject along with its nearest neighbor distance and, thus, actu-
ally store hyperspheres rather than points. In contrast, the
Voronoi-approaches such as [11] store the objects in conven-
tional multidimensional index structures without any exten-
sion and compute a Voronoi cell during query processing. In
principle, the possible performance gain of the search opera-
tion is much higher in the hypersphere approaches while only
Voronoi-approaches can be extended to the reverse k-nearest
neighbor problem with an arbitrary k > 1 in a straight-
forward way. However, this approach is not extendable to
general metric spaces since it relies on explicitly comput-
ing Voronoi hyperplanes which are complex to compute in
arbitrary metric spaces.

In this paper, we propose an efficient solution based on
the hypersphere approach for the RkNN problem with an
arbitrary k not exceeding a given threshold parameter kmax

for general metric objects. The idea is not to store the true

nearest neighbor distances for each k of every object sepa-
rately but rather to use suitable approximations of the set
of nearest neighbor distances. This way, we approximate
both, the kNN distances of a single object stored in the
database as well as the k-nearest neighbor distances of the
set of all objects stored in a given subtree of our metric in-
dex structure. To ensure the completeness of our result set
(i.e. to guarantee no false dismissals) we need a conservative
approximation which never under-estimates any k-nearest
neighbor distance but also approximates the true k-nearest
neighbor distances of a single object or a set of objects with
minimal approximation error (in a least squares sense). To
reduce the number of candidates that need to be refined, we
additionally store a progressive approximation of the kNN
distances which is always lower or equal to the real kNN
distances. Thus, only objects that have a kNN distance to a
given query object which is between the lower bound (pro-
gressive approximation) and the upper bound (conservative
approximation) need to be refined. We will demonstrate
in Section 4 that the k-nearest neighbor distances follow
a power law which can be exploited to efficiently determine
such approximations. Our solution requires a negligible stor-
age overhead of only two additional floating point values per
approximated object. The resulting index structure called
MRkNNCoP (Metric reverse kNN with conservative and
progressive approximations)-Tree can be based on any hi-
erarchically organized, tree-like index structure for metric
spaces. In addition, it can also be used for Euclidean data
by using a hierarchically organized, tree-like index structure
for Euclidean data.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces preliminary definitions and Section 3 dis-
cusses related work. In Section 4 we introduce our new
index structure, the MRkNNCoP-Tree, for efficient reverse
k-nearest neighbor search in general metric spaces in de-
tail. Section 5 contains an extensive experimental evalu-
ation. Section 6 concludes the paper and proposes some
directions of future work.

2. PROBLEM DEFINITION
Since we focus on the traditional reverse k-nearest neigh-

bor problem, we do not consider recent approaches for re-
lated or specialized reverse nearest neighbor tasks such as
the bichromatic case, mobile objects, etc.

In the following, we assume that D is a database of n met-
ric objects, k ≤ n, and dist is a metric distance function on
the objects in D. The set of k-nearest neighbors of an object
q is the smallest set NN k(q) ⊆ D that contains at least k
objects from D such that

∀o ∈ NN k(q), ∀ô ∈ D − NN k(q) : dist(q, o) < dist(q, ô).

The object p ∈ NN k(q) with the highest distance to q is
called the k-nearest neighbor (kNN) of q. The distance
dist(q, p) is called k-nearest neighbor distance (kNN dis-
tance) of q, denoted by nndistk(q).

The set of reverse k-nearest neighbors (RkNN) of an ob-
ject q is then defined as

RNN k(q) = {p ∈ D | q ∈ NN k(p)}.
The naive solution to compute the reverse k-nearest neigh-

bor of a query object q is rather expensive. For each object
p ∈ D, the k-nearest neighbors of p are computed. If the
k-nearest neighbor list of p contains the query object q, i.e.

q ∈ NN k(p), object p is a reverse k-nearest neighbor of q.
The runtime complexity of one query is O(n2). It can be
reduced to an average of O(n log n) if an index such as the
M-Tree [4] (or, if the objects are feature vectors, the R-Tree
[6] or the R*-Tree [2]) is used to speed-up the nearest neigh-
bor queries.

3. RELATED WORK
All previously proposed methods are only applicable to

Euclidean vector data, i.e. D contains feature vectors of ar-
bitrary dimensionality d (D ∈ R

d).
In [7] an index structure called RNN-Tree is proposed for

reverse 1-nearest neighbor search. The basic idea is that if
the distance of an object p to the query q is smaller than
the 1-nearest neighbor distance of p, p can be added to the
result set. This saves a nearest neighbor query w.r.t. p.
Thus, the RNN-Tree stores for each object p the distance
to its 1-nearest neighbor, i.e. nndist1(p). In particular,
the RNN-Tree does not store the data objects itself but for
each object p a sphere with radius nndist1(p). Thus, the
data nodes of the tree contain spheres around objects rather
than the original objects. The spheres are approximated by
minimal bounding rectangles (MBRs). Since the tree suffers
from a high overlap of the data MBRs and, thus, from a high
overlap of the directory MBRs, [7] propose to use two trees:
(1) a traditional R-Tree-like structure for nearest neighbor
search (called NN-Tree) and (2) the RNN-Tree for reverse
1-nearest neighbor search.

The RdNN-Tree [12] extends the RNN-Tree by combin-
ing the two index structures (NN-Tree and RNN-Tree) into
one common index. It is also designed for reverse 1-nearest
neighbor search. For each object p, the distance to p’s 1-
nearest neighbor, i.e. nndist1(p) is precomputed. In gen-
eral, the RdNN-Tree is a R-Tree-like structure containing
data objects in the data nodes and MBRs in the directory
nodes. In addition, for each data node N , the maximum of
the 1-nearest neighbor distance of the objects in N is ag-
gregated. An inner node of the RdNN-Tree aggregates the
maximum 1-nearest neighbor distance of all its child nodes.
A reverse 1-nearest neighbor query is processed top down by
pruning those nodes N where the maximum 1-nearest neigh-
bor distance of N is greater than the distance between query
object q and N , because in this case, N cannot contain true
hits anymore. Due to the materialization of the 1-nearest
neighbor distance of all data objects, the RdNN-Tree needs
not to compute 1-nearest neighbor queries for each object.

A geometric approach for reverse 1-nearest neighbor search
in a 2D data set is presented in [10]. It is based on a partition
of the data space into six equi-sized units where the gages
of the units cut at the query object q. The nearest neigh-
bors of q in each unit are determined and merged together
to generate a candidate set. This considerably reduces the
cost for the nearest-neighbor queries. The candidates are
then refined by computing for each candidate c the nearest
neighbor; if this nearest neighbor is q then c is added to the
result. Since the number of units in which the candidates
are generated increases exponentially with d, this approach
is only applicable for 2D data sets.

An approximative approach for reverse k-nearest neighbor
search in higher dimensional space is presented in [9]. A two-
way filter approach is used to generate the results. However,
the method cannot guarantee the completeness of the result
but trade off a loss of accuracy for a gain of performance.

Recently, in [11] the first approach for reverse k-nearest
neighbor search was proposed, that ensures complete results.
The method uses any hierarchical tree-based index structure
such as R-Trees to compute a nearest neighbor ranking of
the query object q. The key idea is to iteratively construct
a Voronoi cell around q from the ranking. Objects that are
beyond k Voronoi planes w.r.t. q can be pruned and need not
to be considered for Voronoi construction. The remaining
objects must be refined, i.e. for each of these candidates, a
k-nearest neighbor query must be launched.

3.1 Contributions
Most recent methods for the reverse k-nearest neighbor

search suffer from the fact that they are only applicable to
k = 1 or at least a fixed value of k. The most generic ap-
proach is that of using Voronoi cells [11]. Since it does not
rely on precomputed kNN distances, it can handle queries
with arbitrary values for k. However, the approach proposed
in [11] relies on the computation of the Voronoi (hyper-
)plane which only exists in Euclidean vector spaces. In
general metric spaces, the hyperplanes that separate the
Voronoi cells are hard to compute. So far, there exist only
methods for R-tree like index structures. Thus, these ap-
proaches cannot be extended for metric databases.

To the best of our knowledge, this paper is the first con-
tribution to solve the generalized RkNN search problem for
arbitrary metric objects. In particular, our method provides
the following new features:

1. It can be applied to general metric objects, i.e. databases
containing any type of complex objects as long as a
metric distance function is defined on these objects.

2. It is applicable to the generalized RkNN problem where
the value of k is specified at query time.

4. KNN DISTANCE APPROXIMATIONS FOR
RKNN SEARCH

As discussed above, the Voronoi approach is not appli-
cable to general metric spaces because in these spaces, the
explicit computation of hyperplanes is not possible. As a
consequence, we want to base our generic index for reverse
kNN search on the ideas of the RdNN-Tree which is only ap-
plicable for Euclidean vector data and the specialized case
of k = 1. The generalizations to enable the application of
metric objects is rather straightforward. Instead of using an
Euclidean index structure such as the R-Tree [6] or R*-Tree
[2] we can use a metric index structure such as the M-Tree
[4]. However, in order to solve the generalized RkNN prob-
lem where the value for k could be different from query to
query is much more challenging. The key idea of the RdNN-
Tree is to precompute the kNN distance for an a priori fixed
value1 of k for each object. If a query object q has a larger
distance to an object o than the kNN distance of o, we can
safely drop o. Otherwise, object o is a true hit. However, as
indicated above, this approach requires to specify the value
of k in advance.

In general, there are two possibilities to generalize the
RdNN-Tree in order to become independent of k. First,
we could store the kNN distances of each object for each
k ≤ kmax, where kmax is the maximum value of k depend-
ing on the application. Obviously, this approach results in

1originally for k = 1

Queries

conservative approximation

of kNN distance

progressive approximation

of kNN distance

p x q2x

q1

q3

Figure 2: Using conservative and progressive ap-
proximation for RkNN search.

high storage costs and, as a consequence, in a very large di-
rectory of the index tree. Thus, the response times will
be significantly enlarged. Second, we can conservatively
approximate the kNN distances of each object by one dis-
tance, i.e. the kmaxNN distances. However, if kmax is con-
siderably higher than the k needed in a given query, the
pruning power of the kmaxNN distance in order to identify
true drops will obviously be decreased dramatically. As a
consequence, the response time will also be significantly in-
creased due to this bad kNN distance estimation and the
resulting poor pruning. In addition, for each object o where
dist(o, q) ≤ distkmax(o) a refinement is needed since it can-
not be ensured that dist(o, q) < distk(o), i.e. for each of
these objects o another kNN query needs to be launched.

Here, we propose a novel index structure that overcomes
these problems by approximating the kNN distances of each
object for all k ≤ kmax using a function. We store for each
object o ∈ D such a function that conservatively approxi-
mates the kNN distances of o for any k ≤ kmax. The ap-
proximation is always greater or equal to the real distances.
This conservative approximation allows to identify objects
that can be safely dropped because they cannot be true hits.
For the remaining objects, we need a refinement step induc-
ing a kNN query for each candidate.

In fact, we can even further reduce the number of candi-
dates, i.e. the number of necessary kNN queries for refine-
ment by storing also a progressive approximation of the kNN
distances of each o ∈ D for any k ≤ kmax. The progressive
approximation is always lower or equal to the real distances
and, thus, enables to identify true hits. Only objects that
have a distance to the query q less or equal than the con-
servative approximation and greater than the progressive
approximation need to be refined, i.e. induce a kNN query.

The idea of using conservative and progressive approxima-
tions is illustrated in Figure 2. If q1 is the query object, p is
a true hit and need not to be refined because the progressive
approximation ensures that dist(p, q1) < nndistk(p). If q3

is the query object, p can be dropped safely because the pro-
gressive approximation ensures that dist(p, q3) > nndistk(p).
If q2 is the query object, p is a candidate that needs refine-
ment, i.e. we must launch an exact kNN query around p.

Thus, for each object, instead of the kNN distance(s) of
a given value of k or all possible values of k, we simply
store two approximation functions. We can use an extended
M-Tree, that aggregates for each node the maximum of all
conservative approximations and the minimum of all pro-

gressive approximations of all child nodes or data objects
contained in that node. These approximations are again
represented as functions. At runtime, we can estimate the
maximum kNN distance for each node using the approxima-
tion in order to prune nodes analogously to the way we can
prune objects. The resulting candidate objects can be iden-
tified as true hits or candidates that need further pruning
using the progressive approximation.

In the following, we introduce how to compute a con-
servative approximation of the kNN distances for arbitrary
k ≤ kmax (cf. Section 4.1). We then sketch how a progres-
sive approximation can be generated analogously (cf. Sec-
tion 4.2). After that, we describe how these approximations
can be integrated into an M-Tree. The resulting structure
is called MRkNNCoP-Tree (Metric RkNN with conservative
and progressive approximations — cf. Section 4.3). At the
end of this section, we outline our novel RkNN search algo-
rithm (cf. Section 4.4).

4.1 Conservative Approximation of k-NN Dis-
tances

As discussed above, a conservative approximation of the
kNN distances of each data object is needed in order to
determine those objects that can be safely dropped because
they cannot be part of the final result.

First, we have to address the problem to select a suitable
model function for the conservative approximation of our k-
nearest neighbor distances for every k ≤ kmax. In our case,
the distances of the neighbors of an object o are given as a
sequence

NNdist(o) = 〈nndist1(o), nndist2(o), ...nndistkmax(o)〉
and this sequence is ordered by increasing k. Due to mono-
tonicity, we also know that i < j ⇒ nndisti(o) ≤ nndistj(o).
Our task here is to describe the discrete sequence of val-
ues by some function appxo : N → R with appxo(k) ≈
nndistk(o). As the approximation function is required to be
conservative we have the additional constraint appxo(k) ≥
nndistk(o).

From the theory of self-similarity [8] it is well-known that
in most data sets the relationship between the number of
objects enclosed in an arbitrary hypersphere and the scaling
factor (radius) of the hypersphere (the same is valid for other
solids such as hypercubes) approximately follows a power
law:

encl(ε) ∝ εdf

where ε is the scaling factor, encl(ε) is the number of en-
closed objects and df is the fractal dimension. The fractal
dimension is often (but not here) assumed to be a constant
which characterizes a given data set. Our k-nearest neighbor
sphere can be understood to be such a scaled hypersphere
where the distance of the k-nearest neighbor is the scaling
factor and k is the number of enclosed objects. Thus, it can
be assumed that the k-nearest neighbor distances also fol-
low the power law and form approximately a line in log-log
space (for an arbitrary logarithmic basis) [8], i.e.:

log(nndistk(o)) ∝ log(k)

df
.

From this observation, it follows that it is generally sensi-
ble to use a model function which is linear in log-log space

-2

-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5

log (k)

lo
g

 (
n

n
d

is
t

(k
))

0

0.4

0.8

1.2

1.6

2

2.4

0 5 10 15 20 25 30 35

k

n
n

d
is

t
(k

)

x

k=10

k=20

k=30

Figure 3: Visualizations of the conservative and progressive approximations of the k-nearest neighbor dis-
tances of a sample object for different values of k.

— corresponding to a parabola in non-logarithmic space —
for the approximation. Obviously, computing and storing
a linear function needs considerable less overhead than a
higher order function. Since we focus in this section on
the approximation of the values of the k-nearest neighbor
distance over varying k in a log-log sense, we consider the
pairs (log(k), log(nndistk(o)) as points of a two-dimensional
vector space (xk, yk). These points are not to be confused
with the objects stored in the database (e.g. the object o
the nearest neighbors of which are considered here) which
are general metric objects. Whenever we speak of points
(x, y) or lines ((x1, y1), (x2, y2)) we mean points in the two-
dimensional log-log space where log(k) is plotted along the
x-axis and log(nndistk(o)) for a given general metric object
o ∈ D is plotted along the y-axis.

In most other applications of the theory of self-similarity
it is necessary to determine a classical regression line with-
out any constraint conditions, approximating the true val-
ues of nndistk(o) with least square error. A conventional
regression line would find the parameters (m, t) of the linear
function y = m · x + t minimizing least square error:

X

1≤k≤kmax

((m · xk + t) − yk)2 = min

which evaluates the well known formula of a regression
line in 2D space. This line, however, is not a conservative
approximation of a point set. In order to guarantee no false
dismissals we need here a line which minimizes the above
condition while observing the constraint that all actual yk-
values, i.e. log(nndistk), are less or equal than the line, i.e.
yk ≤ m · xk + t, and we will derive a method with a linear
time complexity in the number kmax of k-nearest neighbor
distances to be approximated (provided that the distances
are ordered according to increasing k). We formally state
this optimization problem:

Optimization Goal. The optimal conservative approx-
imation of a sequence NNk(o) of k-nearest neighbor dis-
tances of an object o is a line

Lopt(o) = (mopt, topt) : y = mopt · x + topt

in the log-log space. This line defines the following approx-
imation function:

log(appxo(k)) = mopt · log(k) + topt

with the following constraints:

C1. Lopt(o) is a conservative approximation of yk, i.e.
yk ≤ mopt · xk + topt (∀k : 1 ≤ k ≤ kmax).

C2. Lopt(o) minimizes the mean square error, i.e.

X

1≤k≤kmax

(mopt · xk + topt − yk)2 = min

An example is visualized in Figure 3. Here we have a se-
quence of k-nearest neighbor distances for 1 ≤ k ≤ kmax =
30 which are depicted as squares in the left diagram in a
log-log space and in the middle diagram in non-logarithmic
space. The corresponding visualization of the conservative
and progressive approximations in the data space for k =
10, 20, 30 are depicted on the right hand side in Figure 3. In
the left diagram the optimal line for the conservative approx-
imation is the upper limit of the shaded area. In Section 4.2
we will also introduce the progressive approximation which
is the lower limit of the shaded area. These two limiting lines
correspond to the parabolic functions depicted in the middle
diagram where we can directly determine the conservative
and progressive approximations for a given k. On the right
hand side in Figure 3, we have an object x together with its
actual k-nearest neighbor distance for k = {10, 20, 30}. The
three shaded shapes mark the conservative and progressive
approximations for these three k-values.

We develop our method to determine the approximation
function in three steps. At first, we show that the line must
interpolate (pass through) either two neighboring points or
one single point of the upper part of the convex hull of the
set to be approximated. Second, we show how to optimize
a regression line (mA, tA) under the constraint that it has
to interpolate one given anchor point A (in our method,
only points of the upper convex hull have to be considered
as anchor points). As a third step, we show that the line
obtained in the second step is the optimal line according to
our optimization goal if and only if both the successor and
the predecessor of A in the upper convex hull are under the
line (mA, tA).

Moreover, we will show the following: If the predecessor
exceeds the line, then the optimum line cannot pass through
one of the successors of A. Vice versa, if the successor ex-
ceeds line (mA, tA) the optimum line cannot pass through
one of the predecessors of A. This statement gives us the
justification to search for a suitable anchor point using a

P

succ(P)

pred(P)

a) b)

Figure 4: Constraints on the optimal line: Line in-
tersects at least a) one point of the approximated
set (Lemma 1) b) one point of the UCH (Lemma 2)

bisection search (in contrast to linear search the bisection
search improves the total runtime but not the complexity
of the overall method which will be shown to be linear in
kmax). Finally, we show that the global optimum is either
found directly by the bisection search or interpolates the last
two points considered in the bisection search.

Step 1. First, we show that the line must interpolate ei-
ther two neighboring points or one single point of the upper
convex hull of the approximated point set. The upper con-
vex hull (UCH) is a sequence

UCH = 〈(xk1 , yk1), (xk2 , yk2), ..., (xku , yku)〉
composed from u points (2 ≤ u ≤ kmax). UCH always
starts with the first point and ends with the last point to be
approximated, i.e. k1 = 1; ku = kmax. It contains the re-
maining points in ascending order, i.e. ki < kj ⇔ i < j, and
due to monotonicity we know also xki < xkj and yki < ykj .
UCH forms a poly-line composed from one or more (ex-
actly u − 1) line segments Si = ((xki , yki), (xki+1 , yki+1))
where the most important property is that the slope s(Si) =
(yki+1 − yki)/(xki+1 −xki) of the line segments Si is strictly
monotonically decreasing (i < j ⇔ s(Si) > s(Sj)), i.e. the
segments form a right turn. UCH is the maximal sequence
with this property, and, therefore, the composed UCH line
forms an upper limit of the points to be approximated. The
upper convex hull has some nice properties which are im-
portant to solve our optimization problem. First, as we
will prove in Lemma 1, the optimal conservative approx-
imation must interpolate one or two points of the convex
hull. Second, and more importantly for the complexity of
our method, it facilitates the test whether or not the con-
straint is fulfilled that all approximated points are below a
given line. We will see later that only two points of UCH
have to be tested. In contrast, if we do not know the UCH,
all the points (xk, yk), 1 ≤ k ≤ kmax of the complete ap-
proximated set need to be tested.

It is easy to see that an optimal line must interpolate at
least one point of the approximated set:

Lemma 1. The optimal line Lopt must interpolate at least
one point of the set of conservatively approximated points.

Proof. Assume Lopt is above all points of the data set
but does not touch one of the points of the data set. Then
we could move the line downwards (leaving it parallel to
the original line) until it touches one of the points without
violating the constraints. When moving downwards, the
distance of the line to every point decreases. Therefore the
original line cannot be optimal.

This is visualized in Figure 4a. In our next lemma, we
show that it is not possible that the approximating line

interpolates only points which are not in UCH. In other
words, it cannot happen that none of the points that are
interpolated by Lopt are not in UCH.

Lemma 2. Any line L interpolating a point (xk, yk), 1 ≤
k ≤ kmax which fulfills the constraint that all approximated
points are upper bound by it must interpolate at least one
point P ∈ UCH.

Proof. Let us assume, that L interpolates only one point
P /∈ UCH. Let pred(P) be the last point before P which
is member of UCH and succ(P) be the first point after
P in UCH. According to the definition of UCH, the two
segments S1 = (pred(P), P) and S2 = (P, succ(P)) form a
left turn (otherwise, P would have to be member of UCH),
i.e. s(S1) < s(S2). The slope of L must be less than the
slope of S1 and greater than the slope of S2 to upper bound
both pred(P) and succ(P). This is not possible as the slope
of S1 is less than that of S2 (left turn).

The idea of the proof is visualized in Figure 4b. From
Lemma 2 and the obvious observation that no straight line
can interpolate more than two points of UCH (which form
a right turn), we know that Lopt must interpolate one or two
points of UCH. We will show later that both cases occur,
indeed. In Figure 4, the 4 points of UCH are marked with
darker frames and additionally connected by lines. This
example also visualizes how the conservative approximation
interpolates two points of UCH.

UCH can be determined from the ordered set of points
(xk, yk), 1 ≤ k ≤ kmax in linear time by sequentially putting
the points onto a stack and deleting the second point after
the top-of-stack whenever the slope is increasing among the
three points on the top-of-stack. Obviously, the determina-
tion of UCH can be done in O(kmax).

Step 2. From Step 1 we know that our optimal line inter-
polates at least one point of UCH. Our next building block
for the generation of the conservative approximation is the
derivation of a regression line under the constraint that one
given point is interpolated. We call this point the anchor
point. Note that, until now, we have not yet shown how to
select this anchor point among the points in UCH. For the
moment, we can assume that we do this optimization for
every point in UCH, but we will show later how the anchor
can be determined in a more directed way using bisection
search. Furthermore, note that the optimization described
in this step does not necessarily yield a line which fulfills all
constraints. Our final method will do so, but the method
here need not yet meet this requirement.

Given an anchor point A = (xA, yA) and an approximated
point set S, we call a line LA = (mA, tA) anchor-optimal
w.r.t. A and S if it interpolates A and approximates S
with least square error. As we know that our anchor point
(xA, yA) is interpolated, in our optimization problem (to
select the optimal line y = m · x + t) we have only one
variable (say m) as degree of freedom, because t is fixed by
the constraint yA = m · xA + t. Therefore, we can integrate
the constraint into our line formula:

y = mx − mxA + yA

We search for that line which minimizes the sum of squared
distances from the actual points to be approximated:

X

1≤k≤kmax

(mxk − mxA + yA − yk)2 = min

Anchor

Figure 5: Illustration of an anchor point.

An example is visualized in Figure 5 where we can see the
anchor point as well as the distances from an arbitrary line
which interpolates the anchor point. A necessary condition
for a minimum is that the derivative vanishes:

∂

∂m
(

X

1≤k≤kmax

(mxk − mxA + yA − yk)2) = 0

There exists only one solution m = mA to this equation
with

mA =

P
k (yk − yA)(xk − xA)P

k (xk − xA)2
=

=
kmaxxAyA − yA(

P
k xk) + (

P
k xkyk) − xA(

P
k yk)

kmaxx2
A + (

P
k x2

k) − 2xA(
P

k xk)

This local optimum is a minimum, and there are no fur-
ther local minima or maxima (except m = ±∞). Although
the second formula for mA looks complex at the first glance,
it is very efficient to evaluate: the ”expensive” sum-terms
are independent from the anchor point A and need, thus, to
be evaluated only once. If mA is determined for more than
one anchor point, those terms which need evaluation of all
xk and yk must be evaluated only once. We will show in the
next section that, in general, we need to evaluate mA for a
number of anchor points which is logarithmic in the number
of points in the convex hull, and, therefore, is in the worst
case also in O(log kmax).

Step 3 So far, we know that our optimal line interpolates
at least one point of the UCH (Step 1). Together with Step
2, we know how to compute the optimal line: we need to con-
struct an anchor optimal line given the right anchor point.
We also know that this anchor point is part of the UCH.
The remaining task is to find this right anchor point of the
UCH. In the third step, we will show that the correct an-
chor point and, thus, the global optimum approximation can
be found efficiently by means of bisection search. The goal is
to find that point (xopt, yopt) ∈ UCH which is intersected by
the global-optimum approximation-line. The search starts
by the median MUCH = (xkm , ykm) of the UCH which we
first take as anchor point and compute its local optimum line
(mkm , tkm). By means of the location of (mkm , tkm), we de-
cide in which direction the bisection search has to proceed to
find the correct anchor point. Thereby we distinguish three
cases:

1. Both the predecessor and successor of MUCH in the
UCH, i.e. pred(MUCH) and succ(MUCH) are not
above (mkm , tkm) (i.e. below or exactly on it).

2. The predecessor pred(MUCH) is above (mkm , tkm).

3. The successor succ(MUCH) is above (mkm , tkm).

As state above, the search starts at the median of the
UCH, i.e. at MUCH . At each step of the bisection search,
we examine the three cases for the current point (xkm , ykm) ∈
UCH with its local optimum line (mkm , tkm). As we will
see in the next lemma, in the first case we can stop our
search, because (mkm , tkm) is the global optimum. In the
second case we proceed the search with the corresponding
predecessor (xkp , ykp) of (xkm , ykm). If the corresponding
predecessor has been already considered during the bisection
search we can stop the search and the global optimum line
passes through (xkp , ykp) and (xkm , ykm). In the third case
we proceed the search with the successor of (xkm , ykm) anal-
ogous to the second case. In this way, the global optimum
approximation can be found due to the following lemma:

Lemma 3. Let A ∈ UCH be the anchor point of an an-
chor optimal line (mA, tA), i.e. the line interpolate A and
approximates the points with least square error. Further-
more, let (mA2, tA2) be another line which also passes through
A and additionally passes through any successor A+ ∈ UCH
of A, whereas mA2 < mA. Then the global optimum line
passes through A or any predecessors A− ∈ UCH of A.

Proof. Let A ∈ UCH be the anchor point of a line
(mA, tA) which is anchor optimal w.r.t. A. Furthermore, let
(mA2, tA2) be another line which pass through two points A
and any successor A+ ∈ UCH of A, whereas mA2 < mA.
In the following we assume, that the global optimum line
pass through A+ but pass not through A. Let this line be
(mA′ , tA′), as depicted in Figure 6. Following the above
assumption, the sum of squared distances from the actual
points to line (mA2, tA2) must be greater than the squared
distances to line (mA′ , tA′). In the following, we will show
that this assumption does not hold.

Let us first group all points into three sets S0, S1 and S2.
Whereas, S0 denotes the set of all preceding points of A, S1

denotes the set of all points succeeding A (A included) but
preceding A+ and S2 denotes the set of all points succeeding
A+ (A+ included). In the following we consider two addi-
tional lines (mA1, tA1) and (mA3, tA3), such that (mA1, tA1)
pass through A and (mA3, tA3) pass through A+. Further-
more, without loss of generality, let the slopes of (mA1, tA1)
and (mA3, tA3) be in such a way, that mA1 ≤ mA and
mA1 −mA2 = mA2 −mA3 and mA ≥ mA1 ≥ mA2 ≥ mA3 ≥
mA′ (cf. Figure 6).

Let IA
i be the sum of all squared distances from the points

in Si to the line (mA, tA), i.e.

IA
i = Σ(x,y)∈Si

dist((x, y), (mA, tA)),

where

dist((x, y), (mA, tA)) = (mAx − mAxA + yA − y)2.

Then, the sum of the squared distances between all points
and a line (mA, tA) is equal to the sum IA

0 + IA
1 + IA

2 . If
we assume that (mA, tA) is local optimal according to its
anchor point A and mA ≥ mA1 ≥ mA2, then

IA
0 + IA

1 + IA
2 ≤ IA1

0 + IA1
1 + IA1

2 ≤ IA2
0 + IA2

1 + IA2
2 .

The latter inequality is equivalent to:

IA2
0 − IA1

0 ≥ IA1
1 − IA2

1 + IA1
2 − IA2

2

k
S0 S1

S2

(mA,tA)

A

A+

P-

(mA2,tA2)

(mA1,tA1)

(mA3,tA3)

dx

dxdy

dy

(mA‘,tA‘)

Figure 6: Illustration of the proof of Lemma 3: Monotonicity of the error of the conservative approximation
of kNN distances

By means of the theorems on intersecting lines and the as-
sumption that mA1 − mA2 = mA2 − mA3, the following
statements hold:

1. IA3
0 − IA2

0 ≥ IA2
0 − IA1

0

2. IA3
0 − IA2

0 ≥ IA2
0 − IA1

0

3. IA1
1 − IA2

1 ≥ 0

4. IA3
1 − IA2

1 ≥ 0

With 1) the following statement holds:

IA3
0 − IA2

0 ≥ IA1
1 − IA2

1 + IA1
2 − IA2

2

With 2) this leads to

IA3
0 − IA2

0 ≥ IA1
1 − IA2

1 + IA2
2 − IA3

2

Due to 3) and 4), the inequality can be resolved to:

IA3
0 − IA2

0 + IA3
1 − IA2

1 ≥ IA2
2 − IA3

2

which is equivalent to

IA2
0 + IA2

1 + IA2
2 ≤ IA3

0 + IA3
1 + IA3

2 ≤ IA′
0 + IA′

1 + IA′
2

This means, that the sum of squared distances from the
actual points to line (mA2, tA2) is lower than the squared
distances to line (mA3, tA3) which contradicts the assump-
tion.

Summary: The Optimization Algorithm

The algorithm which computes the optimal conservative ap-
proximation line is depicted in Figure 7. It requires as input
an object o, the sequence NNdist(o) of kNN distances of
o which should be approximated and the upper limit kmax.
The algorithm reports the line Lopt = (m, t) corresponding
to the line y = m · x + t which denotes the optimal conser-
vative approximation line. The algorithm shown in Figure
7 consists of two main parts.

In the first part we compute the UCH of the kNN dis-
tances in NBNdist(o) in the log-log space, i.e. of the points
(log k, log nndistk(o)). For this task, we apply a modifica-
tion of Graham’s scan algorithm for the convex hull [1] which
parses all kNN-distances from k = 1 to kmax and buffers ref-
erences to those kNN-distances within a stack which build a
conservative right-curved sequence denoting the upper con-
vex hull of the points (log k, log nndistk(o)) in log-log space.
This step is performed because we have shown that at least
one point of the convex hull must be interpolated by Lopt

(cf. Lemma 2).
In the second main part we perform a bisection search for

the optimum approximation line. Our algorithm starts with
the complete UCH. It selects the median point of the UCH
as the first anchor point and computes its anchor optimal
line (aol). By inspecting its direct predecessor and succes-
sor, respectively, it distinguishes between 3 cases: (1) Both
neighbor points are below aol: Then the global optimum is
reached. (2) The right neighbor point (successor) is above
the aol: We proceed recursively with the right half of the
UCH (this time considering the median of the right half).
Case (3), left neighbor above aol is handled analogously.
The slope of the computed line is used to identify the search
space of the subsequent search step (as substantiated by
Lemma 3). In each step of this algorithm, the problem size
is divided by two. Finally, the parameters (m, t) of the com-
puted line are reported.

4.2 Progressive Approximation of kNN Dis-
tances

As discussed above, a progressive approximation of the
kNN distances of each data object can be used to determine
true hits. Analogously to the optimal conservative approxi-
mation, the optimal progressive approximation of a sequence
NNk(o) of k-nearest neighbor distances of an object o is a
line Lopt(o) in log-log space. The only difference is that the
line Lopt(o) must satisfy a progressive constraint, i.e. con-

optimize(o, NNdist(o), kmax)

// First Part:
compute upper convex hull UCH of the points

(log k, log nndistk(o)) according to [1];

// Second Part:
while UCH still contains unmarked points do

(xa, ya) = median of UCH;
compute anchor optimal line (ma, ta)

w.r.t. anchor point (xa, ya);
mark (xa, ya);
(xp, yp) = pred((xa, ya)); // predecessor in UCH
(xs, ys) = succ((xa, ya)); // successor in UCH
if yp ≤ ma · xp + ta and ys ≤ ma · xs + ta then

// global optimum found
return (ma, ta);

else if yp > ma · xp + ta then
// examine predecessor
if (xp, yp) is already marked then

mp = (ya − yp)/(xa − xp); tp = yp − xp · mp;
return (mp, tp);

else // proceed with left side of UCH
UCH = left side of UCH;

else if ys > ma · xs + ta then
// examine successor
if (xs, ys) is already marked then

ms = (ya − ys)/(xa − xs); ts = ys − xs · ms;
return (ms, ts);

else // proceed with right side of UCH
UCH = right side of UCH;

end while

Figure 7: Finding the optimal approximation.

straint C1 in Section 4.1 is changed as follows:
yk ≥ mopt · xk + topt (∀1 ≤ k ≤ kmax).

We can generate the progressive approximation analo-
gously as described in Section 4.1. The difference is that
we have to consider the lower convex hull instead of the
upper convex hull. Obviously, the resulting progressive ap-
proximation line must be below all real kNN distances.

4.3 Aggregating the Approximation Informa-
tion

So far, we have shown how to generate a conservative and
progressive approximation for each object of the database.
However, the conservative and progressive approximations
can also be used for the nodes of the index to prune ir-
relevant sub-trees. Similar to the RdNN-Tree, we need to
aggregate for each data node the maximum kNN distances
of the objects within that node. For this aggregation, the
conservative approximations must be used. In addition, we
could aggregate the minimum kNN distance of the objects
within the node in order to detect true hits. For this ag-
gregation, the progressive approximation should be used.
However, in most cases the progressive aggregation does not
pay off because for a node it is not selective enough.

We build the conservative approximation of a data node
N by conservatively approximating the conservative approx-
imation lines Lopt(oi) = (mi, ti) of all data objects oi ∈ N .
The resulting approximation line is defined by the points
(log(1),y1) and (log kmax,ykmax), where y1 is the maximum
of all lines at k = 1 and ykmax is the maximum of all lines
at kmax, formally

y1 = maxoi∈N mi · log 1 + ti = maxoi∈N ti,

ykmax = maxoi∈N mi · log kmax + ti.

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

n
n

d
is

t(
k)

k

-2

-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5

lo
g

(n
n

d
is

t(
k)

)

log(k)

Figure 8: Aggregated approximation lines.

The progressive approximation can be determined analo-
gously. Figure 8 illustrates both concepts.

The approximation information can be propagated to par-
ent, i.e. directory, nodes in a straightforward way. The re-
sulting storage overhead is negligible because the additional
information stored at each node is limited to two values for
the conservative approximation. Nevertheless, the kNN dis-
tance for any value of k can be estimated at each node.

We call the resulting index structure MRkNNCoP (Metric
reverse kNN with conservative and progressive approximations)-
Tree. The original concepts of the MRkNNCoP-Tree pre-
sented here can be incorporated within any hierarchically
organized index for metric objects. Let us note that the
concepts can obviously also be used for RkNN search in
Euclidean data. In that case, we need to integrated the pro-
posed approximations into Euclidean index structures such
as the R-tree [6], the R*-tree [2], or the X-tree [3].

4.4 RkNN Search Algorithm
The search algorithm for RkNN queries on our MRkNNCoP-

Tree is similar to that of the RdNN-Tree. However, our in-
dex structure can answer RkNN queries for any k specified
at query time and, due to the use of a metric index structure,
is applicable to general metric objects.

The pseudo code of the query algorithm is depicted in Fig-
ure 9. A query q is processed by starting at the root of the
index. The index is traversed such that the nodes having
a smaller mindist to q than their aggregated kNN distance
approximations are refined. Those nodes, where the mindist
to q is larger than their aggregated kNN distance approxi-

RkNN query(D, q, k)

// Assumption: D is organized as MRkNNCoP
queue := new Queue;
insert root of D into queue;
while not queue.isEmpty() {

N := queue.getFirst();
if N is node then {

if mindist(N, q) ≤ mN · log k + tN then
insert all elements of N into queue;}

else // N is a point
if dist(N, q) < mp

N · log k + tp
N then

add N to result set;
else if mc

N · log k + tc
N > dist(N, q)

add N to candidate set;
end while

Figure 9: The RkNN search algorithm.

mation are pruned. A node N of a M-Tree is represented
by its routing object No and the covering radius Nr. All
objects represented by N have a distance less than Nr to
No. The mindist of a node N and a query point q, denoted
by mindist(N, q), is the maximum of the distance of q to
No minus the covering radius Nr (if dist(q, No) > Nr) and
zero (if dist(q, No) ≤ Nr), formally:

mindist(N, q) = max{dist(q, No) − Nr, 0}.
The aggregated kNN distance of a node N , denoted by
kNNagg(N) can be determined from the conservative ap-
proximation Lopt(N) = (mN , tN) of N by
kNNagg(N) = mN · log k + tN .

Thus, we can prune a node N with approximation Lopt(N) =
(mN , tN) if mindist(N, q) > mN · log k + tN .

The traversal ends up at a data node. Then, all points pi

inside this node are tested using their conservative approx-
imation Lcon(pi) = (mc

pi
, tc

pi
) and their progressive approx-

imation Lprog(pi) = (mp
pi

, tp
pi

). A point p can be dropped
if dist(p, q) > mc

p · log k + tc
p. Otherwise, if dist(p, q) <

mp
p · log k + tp

p, point p can be added to the result. Last but
not least, if mc

p ·log k+tc
p > dist(p, q) > mp

p ·log k+tp
p, point p

is a candidate that need an exact kNN query as refinement.
Using this strategy, we get a set of true hits and a set of
candidates from the RkNNCoP-Tree. The set of candidates
are refined using a batch kNN search as proposed in [12].

5. EVALUATION
All experiments have been performed on Windows work-

stations with a 32-bit 3.2 GHz CPU and 2 GB main memory.
We used a disk with a transfer rate of 50 MB/s, a seek time
of 6 ms and a latency delay of 2 ms. In each experiment we
applied 100 randomly selected RkNN queries to the partic-
ular data set and reported the overall result. The runtime
is presented in terms of the elapsed query time including
I/O and CPU-time. All evaluated methods have been im-
plemented in Java.

5.1 Metric RkNN Search
Since there is no recent approach for RkNN search in gen-

eral metric spaces, we compared our MRkNNCoP-Tree with
two already discussed variants. The first variant, denoted by
“MRkNN-Max”, stores for each object of the database the
kNN distance for one arbitrary kmax ≥ 1. Obviously, this
approach has less storage overhead than the MRkNNCoP-
Tree but needs expensive refinement steps if the parameter k

10

100

1000

10000

100000

1000 2500 5000 6105

DB size

E
la

p
s
e
d

 R
u

n
ti

m
e
 [

s
e
c
]

MRkNNCoP MRkNN-Max

MRkNN-Tab SeqScan

Figure 10: Runtime w.r.t. database size on Olden-
burg data set.

of the query differs from the precomputed kmax value. The
second variant, denoted by “MRkNN-Tab”, stores all kNN
distances for k = 1 . . . , kmax in a table for each data object
and each node of the tree, respectively. The advantage of
this approach is that only true hits are computed, i.e. we do
not need any refinement step. However, the distance table
becomes quite large for increasing kmax values. This leads
to a smaller branching factor of the tree nodes. Thus, the
tree is higher suffering from large directory traversal over-
head. A third competitor of our MRkNNCoP-Tree is the
sequential scan, denoted as “SeqScan”.

Our experiments where performed using two real-world
data sets. The first one is a road network data set derived
from the city of Oldenburg, which contains 6,105 nodes and
7,035 edges. The average degree of the nodes in this network
is 2.63. The data set is online available 2. The nodes of the
network graph were taken as database objects from which
subsets of different size were selected to form the test data
set. For the distance computation we used the shortest-
path distance computed by means of the Djikstra algorithm.
The second data set consists of protein sequences taken from
SWISSPROT database, the Levenstein distance was used as
similarity distance. Due to space limitations, no figures of
the results of the second data set are depicted.
Runtime w.r.t. database size. In Figure 10 the run-
time of the competitive algorithms w.r.t. varying data base
size is illustrated in a log-scale. The parameter k was set
to k = 50, while kmax = 100. It can be observed that
our MRkNNCoP approach clearly outperforms the simple
“MRkNN-Max” and “MRkNN-Tab” approaches. This is
due to the already discussed shortcomings of the two naive
approaches. “MRkNN-Max” suffers from a poor pruning ca-
pability, whereas “MRkNN-Tab” suffers from a large direc-
tory and, thus, from a costly tree traversal. Similar results
were observed on the second metric data set.
Runtime w.r.t. parameter k. A similar result can be
observed when comparing the runtime of MRkNNCoP and
its competitors w.r.t. varying parameter k (cf. Figure 11).
In this experiment we set kmax = 150. Again, the runtime
axis is in log-scale to visualize the sequential scan. Obvi-
ously, the sequential scan is almost independent from k and

2www.fh-oow.de/institute/iapg/personen/brinkhoff/
generator/

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100 110 120 130 140

k

E
la

p
s

e
d

 R
u

n
ti

m
e

 [
s

e
c

]
MRkNNCoP MRkNN-Max MRkNN-Tab SeqScan

Figure 11: Runtime w.r.t. parameter k on Olden-
burg data set (2.500 data objects).

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

k

n
u

m
b

e
r

o
f

o
b

je
c
ts

results true hits candidates

Figure 12: Pruning capability w.r.t. parameter k on
Oldenburg data set (5.000 data objects).

lies significantly above the runtime of the other techniques.
Again, the MRkNNCoP-Tree performs significantly better
than the naive approaches. We also made similar observa-
tions on the second real-world data set.
Pruning capabilities. Figure 12 shows the pruning capa-
bility of MRkNNCoP w.r.t. k on the Oldenburg data set.
Compared with the size of the result set only a small num-
ber of candidates has to be refined, i.e. the conservative
approximation yields a sound upper bound. Furthermore,
the number of true hits we get from our progressive approxi-
mation increases with increasing k. For example, for k ≥ 70
the pruned true hits are more than 75% of the result set. For
these objects no expensive refinement step is necessary, thus
our progressive approximation provides a very efficient lower
bound for the kNN distance. We observed similar results on
our second metric data set.

5.2 Euclidean RkNN Search
We also integrated our concepts into an X-Tree [3] in order

to support RkNN search in Euclidean data. We made the
same experiments as presented already above for metric data
using three real-world data sets. It turned out that our
approach even outperforms recent RkNN search methods
that are specialized for Euclidean data. The used data sets
include a set of 5-dimensional vectors generated from the
well-known SEQUOIA 2000 benchmark data set and two
”Corel Image Features” benchmark data sets from the UCI
KDD Archive, one contains 9 values for each image, the
other data set contains 16-dimensional texture values. The

0

500

1000

1500

2000

2500

1 3 10 30 100
k parameter

N
u

m
b

e
r

o
f

o
b

je
c
ts

Candidates True Hits Results

Figure 15: Pruning capability w.r.t. parameter k on
color texture data set.

underlying X-Tree had a node size of 2 KByte.
Naive approaches. Again, in our first experiment we
compared our approach with the ”MRkNN-Max” and the
”MRkNN-Tab” approaches, both also based on an X-Tree.
The experiment was performed on the sequoia data set con-
sisting of 20.000 objects. The results are not shown due to
space limitations. The MRkNN-Max approach stores the
kmaxNN distance for kmax = 100. Again, it turns out that
our approach has much better runtime performance than the
other two techniques due to the already discussed shortcom-
ings of these naive approaches. We observed similar results
for the two other data sets.
Runtime w.r.t. database size. We compared our ap-
proach with the Voronoi-based approach [11] (short ”TPL”)
and the sequential scan (short ”SeqScan”). TPL is the only
existing approach for the generalized RkNN search. In Fig-
ure 13 the runtime of the three algorithms w.r.t. varying
data base size is illustrated. The parameter k was set to
k = 10. For clearness reasons, the sequential scan is not
visualized for all database sizes. It can be observed that our
MRkNNCoP approach also outperforms the existing TPL
approach. For example the performance gain is more than
40% for the 9-dimensional data set. This is due to the fact
that MRkNNCoP needs substantially less refinement steps
than TPL.
Runtime w.r.t. parameter k. A comparison of the run-
time of MRkNNCoP and TPL w.r.t. varying parameter k is
depicted in Figure 14. In this experiment the database size
was set to 30.000 objects. The runtime of the sequential scan
is almost independent from k and lies significantly above
the runtime of the two other techniques. Due to clearness
reasons it is again not visualized. Again, the MRkNNCoP
performs better than TPL. It is also worth noting that the
performance gap between MRkNNCoP and TPL increases
with increasing parameter k.
Pruning capabilities. Figure 15 shows the pruning capa-
bility of MRkNNCoP w.r.t. k on the 16-dimensional color
texture data set (30.000 objects). Compared with the size
of the result set only a small number of candidates has to be
refined, i.e. the conservative approximation yields a sound
upper bound. Furthermore, the number of true hits we get
from our progressive approximation is about 66% to 86% of
the result set and increases with increasing k. For these ob-
jects no expensive refinement step is necessary, thus our pro-
gressive approximation provides a very efficient lower bound
for the kNN distance. We show only the color texture data
set, as the results on the two other data sets are similar.

20

40

60

80

100

120

140

160

180

200

10000 30000 50000 100000
DB size

R
u

n
ti

m
e
 [

s
e
c
]

TPL MRkNNCoP

(a) Sequoia (5-dimensional)

200

400

600

800

1000

1200

1400

1600

1800

10000 30000 50000 68040
DB size

R
u

n
ti

m
e
 [

s
e
c
]

SeqScan TPL MRkNNCoP

(b) Color moments (9-dimensional)

200

400

600

800

1000

1200

1400

1600

1800

10000 30000 50000 68040
DB size

R
u

n
ti

m
e
 [

s
e
c
]

SeqScan TPL MRkNNCoP

(c) Color texture (16-dimensional)

Figure 13: Comparison of runtime w.r.t. database size.

40

50

60

70

80

90

100

110

1 3 10 30 100

k parameter

R
u

n
ti

m
e
 [

s
e
c
]

TPL MRkNNCoP

(a) Sequoia (5-dimensional)

200

300

400

500

600

700

800

900

1000

1 3 10 30 100

k parameter

R
u

n
ti

m
e
 [

s
e
c
]

TPL MRkNNCoP

(b) Color moments (9-dimensional)

400

500

600

700

800

900

1000

1 3 10 30 100

k parameter

R
u

n
ti

m
e
 [

s
e
c
]

TPL MRkNNCoP

(c) Color texture (16-dimensional)

Figure 14: Comparison of runtime w.r.t. parameter k.

6. CONCLUSIONS
In this paper we proposed the MRkNNCoP-Tree the first

index structure for reverse k-nearest neighbor (RkNN) search
in general metric spaces where the value for k is specified
at query time. Our index is based on the pruning power of
the kNN distances of the database points. We proposed to
approximate these kNN distances by a simple function con-
servatively and progressively in order to avoid a significant
storage overhead. We demonstrated how these approxima-
tion functions can efficiently be determined and how any
tree-like metric index structure can be built with this aggre-
gated information. In our broad experimental evaluation, we
illustrated that our MRkNN-CoP-Tree efficiently supports
the generalized RkNN search in arbitrary metric spaces. In
particular, our approach yields a significant speed-up over
the sequential scan and naive indexing solutions. In addi-
tion, we demonstrated that our proposed concepts are also
applicable for Euclidean RkNN search. We have shown that
our MRkNNCoP-Tree even outperforms the only existing
solution for RkNN search for Euclidean vector data.

For future work, we will examine data structures for par-
allel and distributed RkNN queries in Euclidean and general
metric spaces.

7. REFERENCES
[1] A. M. Andrew. Another efficient algorithm for convex

hulls in two dimensions. Information Processing
Letters, 9, 1979.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-Tree: An efficient and robust access

method for points and rectangles. In Proc. SIGMOD,
1990.

[3] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The
X-Tree: An index structure for high-dimensional data.
In Proc. VLDB, 1996.

[4] P. Ciaccia, M. Patella, and P. Zezula. M-Tree: an
efficient access method for similarity search in metric
spaces. In Proc. VLDB, 1997.

[5] C. Ding and H. Peng. Minimum redundancy feature
selection from microarray gene expression data. In
CSB03, 2003.

[6] A. Guttman. R-Trees: A dynamic index structure for
spatial searching. In Proc. SIGMOD, 1984.

[7] F. Korn and S. Muthukrishnan. Influenced sets based
on reverse nearest neighbor queries. In Proc.
SIGMOD, 2000.

[8] M. Schroeder. Fractals, Chaos, Power Laws: Minutes
from an infinite paradise. W.H. Freeman and
company, New York, 1991.

[9] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High
dimensional reverse nearest neighbor queries. In Proc.
CIKM, 2003.

[10] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse
nearest neighbor queries for dynamic databases. In
Proc. DMKD, 2000.

[11] Y. Tao, D. Papadias, and X. Lian. Reverse kNN search
in arbitrary dimensionality. In Proc. VLDB, 2004.

[12] C. Yang and K.-I. Lin. An index structure for efficient
reverse nearest neighbor queries. In Proc. ICDE, 2001.

