Supplementary Material for
On the Evaluation of Unsupervised Outlier Detection: Measures, Datasets, and an Empirical Study
by G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková, E. Schubert, I. Assent and M. E. Houle
Data Mining and Knowledge Discovery 30(4): 891-927, 2016, DOI: 10.1007/s10618-015-0444-8


This dataset represents 3 classes of waves. Class 0 was defined here as an outlier class and downsampled to 100 objects. After preprocessing, this database has 21 numeric attributes and 3443 instances, divided into 100 outliers (2.9%) and 3343 inliers (97.1%) [1].


[1] A. Zimek, M. Gaudet, R. J. G. B. Campello, and J. Sander. Subsampling for efficient and effective unsupervised outlier detection ensembles. In Proc. KDD, pages 428-436, 2013.

Download all data set variants (5.1 MB). Access original data (